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Design of Robust Radar Detectors Through Random
Perturbation of the Target Signature

Angelo Coluccia , Senior Member, IEEE, Giuseppe Ricci , Senior Member, IEEE, and Olivier Besson

Abstract—The paper addresses the problem of designing radar
detectors more robust than Kelly’s detector to possible mismatches
of the assumed target signature, but with no performance degra-
dation under matched conditions. The idea is to model the received
signal under the signal-plus-noise hypothesis by adding a random
component, parameterized via a design covariance matrix, that
makes the hypothesis more plausible in presence of mismatches.
Moreover, an unknown power of such component, to be estimated
from the observables, can lead to no performance loss, under
matched conditions. Derivation of the (one-step) GLRT is provided
for two choices of the design matrix, obtaining detectors with
different complexity and behavior. A third parametric detector is
also obtained by an ad-hoc generalization of one of such GLRTs.
The analysis shows that the proposed approach can cover a range of
different robustness levels that is not achievable by state-of-the-art
with the same performance of Kelly’s detector under matched
conditions.

Index Terms—Radar detection, adaptive signal detection,
direction-of-arrival estimation, matched filter.

I. INTRODUCTION

A. Notation

V ECTORS and matrices are denoted by boldface lower-case
and upper-case letters, respectively. The symbols | · |,‖ · ‖,

det(·), tr(·), T , †, denote modulus value, Euclidean norm, deter-
minant, trace, transpose, and conjugate transpose (Hermitian),
respectively. E[·] is the statistical expectation operator. C is the
set of complex numbers and CN×M is the Euclidean space of
(N ×M)-dimensional complex matrices. 0 is the null vector of
proper dimension and IN stands for the N ×N identity matrix.
P⊥

u is the (orthogonal) projection matrix onto the orthogonal
complement of the subspace spanned by the vector u. Finally,
we write x ∼ CNN (0,M) if x is an N -dimensional complex
normal vector with zero mean and (Hermitian) positive definite
covariance matrix M .

B. Existing Results and Motivation

The well-known problem of detecting the possible presence
of a coherent return from a given cell under test (CUT) in range,
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doppler, and azimuth, is classically formulated as the following
hypothesis testing problem:{

H0 : z = n

H1 : z = αv + n
(1)

where z ∈ CN×1, n ∈ CN×1, and v ∈ CN×1 are the received
vector, corresponding noise term, and known space-time steer-
ing vector of the useful target echo. In general N is the number
of processed samples from the CUT; it might be the number
of antenna array elements times the number of pulses [1], [2].
The noise term is often modeled according to the complex
normal distribution with zero mean and unknown (Hermitian)
positive definite covariance matrix C, i.e., n ∼ CNN (0,C).
Modelingα ∈ C as an unknown deterministic parameter returns
a complex normal distribution for z under both hypotheses; the
non-zero mean under H1 makes it possible to discriminate the
two hypotheses {

H0 : z ∼ CNN (0,C)

H1 : z ∼ CNN (αv,C).
(2)

In the pioneering paper by Kelly [3], the generalized likelihood
ratio test (GLRT) is derived for (2), assuming a set of K ≥ N
independent and identically distributed training (or secondary)
datar1, . . . , rK , independent also ofz, free of target echoes, and
sharing with the CUT the statistical characteristics of the noise,
is available. In [4] the performance of such a detector is assessed
when the actual steering vector is not aligned with the nominal
one. The analysis shows that it is a selective receiver, i.e., it
may have excellent rejection capabilities of signals arriving from
directions different from the nominal one. A selective detector
is desirable for target localization. Instead, when a radar is
working in searching mode, a certain level of robustness to
mismatches is preferable. For this reason, many works have
addressed the problem of enhancing either the selectivity or the
robustness of radar detectors to mismatches. In particular, the
adaptive matched filter (AMF) [5], which solves (2) following
a two-step approach, is a prominent example of robust detector,
while the adaptive coherence estimator (ACE, also known as
adaptive normalized matched filter) [6] is another example of
selective receiver. Other relevant examples of selective receivers
are obtained by solving a modified hypothesis testing problem
that assumes the presence of a (fictitious) coherent signal under
the noise-only (H0) hypothesis to make it more plausible in
presence of signal mismatches [7]–[9]. A family of receivers,
obtained by inserting a nonnegative parameter in the original
Kelly’s detector, has been proposed by Kalson in [10]; such
a parameter, indicated as β in the following, allows one to
control the degree to which mismatched signals are rejected, so
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obtaining behaviors in between the AMF and Kelly’s detector. A
different tunable receiver called KWA has been proposed in [11],
which encompasses as special cases Kelly’s and W-ABORT
detectors [9]. Although designed for enhanced selectivity, for
values of its tunable parameter γ smaller than 1/2 it behaves
as a robust detector, reaching the energy detector for γ = 0.
Tunable receivers have also been proposed in [12], [13]. Other
approaches, as for instance those based on the cone idea, can
guarantee an increased robustness at the price of a certain loss
under matched conditions [14], [15]. A robust two-stage detector
obtained by cascading a GLRT-based subspace detector and
the Rao test has been proposed in [16]. Robust and selective
detectors have also been considered in the context of subspace
detection [17]–[19]. Multidimensional/multichannel signal de-
tection in homogeneous or partially homogeneous Gaussian
disturbance (with unknown covariance matrix and unknown
structured deterministic interference) is considered in [20], [21].

On the other hand, modeling α ∈ C as a complex normal
random variable with zero mean and variance |α|2 = E[|α|2],
returns a zero-mean complex normal distribution for z under
both hypotheses; hence{

H0 : z ∼ CNN (0,C)

H1 : z ∼ CNN (0,C + |α|2vv†).
(3)

This is a “second-order” approach to target modeling, i.e., the
presence of a useful signal (H1 hypothesis) is modeled in terms
of a modification of the noise covariance matrix, instead of
appearing in the mean as conversely for the more classical
problem (2). Interesting properties in terms of either rejection
capabilities or robustness to mismatches on the nominal steering
vector can be obtained by considering a random (instead of
deterministic) target signal, depending on the way problem (3)
is solved and possibly on the presence of a fictitious signal under
H0 [22], [23].

In this paper, we investigate the potential of a detector that
solves the following new hypothesis testing problem{

H0 : z = n

H1 : z = αv + θ + n
(4)

where α is an unknown deterministic parameter and θ ∼
CNN (0, νΣ) represents a random component. The goal is to
obtain a detector that exhibits the same probability of detec-
tion (Pd) of Kelly’s GLRT under matched conditions, but is
more robust than the latter to mismatches between the nominal
steering vector and the actual one. In the existing literature, the
“win-win” situation in which robustness is achieved without any
loss under matched conditions has been obtained so far through
careful parameter setting of tunable receivers, notably the men-
tioned Kalson’s and KWA detectors; here we propose a different
approach which, remarkably, can cover levels of robustness that
are not possible with such state-of-the-art receivers. The idea in
(4) is in fact to add to the H1 hypothesis a signal θ that makes
H1 more plausible, hence hopefully the detector more robust
to mismatches on the nominal steering vector v. To this aim, a
design matrix Σ is considered, multiplied by an unknown factor
ν; in doing so, in case of matched signature no component will
be likely found along Σ and the conventional case is recovered,
i.e., the estimated value for ν will be likely zero; conversely, if

the mismatch causes some leakage of the signal that is captured
by Σ, the detector would tend to decide for H1 more likely.

If we suppose that θ is independent of n, the resulting
hypothesis testing problem turns out to be{

H0 : z ∼ CNN (0,C)

H1 : z ∼ CNN (αv,C + νΣ).
(5)

In summary, the contribution of this paper is threefold:
• A new hypothesis test (5) for radar detection is introduced,

which is a possible generalization of (2) and (3).
• The (one-step) GLRT is derived for two choices of the

design matrix Σ. A third parametric detector is obtained by
an ad-hoc generalization of one of such GLRTs. Two-step
GLRT-based detectors have been presented in our prelim-
inary work [24]. The detectors derived here have different
complexity and behavior.

• A thorough analysis of the proposed detectors is performed,
also deriving closed-form expressions for thePfa for two of
the detectors and showing that they have the desirable con-
stant false alarm rate (CFAR) property. The performance
assessment reveals that the proposed approach can guaran-
tee negligible loss under matched conditions with respect
to Kelly’s detector while providing diversified degrees of
robustness depending on chosen parameters.

The paper is organized as follows: Section II is devoted to
the derivation of the GLRTs (with some proofs and lengthy
manipulations in the Appendices). Section III addresses the
analysis of the detectors. We conclude in Section IV.

II. GLRTS FOR POINT-LIKE TARGETS

In this section, we derive robust detectors employing the
GLRT. To this end, we consider the following binary hypothesis
testing problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0 : z ∼ CNN (0,C)

rk ∼ CNN (0,C), k = 1, . . . ,K

H1 : z ∼ CNN (αv, νΣ+C)

rk ∼ CNN (0,C), k = 1, . . . ,K

where we recall that the training data rk form a set of K ≥ N
independent (and identically distributed) vectors,1 independent
also of z, free of target echoes, and sharing with the CUT the sta-
tistical characteristics of the noise. The positive definite matrix
C, ν ≥ 0, and α ∈ C are unknown quantities while v ∈ CN×1

is a known vector. As to the (Hermitian) positive semidefinite
matrix Σ, it might be either known or unknown. In the former
case, Σ reflects our knowledge about the random variations of
the target steering vector around its nominal value v. On the
contrary, an unknown Σ implies that no specific knowledge
is available. In such a case, obviously Σ cannot be estimated
from a single snapshot (data from the CUT) and therefore one
needs to make some further assumptions. The latter are mostly
dictated by pragmatism so that the detection problem remains
identifiable and mathematically tractable. Indeed, Σ should be
viewed as a means to model the structure of the variations around
v while ν captures their amplitudes. In any case, one has to look

1The condition K ≥ N ensures that the sample covariance matrix based on
training data has full rank with probability one [3].



at the ultimate performance for judging the goodness of each
choice. In the sequel, we will assume that either Σ is a known
rank-one matrix or Σ = C (so that, although unknown, it does
not introduce new unknowns).

A. Case 1: Derivation of the GLRT for Σ = uu†

In this section, we address the case that Σ is a rank-one
matrix. First observe that the case Σ = vv†, which enforces
the target signature in both the mean and covariance,2 returns
Kelly’s detector, as discussed later in this section. We are instead
more interested in a vectoru aimed at making theH1 hypothesis
more plausible under mismatches. Intuitively, a design matrix
Σ = vmv†

m, where vm is a slightly mismatched steering vector,
is a possible way to introduce some robustness without apprecia-
ble loss under matched conditions; nonetheless, other choices are
possible, hence we provide a derivation for generic Σ = uu†.

The corresponding GLRT is given by

Λ(z,S) =
maxC>0 maxν≥0 maxα∈C f1(z,S|C, ν, α)

maxC>0 f0(z,S|C)

H1
>
<
H0

η

(6)
where

f1(z,S|C, ν, α) =
e
−tr

[
(νuu†+C)

−1
(z−αv)(z−αv)†+C−1S

]

πN(K+1) detK(C) det(νuu† +C)
(7)

and

f0(z,S|C) =
1

πN(K+1)

1

detK+1(C)
e−tr {C−1[zz†+S]}

are the probability density functions (PDFs) of z, r1, . . . , rK
under H1 and H0, respectively, and S/K the sample covariance
matrix computed on the secondary data, i.e.,

S =

K∑
k=1

rkr
†
k.

As to η, it is the detection threshold to be set according to the
desired probability of false alarm (Pfa). Maximization over C
of the likelihood under H0 can be performed as in [3]; in fact,
the maximizer of the likelihood is given by

Ĉ0 =
1

K + 1

[
zz† + S

]
.

It follows that

f0(z,S|Ĉ0) =

(
K + 1

eπ

)N(K+1) [
det

(
zz† + S

)]−(K+1)
.

(8)
Computation of the numerator of the GLRT and, in particular,

maximization of f1(z,S|C, ν, α) with respect to C is less
standard. However, it can be conducted exploiting the following
result (a special case of the one in [23]).

Proposition 1: Assume that u is a unit-norm vector (and that
K ≥ N ). Then, for the likelihood under the H1 hypothesis,
given by equation (7), the following equality holds true

lmax= max
C>0,ν≥0,α∈C

f1(z,S|C, ν, α)

2This amounts to assuming that z = (α+ ε)v +n where ε is a zero-mean
complex normal random variable with unknown power ν, independent of n.

=max
b≥0

max
α∈C

(
K+1
πe

)N(K+1)
(1+b)−1

[
det(S)

(
1 + (z−αv)† S−1 (z−αv)

)]K+1

×

⎡
⎢⎣u

†
(
S+(1 + b)−1 (z − αv) (z − αv)†

)−1

u

u†
(
S+(z−αv) (z − αv)†

)−1

u

⎤
⎥⎦
K+1

where b = νu†C−1u.
Proof: The result is a special case of the one in [23] letting

therein, in equation (39),R = C,Tp = 1,Ts = K (hence, Tt =
K + 1), M = N , X = z − αv, Sy = S, v = u, P = ν. �

In the following, we will denote by l(b, α) the partially-
compressed likelihood under H1, i.e.,

l(b, α) =

(
K+1
πe

)N(K+1)
(1 + b)−1

detK+1(S)
(
1 + (z − αv)† S−1 (z − αv)

)K+1

×

⎡
⎢⎣u

†
(
S+(1 + b)−1 (z−αv) (z−αv)†

)−1

u

u†
(
S+(z−αv) (z−αv)†

)−1

u

⎤
⎥⎦
K+1

.

As shown in Appendix A, it can also be re-written as

l(b, α) =

(
K+1
πe

)N(K+1)
(1 + b)−1

detK+1(S)
(
1 + b+ ‖z̃ − αṽ‖2

)K+1

×
[
(1 + b) +

∥∥P⊥
ũ (z̃ − αṽ)

∥∥2
1 +

∥∥P⊥
ũ (z̃ − αṽ)

∥∥2
]K+1

(9)

where z̃ = S−1/2z, ṽ = S−1/2v, and ũ = S−1/2u are the
“whitened” versions of z, v, and u, respectively, and we recall
thatP⊥

ũ is the (orthogonal) projection matrix onto the orthogonal
complement of the subspace spanned by ũ.

For u = v, l(b, α) can be easily maximized and the GLRT is
Kelly’s detector (ref. Appendix A). If, instead, u �= v, max-
imization of the above partially-compressed likelihood with
respect to α ∈ C can be restricted to a proper “segment”
of the complex plane. In fact, the following result holds
true.

Proposition 2: Let P⊥
ũṽ �= 0. The maximum of the func-

tion l(b, α) with respect to α ∈ C, given b ≥ 0, is at-
tained over the segment whose endpoints are α1 and α2,
defined as

α1 = argmin
α

(z̃ − αṽ)† (z̃ − αṽ) =
(
ṽ†ṽ

)−1
ṽ†z̃

α2 = argmin
α

∥∥P⊥
ũ (z̃ − αṽ)

∥∥2 =
(
ṽ†P⊥

ũṽ
)−1

ṽ†P⊥
ũz̃.

Proof: See Appendix A. �
From the proposition above, α can be re-written as

α(t) = tα1 + (1− t)α2, t ∈ [0, 1] .

Accordingly, we have

|α(t)− α1|2 = |tα1 + (1− t)α2−α1|2=(1− t)2 |α2 − α1|2,
|α(t)− α2|2 = |tα1 + (1− t)α2−α2|2= t2|α1 − α2|2;



then, using equations (A.16), (A.18), and (A.19), together with
the above two equations, yields

l(b, α(t))=

(
K + 1

πe

)N(K+1)
1

detK+1(S)

× l1

(
b, ‖z̃ − α(t)ṽ‖2

)
l2

(
b,
∥∥P⊥

ũ (z̃−α(t)ṽ)
∥∥2)

=

(
K + 1

πe

)N(K+1)
1

detK+1(S)

× l1

(
b, z̃†P⊥

ṽ z̃ + (1− t)2 |α2 − α1|2ṽ†ṽ
)

× l2

(
b, z̃†P⊥

ũP
⊥
P ⊥

ũṽ
P⊥

ũz̃ + t2|α1 − α2|2ṽ†P⊥
ũṽ
)

with l1(·, ·) and l2(·, ·) given in equation (A.17). Summarizing,
the GLRT can be written as

maxb≥0 maxt∈[0,1] l(b, α(t))(
K+1
πe

)N(K+1) 1

detK+1 (S)

(
1 + z†S−1z

)−(K+1)

H1
>
<
H0

η

and also as

max
b≥0

max
t∈[0,1]

l1

(
b, z̃†P⊥

ṽ z̃ + (1− t)2 R2ṽ†ṽ
)

(
1 + z†S−1z

)−(K+1)

× l2

(
b, z̃†P⊥

ũP
⊥
P ⊥

ũṽ
P⊥

ũz̃ + t2R2ṽ†P⊥
ũṽ

) H1
>
<
H0

η (10)

where R2 = |α1 − α2|2. Equation (10) is a computationally
more convenient alternative for the GLRT in the case Σ = uu†,
withu any chosen vector. This rewriting is in fact less demanding
than using l(b, α) for the numerator (partially-compressed like-
lihood under H1): in particular, the maximization over α ∈ C of
l(b, α) (e.g., using equation (9)) would require a complex-valued
(two-dimensional) unbounded optimization instead of the sim-
ple scalar search of t in the finite interval [0, 1] appearing in
(10). Moreover, it is reasonable to constraint b to belong to a
finite interval, say [0, bmax]. This further reduces the ultimate
complexity and makes it possible to implement the detector us-
ing a numerical algorithm with box constraints or, alternatively,
a grid search.

B. Case 2: Derivation of the GLRT for Σ = C

In this case Σ is unknown, but equal to the covariance matrix
of the noiseC. Clearly, since the latter is unrelated to the sources
of error producing the steering vector mismatch that we hope to
capture through the random term θ, a direct physical meaning
forΣ = C is missing; however, such a choice is mathematically
convenient and leads to a detector with sound properties, as
shown later. Also, if C were known, the GLRT would process
the whitened received signal and the choice Σ = C would be
tantamount to modeling the random component to be added to
the (whitened) steering vector as a white term. This is reasonable
when no a-priori knowledge on the nature of the mismatch is
available, hence Σ = C is actually a conservative (less infor-
mative) choice.3

3Please also recall the general rationale of test (4) and the discussion at the
beginning of Section II.

The corresponding GLRT is

Λ(z,S) =
maxC>0 maxν≥0 maxα∈C f1(z,S|C, ν, α)

maxC>0 f0(z,S|C)

H1
>
<
H0

η

(11)
where

f1(z,S|C, ν, α) =
e−tr {C−1[ 1

1+ν (z−αv)(z−αv)†+S]}
πN(K+1)(1 + ν)N detK+1(C)

is the PDF of z, r1, . . . , rK under H1 while the denominator
of (11) is given by (8). Again η is the detection threshold for
the desired Pfa. We also recall that S is K times the sample
covariance matrix computed on the secondary data.

Maximization over C of the likelihood under H1 can be
performed as in [3]; in fact, we have that

Ĉ1(ν, α) =
1

K + 1

[
1

1 + ν
(z − αv) (z − αv)† + S

]
.

Thus, the partially-compressed likelihood under H1 becomes

f1(z,S|Ĉ1(ν, α), ν, α) =

(
K + 1

eπ

)N(K+1)

× 1

(1 + ν)N

[
det

(
1

1 + ν
(z−αv) (z−αv)†+S

)]−(K+1)

.

Plugging the above expressions into equation (11) yields

Λ
1

K+1 (z,S) =
1 + ‖z̃‖2

minν≥0,α∈C(1 + ν)
N

K+1

[
1+

1

1 + ν
‖z̃ − αṽ‖2

] .

Moreover, minimization over α leads to [25]

Λ
1

K+1 (z,S) =
1 + ‖z̃‖2

minν≥0(1 + ν)
N

K+1

[
1 +

1

1 + ν

∥∥P⊥
ṽ z̃

∥∥2] .

Minimization of denominator with respect to ν can be easily
accomplished using the following proposition.

Proposition 3: The function

f(ν) = (1 + ν)
N

K+1

(
1 +

a

1 + ν

)
, a > 0,K ≥ N

admits a unique minimum over [0,+∞) at

ν̂ =

⎧⎪⎪⎨
⎪⎪⎩

(
K + 1

N
− 1

)
a− 1,

(
K + 1

N
− 1

)
a− 1 > 0

0, otherwise

given by

fmin =⎧⎪⎪⎨
⎪⎪⎩

(
K + 1−N

N
a

) N
K+1 K + 1

K + 1−N
,

K + 1−N

N
a > 1

1 + a, otherwise

.

Proof: See Appendix B. �
Thus, it follows that the GLRT can be written as

Λ0(z,S) = Λ
1

K+1 (z,S)
H1
>
<
H0

η (12)



where

Λ0(z,S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + ‖z̃‖2

)(
1− 1

ζ

)

[
(ζ − 1)

∥∥P⊥
ṽ z̃

∥∥2]
1

ζ

,
∥∥P⊥

ṽ z̃
∥∥2 >

1

ζ − 1

1 + ‖z̃‖2
1 +

∥∥P⊥
ṽ z̃

∥∥2 , otherwise

ζ = K+1
N , and η denotes a modification of the original threshold.

The Pfa of the test and the characterization of the decision
statistic under H1 can be obtained in closed form, and are
reported in Appendix B. Remarkably, in the appendix it is shown
that the detector has the desirable CFAR property.

Notice that, conditionally to∥∥P⊥
ṽ z̃

∥∥2 <
1

ζ − 1
(13)

Λ0(z,S) is equivalent to Kelly’s statistic; it turns out that the
detector robustness comes from Λ0(z,S) under the condition
complementary to (13). Thus, it seems possible to promote
robustness by decreasing the probability to select “Kelly’s statis-
tic”. In particular, we propose to replace ζ in (13) with

ζε =
K + 1

N
(1 + ε), ε ≥ 0. (14)

We made this ad-hoc substitution also on the decision statistic,
obtaining the following parametric detector that thus generalizes
(12) through (14):

Λε(z,S)
H1
>
<
H0

η (15)

where

Λε(z,S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + ‖z̃‖2

)(
1− 1

ζε

)

[
(ζε − 1)

∥∥P⊥
ṽ z̃

∥∥2]
1

ζε

,
∥∥P⊥

ṽ z̃
∥∥2 >

1

ζε − 1

1 + ‖z̃‖2
1 +

∥∥P⊥
ṽ z̃

∥∥2 , otherwise.

Such parametric detector encompasses detector (12) for ε = 0
and eventually ζε = ζ. Moreover, we will show that detec-
tor (15) can outperform detector (12) in terms of robustness,
without incurring additional loss under matched conditions.
Finally, a closed form for its Pfa is given in equation (B.24) of
Appendix B, which allows one to set the threshold to guarantee
the desired Pfa for any choice of ε; for convenience, the curves
for some relevant values of ε are drawn in Fig. 1, also revealing
that the Pfa does not significantly change with ε. In Appendix B
it is furthermore proven that the proposed detector (15) (hence
also (12)) possesses the CFAR property, i.e., itsPfa does not de-
pend on any unknown parameter (including the unknown noise
covariance matrix C); additionally, it is proven that its perfor-
mance in terms ofPd depends only on the SNR (equation (B.25))
and the cosine squared cos2 θ (equation (B.26)) between the
nominal steering vector and the actual one, which are the same
performance parameters of Kelly’s, AMF, Kalson’s, and KWA
detectors. This remarkable fact corroborates the soundness and

Fig. 1. Curves of Pfa vs detection threshold, for different values of ε.

convenience of the choiceΣ = C. It also means thatPd does not
depend directly on noise-related parameters, namely the clutter
power and correlation, but only through SNR and cos2 θ; as a
consequence, the figures we will provide in Section III (Pd vs
SNR for different cos2 θ) are quite representative of the general
performance, despite they are obtained for a specific choice
of C.

C. Discussion

It is important to stress that the derivation of the GLRT for
Σ = C and, hence, the result is different from the detector
proposed in [6]. More precisely, considering the derivation of
the ACE as the GLRT to detect a possible coherent signal
in presence of partially-homogeneous noise, given in [6], we
highlight that therein the parameter ν represents the possible
mismatch between the power of the noise in the data un-
der test and that of secondary data. Herein, instead, ν enters
the characterization of a possible random mismatch between
the actual and the nominal useful signal. For this reason, we
have 1 + ν in place of ν under H1 (νC stands for the covariance
matrix of the random term) and, in addition, ν is not present
under the H0 hypothesis. This difference in the formulation of
the hypothesis testing problem makes our detector more robust
than Kelly’s detector [3] in presence of mismatched signals while
it is well-known that the ACE is more selective than the latter
(under the same operating conditions).

Table I reports a summary of the proposed detectors for test
(5), also in comparison with the classical approach (test (2)).4

III. PERFORMANCE ANALYSIS

We assume a time steering vector, i.e., v = [1 ei2πfd

· · · ei2π(N−1)fd ]T , with N = 16 and normalized Doppler fre-
quency fd = 0.08, a small value such that the target competes
with low pass clutter. The target amplitude α is generated deter-
ministically according to the SNR defined in equation (B.25).
To assess the robustness of the proposed detectors, we simulate
a target with a mismatched steering vector, say p, having nor-
malized Doppler frequency fd + δf with δf ∈ {0.2/N, 0.4/N}.

4For completeness, we mention that [24] provides the general derivation (for
any Σ) and a closed-form for Σ = C following the two-step GLRT approach,
namely deriving the GLRT for known C and then using as replacement an
estimate Ĉ (from secondary data); such detectors are however less powerful
than one-step GLRTs. In Appendix C we show that for Σ = vv† the two-step
GLRT is equivalent to the AMF, whereas the proposed one-step GLRT for the
same choice of Σ is equivalent to Kelly’s detector (ref. Section II-A).



TABLE I
SUMMARY OF PROPOSED DETECTORS FOR TEST (5) AND COMPARISON WITH THE CLASSICAL APPROACH (TEST (2))

The values of δf will affect the values of the cosine squared of the
angle between the nominal steering vector and the mismatched
one, denoted by cos2 θ and given in equation (B.26), which is a
standard way to quantify the mismatch in radar detection. Under
matched conditions, of course, p = v and cos2 θ = 1.

We model the noise component of z and the rk s as (indepen-
dent) random vectors ruled by a zero-mean, complex Gaussian
distribution. As to the covariance matrix, we adopt as C the
sum of a Gaussian-shaped clutter covariance matrix and white
(thermal) noise 10 dB weaker, i.e., C = Rc + σ2

nIN with the
(m1,m2)th element of the matrix Rc given by [Rc]m1,m2

∝
exp{−2π2σ2

f (m1 −m2)
2} and σf ≈ 0.073 (corresponding to

a one-lag correlation coefficient of the clutter component equal
to 0.9).

In the following we assess the performance of the proposed
(one-step) GLRTs, considering both Σ = vmv†

m and Σ = C,
and the parametric detector (15). The former detector assumes
as vm a slightly mismatched version of v, in particular of
0.03/N , and for the optimization with respect to b we adopt
a logarithmic search in the span [0, bmax = 103]; as regards the
parametric detector (15), we consider ε = 0.1 and ε = 0.2. It
will be apparent from the simulations below that such choices
guarantee negligible loss with respect to Kelly’s detector under
matched conditions.

A comparison is performed against the natural competitors
for the problem at hand, that is the Kalson’s [10] and KWA [11]
tunable receivers. Notice that for both such competitors, the level
of robustness increases as the value of their tunable parameter
decreases. For a fair comparison, only values that ensure prac-
tically the same performance of Kelly’s detector under matched
conditions are considered, in particular β = 0.5 and β = 0.8 for
Kalson’s detector and γ = 0.45 and γ = 0.4 for the KWA. For
reference, the AMF [5] is also reported in all figures, because it
is a well-known robust detector; however, it is worth remarking
that it is not always a competitor, since it generally experiences
a performance loss under matched conditions with respect to
Kelly’s detector.

A first set of simulations (Figs. 2–4) refers toPfa = 10−4. We
assess performance by Monte Carlo simulation with 100/Pfa

independent trials to set the thresholds and103 independent trials
to compute the Pds (the probabilities to decide for H1 when a
useful signal is present). Results under matched conditions are
reported in Fig. 2 for different values of the number of sec-
ondary data, namely K = 24, 32, 40 respectively (i.e., besides
the typicalK = 2N , also 1.5N and 2.5N are considered). From
such figures, it is apparent that the proposed detectors and the
tunable competitors (Kalson’s and KWA) have essentially the
same Pd of Kelly’s detector, while as known the AMF exhibits
a performance loss, which becomes negligible only when the
number of secondary data is large enough. Notice that the KWA
for γ = 0.4 and the detector (15) for ε = 0.2 start to experience
some loss, especially for moderate SNR, hence smaller values

Fig. 2. Pd vs SNR under matched conditions, for Pfa = 10−4.

of their respective parameters are not considered for a fair
comparison.

Fig. 3 reports the results under mismatch, in particular consid-
ering a cosine squared of the angle between the nominal steering
vector and the mismatched one (given by equation (B.26)) equal
to cos2 θ ≈ 0.46 (obtained for δf = 0.4/N = 0.025). It emerges
that the proposed approach yields a family of robust receivers,
whose performance in terms of robustness to mismatches
depends on the design matrix Σ and number of secondary data
K. The behavior of the GLRT for Σ = C is very interesting,



Fig. 3. Pd vs SNR in case of mismatched steering vector, for cos2 θ ≈ 0.46
and Pfa = 10−4.

because it is (equivalent to Kelly’s detector under matched
conditions and) more robust than Kalson’s and KWA receivers;
the parametric detector (15) with both settings of ε is more robust
than the GLRT for Σ = C and can be even more robust than
AMF, in particular for K = 32, without the loss experienced by
the latter under matched conditions. This “win-win” behavior is
thus remarkably unique and not achievable with state-of-the-art
receivers. Notice that the AMF can be considered a competitor
only for K = 40 (where its performance loss under matched
conditions compared to Kelly’s detector becomes very small),
but Fig. 3(c) shows that the proposed detectors, in particular
the GLRT for Σ = C and the parametric detector (15) with
both settings of ε, are more robust than AMF; notice that this
advantage comes at no increase in computational complexity.

Fig. 4. Pd vs SNR in case of mismatched steering vector, for cos2 θ ≈ 0.83
and Pfa = 10−4.

The GLRT with Σ = vmv†
m needs higher values of K to

achieve almost the same robustness of the other proposed
receivers (Fig. 3(c)); otherwise, it progressively rejects the H1

hypothesis: for K = 32 (Fig. 3(b)) only for larger SNR (not
shown in the figure), for K = 24 (Fig. 3(a)) behaving as a
selective receiver over the whole range of SNRs. As to Kalson’s
detector, for β = 0.8 it is close to Kelly’s detector (in particular
for K = 24).

For a reduced value of the mismatch, the differences between
the proposed detectors and the competitors reduce. Fig. 4 shows
the mismatched case with cos2 θ ≈ 0.83 (obtained for δf =
0.2/N = 0.0125). We observe that the parametric detector (15)
still emerges as the most robust among the detectors that have
negligible loss under matched conditions (compared to Kelly’s



Fig. 5. Pd vs SNR in case of matched steering vector, for K = 32, and
Pfa = 10−6.

Fig. 6. Pd vs SNR in case of mismatched steering vector, for K = 32,
cos2 θ ≈ 0.46, and Pfa = 10−6.

detector) hence excluding AMF for K = 24, 32; for K = 40,
conversely, the detector (15) and AMF are almost equivalent.

A second set of simulations (Figs. 5–6) refers to Pfa = 10−6

and focuses on the behavior of the proposed GLRT for Σ = C
and the parametric detector (15) in comparison to Kalson’s and
KWA detectors; for reference, also the performance of Kelly’s
detector and AMF are shown. Notice that, for such a small Pfa,
Monte Carlo simulations are prohibitively long, hence we can
compare only detectors for which a closed-form expression is
available for the relationship between the threshold and the Pfa;
for this reason the proposed GLRT with Σ = vmv†

m cannot be
included; besides, the detector with Σ = C and the parametric
detector (15) are simpler and show a more interesting behavior,
hence are more appealing for applications. Again we resort to
Monte Carlo simulation and to 103 independent trials to estimate
the Pds. The values of the tunable parameters for the parametric
detector and the competitors are chosen as before, because this
guarantees no appreciable loss under matched conditions as
shown in Fig. 5. In Fig. 6 we report the results under mismatched
conditions for cos2 θ ≈ 0.46 and K = 32. Comparing the result
with the corresponding Fig. 3(b), the better performance of the
proposed receivers are even more evident. We see that they are
more robust than Kalson’s and KWA detectors; in particular,
the parametric detector with ε = 0.2 is also more robust than
the AMF for large SNR values while Kalson’s detector with
β = 0.8 approaches the selective behavior of Kelly’s detector.

IV. CONCLUSION

We have proposed a novel family of robust radar receivers to
detect the possible presence of a coherent return from a given
cell under test mismatched with respect to the nominal steering
vector. To this end, we have introduced a random component in
addition to the deterministic useful signal; the random compo-
nent has a given structure Σ, but its power ν is estimated from
the data. This likely produces an estimate of ν close to zero under
matched conditions, thus achieving no loss compared to Kelly’s
detector (which is the benchmark for the considered problem).
We have solved the hypothesis testing problem resorting to the
GLRT approach and assuming for Σ either a known rank-one
matrix or the unknown covariance matrix of the noise. We have
also introduced a parametric detector that naturally modifies
the statistic of the latter GLRT and shares with it the CFAR
property. The performance analysis has shown that proposed
detectors are a viable means to deal with mismatched signals;
in fact, compared to competitors that have negligible loss un-
der matched conditions, the proposed approach guarantees an
increased robustness.

Outgrowths of this work are the investigation of further
possible structures for the design matrix Σ, and possibly the
derivation of the one-step GLRT for the general case (which
in fact is missing in Table I). A different avenue for possible
generalizations is robust detection of range-spread targets; to
date, the GLRT for the proposed random perturbation approach
has been derived only in the case Σ = C, which though has the
same remarkable properties of the point-like detector derived
here [30]. Finally, it would be interesting to ascertain whether re-
ceivers with the same detection power of Kelly’s detector (under
matched conditions) but controllable robustness or selectivity
under mismatched conditions can be obtained through design
approaches different from GLRT, namely inspired to machine
learning tools.

APPENDIX A
DERIVATION OF EQUATION (9)

First observe that, by the matrix inversion lemma, we have

u†
(
S + (1 + b)−1 (z − αv) (z − αv)†

)−1

u

= u†S−1u− (1 + b)−1
∣∣u†S−1 (z − αv)

∣∣2
1 + (1 + b)−1 (z − αv)† S−1 (z − αv)

.

Thus, l(b, α) can be re-written as

l(b, α) =

(
K+1
πe

)N(K+1)
(1 + b)−1

detK+1(S)
(
1 + (z̃ − αṽ)† (z̃ − αṽ)

)K+1

×

⎡
⎢⎣ ũ†ũ−(1 + b)−1 |ũ†(z̃−αṽ)|2

1+(1+b)−1(z̃−αṽ)†(z̃−αṽ)

ũ†ũ− |ũ†(z̃−αṽ)|2
1+(z̃−αṽ)†(z̃−αṽ)

⎤
⎥⎦
K+1

where z̃ = S−1/2z, ṽ = S−1/2v, and ũ = S−1/2u are the
whitened versions of z, v, and u, respectively.



Notice also that

ũ†ũ− (1 + b)−1 |ũ†(z̃−αṽ)|2
1+(1+b)−1(z̃−αṽ)†(z̃−αṽ)

ũ†ũ− |ũ†(z̃−αṽ)|2
1+(z̃−αṽ)†(z̃−αṽ)

=
ũ†ũ− |ũ†(z̃−αṽ)|2

1+b+(z̃−αṽ)†(z̃−αṽ)

ũ†ũ− |ũ†(z̃−αṽ)|2
1+(z̃−αṽ)†(z̃−αṽ)

=
(1 + b)ũ†ũ+ ũ†ũ‖z̃ − αṽ‖2 − ∣∣ũ† (z̃ − αṽ)

∣∣2
ũ†ũ+ ũ†ũ‖z̃ − αṽ‖2 − ∣∣ũ† (z̃ − αṽ)

∣∣2

× 1 + (z̃ − αṽ)† (z̃ − αṽ)

1 + b+ (z̃ − αṽ)† (z̃ − αṽ)
.

It turns out that l(b, α) can be re-cast as

l(b, α) =

(
K+1
πe

)N(K+1)
(1 + b)−1

detK+1(S)
(
1 + b+ (z̃ − αṽ)† (z̃ − αṽ)

)K+1

×
[
(1+b)‖ũ‖2+‖ũ‖2‖z̃−αṽ‖2−∣∣ũ† (z̃ − αṽ)

∣∣2
‖ũ‖2 + ‖ũ‖2‖z̃ − αṽ‖2 − ∣∣ũ† (z̃ − αṽ)

∣∣2
]K+1

and letting
∣∣ũ† (z̃ − αṽ)

∣∣2 = ‖ũ‖2 ‖P ũ (z̃ − αṽ)‖2 it can be
re-written in the form of equation (9).

THE GLRT WITH Σ = vv† IS THE KELLY’S DETECTOR

If u = v and, hence, P⊥
ũṽ = 0, the partially-compressed

likelihood under H1 of equation (9) becomes

l(b, α) =

(
K+1
πe

)N(K+1)
(1 + b)−1

detK+1(S)
(
1 + b+ (z̃ − αṽ)† (z̃ − αṽ)

)K+1

×
[
(1 + b) +

∥∥P⊥
ṽ z̃

∥∥2
1 +

∥∥P⊥
ṽ z̃

∥∥2
]K+1

and

max
α

l(b, α) =
(1 + b)−1

(
K+1
πe

)N(K+1)

detK+1(S)
(
1 +

∥∥P⊥
ṽ z̃

∥∥2)K+1
.

As a consequence, we also have that

max
b≥0

max
α

l(b, α) =

(
K+1
πe

)N(K+1)

detK+1(S)
(
1 +

∥∥P⊥
ṽ z̃

∥∥2)K+1

and the GLRT, given by equation (6), can be written as

1 + z†S−1z

1 +
∥∥P⊥

ṽ z̃
∥∥2 =

1 + z†S−1z

1 + z†S−1z − |v†S−1z|2
v†S−1v

H1
>
<
H0

η,

with η a proper modification of the original threshold, that is
equivalent to Kelly’s detector (we have also used equation (8)
for the compressed likelihood under H0).

PROOF OF PROPOSITION 2

First observe that l(b, α) can be written as

l(b, α) =
l1

(
b, ‖z̃ − αṽ‖2

)
l2

(
b,
∥∥P⊥

ũ (z̃ − αṽ)
∥∥2)

(
K+1
πe

)−N(K+1)
detK+1(S)

(A.16)
with

l1(b, y1)=
(1 + b)−1

(1 + b+ y1)
K+1

, l2(b, y2)=

[
(1 + b) + y2

1 + y2

]K+1

.

(A.17)
In particular, l1 and l2 are strictly decreasing function of y1 and
y2, respectively. Moreover, l1 attains its maximum at

α1 = argmin
α

(z̃ − αṽ)† (z̃ − αṽ) =
(
ṽ†ṽ

)−1
ṽ†z̃

and

‖z̃ − αṽ‖2 = ‖z̃ − (α− α1) ṽ − α1ṽ‖2

= z̃†P⊥
ṽ z̃ + |α− α1|2 ṽ†ṽ ≥ z̃†P⊥

ṽ z̃ (A.18)

where z̃ − α1ṽ = P⊥
ṽ z̃. Thus, ∀x ≥ z̃†P⊥

ṽ z̃, the equation
(z̃ − αṽ)† (z̃ − αṽ) = x is tantamount to |α− α1|2 ṽ†ṽ =
x− z̃†P⊥

ṽ z̃ and is a circle centered at α1 of proper radius.
Similarly, l2 attains its maximum at

α2 = argmin
α

∥∥P⊥
ũ (z̃ − αṽ)

∥∥2

= argmin
α

∥∥P⊥
ũz̃ − αP⊥

ũṽ
∥∥2 =

(
ṽ†P⊥

ũṽ
)−1

ṽ†P⊥
ũz̃

and∥∥P⊥
ũ (z̃ − αṽ)

∥∥2 =
∥∥P⊥

ũ (z̃ − (α− α2) ṽ − α2ṽ)
∥∥2

=
∥∥P⊥

ũz̃ − α2P
⊥
ũṽ − (α− α2)P

⊥
ũṽ

∥∥2

=
∥∥∥(IN − P⊥

ũṽ
(
ṽ†P⊥

ũṽ
)−1

ṽ†P⊥
ũ

)

× P⊥
ũz̃ − (α− α2)P

⊥
ũṽ

∥∥2

=
∥∥∥P⊥

P ⊥
ũṽ

P⊥
ũz̃ − (α− α2)P

⊥
ũṽ

∥∥∥2

= z̃†P⊥
ũP

⊥
P ⊥

ũṽ
P⊥

ũz̃ + |α− α2|2 ṽ†P⊥
ũṽ

= z̃†P⊥
ũz̃ − z̃†P⊥

ũṽ
(
ṽ†P⊥

ũṽ
)−1

× ṽ†P⊥
ũz̃ + |α− α2|2 ṽ†P⊥

ũṽ

≥ z̃†P⊥
ũz̃ − z̃†P⊥

ũṽ
(
ṽ†P⊥

ũṽ
)−1

ṽ†P⊥
ũz̃.

(A.19)

Thus, ∀y ≥ z̃†P⊥
ũz̃ − z̃†P⊥

ũṽ
(
ṽ†P⊥

ũṽ
)−1

ṽ†P⊥
ũz̃, the equa-

tion
∥∥P⊥

ũ (z̃ − αṽ)
∥∥2 = y is tantamount to

|α−α2|2 ṽ†P⊥
ũṽ = y − z̃†P⊥

ũz̃ + z̃†P⊥
ũṽ

(̃
v†P⊥

ũṽ
)−1

ṽ†P⊥
ũz̃

and is a circle centered at α2 of proper radius.
Obviously, for α1 = α2 the maximum of l(b, α), given b, is

attained at α1. Assuming instead α1 �= α2, we can prove that
the values of α maximizing l(b, α) belong to the segment whose
endpoints are α1 and α2, indicated hereafter as Sα1α2

.



Fig. 7. Illustration of the procedure to find points of the “segment
α1 − α2” that upperbound l(b, α). Without loss of generality α2 = 0 and
α1 < 0.

To this end, we show that ∀α ∈ C \ Sα1α2
there exists a point

α ∈ Sα1α2
such that

l(b, α) < l(b, α). (A.20)

In fact, if α ∈ C does not belong to the circle centered at
α2 of radius |α1 − α2| as, for instance, δ1 in Fig. 7, we
can choose α = α1 that has a smaller distance from α2 than
δ1, thus implying

∥∥P⊥
ũ (z̃ − δ1ṽ)

∥∥2 >
∥∥P⊥

ũ (z̃ − α1ṽ)
∥∥2 ,

‖z̃ − δ1ṽ‖2 > ‖z̃ − α1ṽ‖2 and, eventually l(b, δ1) < l(b, α1).
If, instead,α ∈ C \ Sα1α2

belongs to the circle centered atα2

of radius |α1 − α2| as, for instance, δ2 in Fig. 7, we replace it
with γ, i.e., α = γ, that has the same distance of δ2 from α2 and
a smaller distance from α1, thus implying

∥∥P⊥
ũ (z̃ − δ2ṽ)

∥∥2 =∥∥P⊥
ũ (z̃ − γṽ)

∥∥2 , ‖z̃ − δ2ṽ‖2 > ‖z̃ − γṽ‖2 and, eventually
l(b, δ2) < l(b, γ).

APPENDIX B
PROOF OF PROPOSITION 3

The derivative of f(ν) is given by

d

dν
f(ν) =

N

K + 1
(1 + ν)

N
K+1−1

(
1 +

a

1 + ν

)

− (1 + ν)
N

K+1
a

(1 + ν)2
.

Thus, d
dν f(ν) < 0 if and only if N

K+1 (1 + ν + a)− a < 0 or,

equivalently, ν < (K+1
N − 1)a− 1. It follows that the function

f(ν) attains its minimum over [0,+∞) at ν̂ = (K+1
N − 1)a− 1

if such a value is positive and at 0 otherwise.

CHARACTERIZATION OF DETECTORS (12) AND (15).

First we compute the Pfa of the parametric detector (15) and,
as a special case, that of the GLRT (12). To this end, let

t̃K =
tK

1− tK
=

|z†S−1v|2
v†S−1v

1 + z†S−1z − |z†S−1v|2
v†S−1v

(B.21)

where tK = |z†S−1v|2
v†S−1v(1+z†S−1z)

is Kelly’s statistic and

b =
1

1 + z†S−1z − |z†S−1v|2
v†S−1v

. (B.22)

It turns out that 1 + ‖z̃‖2 = 1 + z†S−1z =
(
1 + t̃K

)
/b and∥∥P⊥

ṽ z̃
∥∥2 = z†S−1z − |z†S−1v|2

v†S−1v
= 1

b − 1 and, hence, the deci-
sion statistic of the detector (15) can be re-written as

Λε(z,S) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+t̃K
b

(
1− 1

ζε

)
[
(ζε − 1)

(
1
b − 1

)] 1
ζε

, b < 1− 1

ζε

1 + t̃K , otherwise.

(B.23)

Under the noise-only hypothesis the random variable (RV) t̃K ,
given by equation (B.21), is distributed according to a complex
central F-distribution with 1 and K −N + 1 (complex) degrees
of freedom and it is independent of b, given by equation (B.22),
which, in turn, obeys a complex central beta distribution with
K −N + 2 and N − 1 (complex) degrees of freedom [3],
[26], [27]. In symbols, we write t̃K ∼ CF1,K−N+1 and b ∼
CβK−N+2,N−1. It is thus apparent that Pfa is independent of C
and, hence, the detector possesses the CFAR property.

Moreover, we can compute Pfa as follows

Pfa =

∫ 1

0

P[Λε(z,S) > η|b = x,H0]fb(x) dx

where fb(·) denotes the PDF of the RV b [27], i.e.,

fb(x) =
1

B(K + 2−N,N − 1)
xK−N+1(1− x)N−2

with 0 ≤ x ≤ 1, while

p(x) = P[Λε(z,S) > η|b = x,H0]

=

⎧⎪⎨
⎪⎩

1− Ft̃K
(yε(x)) , 0 ≤ x ≤ 1− 1

ζε

1− Ft̃K
(η − 1), 1− 1

ζε
≤ x ≤ 1

with [27, formula (A.7)]

1− Ft̃K
(yε) =

⎧⎪⎨
⎪⎩

1

(1 + yε)K−N+1
, yε ≥ 0

1, yε < 0

and yε(x) = ηx
(
(ζε − 1) 1−x

x

) 1
ζε ζε

ζε−1 − 1. To compute the
Pfa, we observe that the derivative of yε(x) is given by

dyε(x)

dx
= η

(
(ζε − 1)

1− x

x

) 1
ζε

−1(
ζε
1− x

x
− 1

x

)

and it is positive for 0 < x < 1− 1
ζε

. Moreover, limx→0+

yε(x) = −1 and yε(1− 1
ζε
) = η − 1. It turns out that Pfa = 1

for η ≤ 1. If, instead, η > 1, denoting by xε(η) that number in
(0, 1− 1

ζε
) such that yε(x) = 0, it follows that

Pfa =

∫ xε(η)

0

fb(x) dx+

∫ 1− 1
ζε

xε(η)

1

[1 + yε(x)]
K+1−N

fb(x) dx

+
1

ηK+1−N

∫ 1

1− 1
ζε

fb(x) dx

i.e., introducing c = 1
B(K+2−N,N−1) =

K!
(K+1−N)!(N−2)! ,

Pfa = c

∫ xε(η)

0

xK−N+1(1− x)N−2 dx



+
aεc

ηK+1−N

∫ 1− 1
ζε

xε(η)

x
K+1−N

ζε (1− x)N−2−K+1−N
ζε dx

+
c

ηK+1−N

∫ 1

1− 1
ζε

xK−N+1(1− x)N−2 dx

where aε =
( ζε−1

ζε )
K+1−N

(ζε−1)
K+1−N

ζε

. The Pfa of (15) is thus given by

Pfa = cBxε(η)(K −N + 2, N − 1) +
aεc

ηK+1−N

×
[
B1− 1

ζε

(
K + 1−N

ζε
+ 1, N − 1− K + 1−N

ζε

)

− Bxε(η)

(
K + 1−N

ζε
+ 1, N − 1− K + 1−N

ζε

)]

+
c

ηK+1−N

[
B (K −N + 2, N − 1)

−B1− 1
ζε

(K −N + 2, N − 1)
]

(B.24)

where B(·, ·) is the Eulerian beta function while Bu(ν, μ) =∫ u

0 tν−1(1− t)μ−1 dt is the incomplete beta function [28].
As a special case, i.e., ε = 0 and, hence, ζε = ζ, we obtain

the Pfa of the GLRT (12).
On the other hand, if we suppose that under theH1 hypothesis

the actual useful signal is deterministic, but with a steering vector
p different from the nominal one v, i.e.,

r = αp+ n, n ∼ CNN (0,C),

t̃K , given b, is ruled by a complex noncentral F-distribution
with 1 and K −N + 1 (complex) degrees of freedom and
noncentrality parameter δ, with [4], [27], [29]

δ2 = SNR · b cos2 θ,
where

SNR = |α|2 p†C−1p (B.25)

and

cos2 θ =
|p†C−1v|2

(v†C−1v)(p†C−1p)
. (B.26)

In addition, the RV b obeys the complex noncentral beta distribu-
tion with K −N + 2 and N − 1 (complex) degrees of freedom
and noncentrality parameter δb, with

δ2b = SNR · sin2 θ.
In symbols, we write t̃K ∼ CF1,K−N+1(δ) and b ∼
CβK−N+2,N−1(δb).

In the special case of perfect match between p and v, then
δ2 = |α|2 v†C−1v · b and δ2b = 0, i.e., b ∼ CβK−N+2,N−1 and
t̃K ∼ CF1,K−N+1(δ) given b.

The above characterization highlights that performance of
detectors (12) and (15) can be expressed in terms of Pd vs SNR
(equation (B.25)) given cos2 θ (equation (B.26)) and Pfa. In
principle, such characterization could be exploited to compute
Pd, paralleling the computation of Pfa; however, analytical
forms for Pd are less useful since Monte Carlo simulation is not
very time-consuming. As a matter of fact, we use Monte Carlo
simulation to computePd vs SNR, expressed by equation (B.25),
given cos2 θ and Pfa.

APPENDIX C
THE TWO-STEP GLRT-BASED DETECTOR WITH

Σ = vv† IS THE AMF

We focus on the binary hypotheses testing problem{
H0 : z ∼ CNN (0,C)

H1 : z ∼ CNN (αv, νuu† +C)

where ν ≥ 0 and α ∈ C are unknown quantities while the vec-
tors u,v ∈ CN×1 and the Hermitian positive definite matrix C
are known. The corresponding GLRT is given by

Λ(z,C) =
maxν≥0 maxα∈C f1(z|ν, α)

f0(z)

H1
>
<
H0

η (C.27)

where

f1(z|ν, α) = 1

πN

1

(1 + νu†C−1u) det(C)
l(ν, α)

is the PDF of z under H1 with

l(ν, α) = e
−(z − αv)† C−1 (z − αv) + ν

∣∣u†C−1 (z − αv)
∣∣2

1 + νu†C−1u

while f0(z), the PDF of z under H0, is given by

f0(z) =
1

πN det(C)
e−z†C−1z.

To maximize l(ν, α) over α we rewrite its exponent as

− (z − αv)† C−1 (z − αv) + ν

∣∣u†C−1 (z − αv)
∣∣2

1 + νu†C−1u

= −‖z̃ − αṽ‖2 + ν

∣∣ũ† (z̃ − αṽ)
∣∣2

1 + ν ‖ũ‖2

where z̃ = C−1/2z, ṽ = C−1/2v, and ũ = C−1/2u. Using

‖z̃ − αṽ‖2 = ‖P ũ (z̃ − αṽ)‖2 + ∥∥P⊥
ũ (z̃ − αṽ)

∥∥2
and ∣∣ũ† (z̃ − αṽ)

∣∣2 = ‖ũ‖2 ‖P ũ (z̃ − αṽ)‖2
we obtain

l(ν, α) = e
−‖z̃ − αṽ‖2 + ν ‖ũ‖2 ∥∥P⊥

ũ (z̃ − αṽ)
∥∥2

1 + ν ‖ũ‖2 .

Now letting u = v and, hence, ũ = ṽ we have an expression
that can be easily maximized with respect to α obtaining

max
α∈C

l(ν, α) = e−‖P ⊥
ṽ z̃‖2

and hence

max
α∈C

f1(z|ν, α) = 1

πN

1

(1 + νv†C−1v) det(C)
e−‖P ⊥

ṽ z̃‖2

.

It follows that

max
ν≥0

max
α∈C

f1(z|ν, α) = 1

πN

1

det(C)
e−‖P ⊥

ṽ z̃‖2

and

Λ(z,C) = e‖P ṽ z̃‖2 = e
|z†C−1v|2
v†C−1v

H1
>
<
H0

η. (C.28)



The corresponding adaptive detector, obtained by replacing C
with the sample covariance matrix based on the secondary data,
is obviously equivalent to the AMF.
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