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Abstrat

Vibrational spetra and wavefuntions of polyatomi moleules an be alu-

lated at low memory ost using low-rank sum-of-produt (SOP) deompositions

to represent basis funtions generated using an iterative eigensolver. Using a

SOP tensor format does not determine the iterative eigensolver. The hoie

of the interative eigensolver is limited by the need to restrit the rank of the

SOP basis funtions at every stage of the alulation. We have adapted, im-

plemented and ompared di�erent redued-rank algorithms based on standard

iterative methods (blok-Davidson algorithm, Chebyshev iteration) to alulate

vibrational energy levels and wavefuntions of the 12-dimensional aetonitrile

moleule. The e�et of using low-rank SOP basis funtions on the di�erent

methods is analyzed and the numerial results are ompared with those ob-

tained with the redued rank blok power method introdued in J. Chem. Phys.

140, 174111 (2014). Relative merits of the di�erent algorithms are presented,

showing that the advantage of using a more sophistiated method, although

mitigated by the use of redued-rank sum-of-produt funtions, is notieable in

terms of CPU time.

1. Introdution

Understanding the internal motion of the nulei of a polyatomi moleule

is an important problem in moleular physis. Given a potential energy sur-

fae, the most general approah to ompute vibrational spetra is to alulate

eigenvalues and eigenvetors of a matrix representing the Hamiltonian operator

in some basis. When a diret produt basis, with funtions that are produts
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of funtions of a single oordinate, is used, the omputational ost inreases

exponentially with the number of internal degrees of freedom (D = 3N−6 for a
moleule with N atoms). This problem is well-known as the �urse of dimension-

ality". For example, to use a diret produt basis to alulate the vibrational

spetrum for a moleule with 6 atoms, one would need about 8 × 1015 GB to

store the matrix, assuming there are 10 basis funtions for eah oordinate. If

one uses an iterative eigensolver [1, 2, 3, 4, 5℄ it is possible to ompute a spe-

trum without storing (or omputing) the Hamiltonian matrix [6, 7, 8, 9, 10, 11℄.

One must only store a few vetors, however a single vetor requires about 8000

GB. Iterative methods only require the ability to apply the Hamiltonian matrix

to vetors.

Di�erent strategies have been employed to drastially redue the memory

ost of storing these vetors. To some extent they an be used together. These

inlude: pruning the basis set by retaining only some of the diret produt basis

funtions [12, 13, 14, 15, 16, 17, 18, 19, 20℄; using basis funtions loalized in the

lassially allowed regions [21, 22, 23, 24℄; making ontrated basis funtions by

diagonalizing redued-dimension Hamiltonians for strongly oupled oordinates

[25, 26, 27℄. All of these strategies aim to redue the number of required basis

funtions. Instead, one an work with a diret produt basis, but obviate the

need to store vetors with nD
omponents, where n is a representative number

of basis funtions for a single oordinate. This an be ahieved by representing

basis vetors with low-rank tensors. One an think of the multi-on�guration

time-dependent Hartree (MCTDH) method as representing wavefuntions in the

Tuker tensor format [28, 29, 30℄. The Tuker format does not defeat the urse

of dimensionality beause it is a diret produt representation. The advantage

of MCTDH is the optimization of the 1D basis funtions. There is also a multi-

layer MCTDH method using what mathematiians all a hierarhial-Tuker

format [31, 32℄. There are several other tensor formats that an be used, suh

as the Matrix Produt States [33℄ (equivalent to the Tensor Train format [34, 35℄)

or the Canonial deomposition (CP format) [30, 36℄, whih we exploit in this

artile.

Tensors an be used to ompute vibrational energy levels in two ways. One

way to use tensors is to represent the desired eigenvetors in tensor format and

to optimize elements of the tensors. The well-known density matrix renormal-

ization group (DMRG) method is of this type. Another way is to ompute

eigenvalues by projeting into a spae eah of whose vetors is in a tensor for-

mat. The vetors may be alulated using a standard iterative algorithm. In

this artile we use this seond way. It an only be used if the Hamiltonian

matrix is also low rank. The tensor format we use is CP and we therefore

require that the Hamiltonian be a sum of produts. Whenever the Hamilto-

nian is applied to a vetor, the rank (i.e. the number of terms) inreases and

must be redued to keep the memory ost within aeptable limits. This redu-

tion step also requires optimization and is the omputational bottlenek. For

both ways, the optimization is usually done with a variant of the alternating

least squares algorithm. The idea of using a basis of vetors in a tensor format

to ompute vibrational levels was introdued in Ref. [37℄, where the Redued
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Rank Blok Power Method (RRBPM) was presented. It was later shown that

the RRBPM is ompatible with symmetry partitioning of the basis set, whih

failitates omputing and assigning levels [38℄. A hierarhial version of the

RRBPM, taking advantage of suessive ontrations for strongly oupled o-

ordinates was proposed in Ref. [39℄. Making intermediate basis funtions using

a tree struture greatly improved the auray and redued the required CPU

time. The H-RRBPM of Ref. [39℄ uses the two-layer RRBPM of Ref. [37℄ at

eah layer.

In this artile, we test a method similar to the original RRBPM but with a

better eigensolver. We do not use the hierarhial version, but the ideas we in-

trodue ould be used in onjuntion with it. The power method used in [37℄ is

a rude and simple iterative method. It is well known to onverge slowly, espe-

ially if the density of states is high. The CPU time required to obtain onverged

eigenvalues an thus be quite long. The power method was originally used not

only beause it is simple but also beause the intermediate vetors it generates

beome inreasing similar to eigenvetors whih are assumed to be �reduible".

Here reduible means that little error is inurred when the rank is redued. In

this artile, we show that it is possible to use more elaborate eigensolvers. In

setion 2, we brie�y reall the main ideas of the RRBPM and introdue the

modi�ations required to use two other eigensolvers. One is a Chebyshev �l-

ter method and the other is a blok-Davidson method. These algorithms are

then used to alulate vibrational eigenstates of aetonitrile (CH3CN), a 12D

problem, in setion 3.

2. Redued-rank Iterative Methods for alulating spetra

2.1. Sum-of-produt format for funtions and operators

In all alulations in this artile basis vetors are in CP format [30℄. Eigen-

vetors of the Hamiltonian matrix are obtained as linear ombinations of the

CP basis vetors and hene they also are in CP format. In general, one an

expand a multidimensional funtion in a diret produt basis,

F (q1, . . . , qD) ≃

n1−1
∑

i1=0

· · ·

nD−1
∑

iD=0

Fi1i2...iD

D
∏

k=1

θkik(qk), (1)

where {θkik(qk), ik = 0 . . . (nk − 1)}, is a set of basis funtions assoiated with

oordinate qk, k = 1 . . .D. The expansion oe�ient is in CP format if

Fi1i2...iD =

R
∑

ℓ=1

D
∏

k=1

f
(ℓ,k)
ik

, (2)

where the f
(ℓ,k)
ik

, ik = 0 . . . (nk − 1) are omponents of one-dimensional vetors

f (ℓ,k) whih generally appear only one eah in the expansion. There is no need
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for them to be orthogonal or normalized. If Fi1i2...iD is in CP format then

F (q1, . . . , qD) is a sum of produts (SOP),

F (q1, . . . , qD) =

R
∑

ℓ=1

D
∏

k=1

φ(ℓ,k)(qk) =

R
∑

ℓ=1

D
∏

k=1

(

nk−1
∑

ik=0

f
(ℓ,k)
ik

θkik(qk)

)

. (3)

The important idea underlying all tensor-based methods is: in general the mem-

ory ost of storing Fi1i2...iD sales as nD
but the memory ost of storing the right

side of Eq. (2) sales as RDn [37, 39℄.

Vetors generated by the iterative eigensolver from a vetor in CP format

will themselves only be in CP format if the Hamiltonian is a SOP. Throughout

this artile, we shall assume that the potential energy surfae is known and

expressed as a SOP. The kineti energy operator (KEO) is often a SOP. In this

artile we use normal oordinates and neglet the π − π term [40℄ so that the

KEO is a sum of terms eah of whih depends on a single oordinate,

Ĥ(q1, . . . , qD) =
T
∑

k=1

D
∏

j=1

ĥkj(qj), (4)

where ĥkj is a one-dimensional operator ating in a Hilbert spae assoiated

with oordinate qj . The appliation of Ĥ on vetors is the ruial step in every

iterative method. When vetors are in CP format and the operator is a SOP,

the appliation of H requires only one-dimensional operations, this an be seen

by multiplying Eq. (4) and Eq. (3) [37℄. Only the small (nj × nj) Hamiltonian

matries representing ĥkj(qj) have to be omputed and stored in memory. In

the following subsetions, we desribe several methods to make a small basis of

low-rank SOP basis funtions with whih one an ompute low-lying levels of

moleules with more than �ve atoms.

2.2. Redued-rank Blok Power method

In the power method, the matrix H is applied reursively to a start vetor

F0, to alulate the eigenvetor assoiated with the largest eigenvalue [41, 42℄.

To obtain several eigenvalues one uses a blok of vetors. To alulate the lowest

eigenvalues, the matrix is also shifted by −σI. The RRBPM uses a shifted blok

power method and stores H as a SOP of small matries and the vetors in CP

format. Eah matrix-vetor produt inreases the rank of a vetor by a fator

of T . The rank also inreases, to a lesser extent, when vetors in the blok are

orthogonalized and updated, see Ref. [37℄. The rank must be redued after eah

operation whih inreases it. As in Ref. [37, 38℄, an old (large-rank) vetor

Fold

is redued from rank Rold

(typially a few thousands) to rank Rnew

(a few

tens) using an alternating-least-squares (ALS) algorithm. For onsisteny of

omparison we will use the same implementation of ALS as in [37, 38℄, based

on [36℄. ALS is an iterative proess in whih linear equations are solved to �nd

new vetors

newf
(ℓ,k)
ik

whih minimize the di�erene ‖ Fnew − Fold ‖. The ALS
redution is a ruial step in the redued rank methods desribed below and is
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responsible for a majority of the alulation time. The main redution has to

be performed after the matrix-vetor produt whih is responsible for the most

important inrease of the rank. The algorithm an be summarized as follows:

1. Generate initial guess for the blok of SOP eigenvetorsF = (Fk=1 . . .Fk=B)

2. For m = 1 . . .Nrs (with Nrs ≃ 10)

(a) For k = 1 . . . B, Fm+1
k ← (H− σI)Fm

k .

(b) Redue the ranks using alternating least squares.

3. Orthogonalize the vetors, make a matrix H′ = F
tHF representing Ĥ in

this SOP basis set and ompute the overlap matrix S = F
t
F .

4. Solve the generalized eigenvalue problem to obtain eigenvalues and eigen-

vetors.

5. Redue the rank, update the vetors with eigenvetors; go bak to step 2.

In the above algorithm Nrs is the number of power iterations done between two

updates of the basis vetors using redued eigenvetors of H′
. Note that the

basis size does not grow during the alulation; in step 2 (a) the basis at step

(m+ 1) replaes the basis at step m. The energy shift is σ = (EB + Emax)/2,
where Emax is the highest eigenvalue of H determined by doing a few unshifted

power iterations [37℄. The memory ost sales as

O(BTRDn) (5)

where B is the size of the omputed subspae, T the number of terms in the

Hamiltonian, R the redution rank (we keep it �xed for simpliity), D the

number of oordinates and n the number of basis funtions per oordinate. The

ost of performing matrix vetor produts in the subspae sales as

O(N
pow

BTRDn2) (6)

where N
pow

is the number of power iterations. The overall omputational ost

of rank redutions using ALS [36℄ sales as

O(N
pow

N
ALS

BD(R3 + nTR2)) (7)

with N
ALS

as the number of internal iterations for the least squares proedure

used to redue the rank. The memory ost and the omputational ost of

redutions thus sale linearly with D.

2.3. Redued-rank Chebyshev �lter tehnique

There are many ways to push a blok of vetors towards the spae spanned

by the eigenvetors with the lowest eigenvalues. The shifted blok power method

does push a blok of vetors in the right diretion, however, the spae it generates

inludes ontributions from eigenvetors whose orresponding eigenvalues are

not in the set of the lowest B. It might be better to use a �lter that exludes

vetors outside the blok. Here, we apply a sequene of �lter funtions to eah

vetor in the blok, where a di�erent �lter is used for eah vetor. The �lter
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for the kth vetor is designed to exlude all vetors orresponding to eigenvalues

above the kth. The �lters we use are arefully hosen polynomials, Fk,purified =
P k
m (H)Fk, where P

k
m is a polynomial of degree m.

Following Saad [43, 41℄, we use a Chebyshev polynomials of the �rst kind,

P k
m (H) = Tm

(

H̃k

)

, where H̃k = H−dkI

ck
denotes a Hamiltonian that has been

shifted and saled. We hoose the saling parameter ck and the shift parameter

dk as

ck =
Emax − Ek+1

2

dk =
Emax + Ek+1

2
. (8)

This hoie means that for Fk, the ontribution of eigenvetors orresponding

to the eigenvalues Ek+1 . . . Emax, whih are mapped into the interval [−1, 1], is
dereased and the ontribution of eigenvetors orresponding to the eigenvalues

E1 . . . Ek, whih are mapped to < −1, is inreased [43, 41℄. This is true beause
if −1 ≤ x ≤ 1, −1 ≤ Tm (x) ≤ 1 and if x is outside of [−1, 1], Tm (x) is the most

rapidly growing of all mth
-order polynomials. This �lter will therefore aentu-

ate ontributions from eigenvetors whose eigenvalues are less than Ek+1. Using

a di�erent �lter for eah vetor in the blok makes the vetors more reduible.

Eah �lter aentuates ontributions from eigenvetors with smaller eigenvalues

more than eigenvetors with larger eigenvalues. For instane, if there are B = 80
states in the blok, the �lter for the Bth

vetor aentuates the E0 eigenvetor

more than the EB eigenvetor. As a result, it is neessary to orthogonalize the

kth vetor to vetors 1 . . . k − 1 after applying the �lter.

To ompute parameters ck and dk, one needs an estimate of eigenvalues Ek+1

and Emax. We estimate Emax by doing a few (non-shifted) power iterations. If

the Emax estimate is too low, then the true value of Emax will be mapped to a

value larger than one and vetors in the blok will beome �ontaminated� with

ontributions from the eigenvetor orresponding to Emax, ruining onvergene.

To avoid this we �pad� our estimate of Emax by adding 0.01(Emax−Emin). For
k = B, we do not have an estimate of Ek+1 = EB+1 sine EB+1 lies outside

of the blok. In this ase we use the estimate EB+1 ≈ 2EB − EB−1 where EB

and EB−1 are from the previous iteration. If the atual spaing between EB

and EB+1 is smaller than the spaing between EB and EB−1, EB will onverge

slowly.

To apply the polynomial �lter Pm (H) one must evaluate m matrix-vetor

produts. This is done reursively. Beginning with F
(0)
k ≡ F and F

(1)
k = H̃kF

(0)
k ,

the other �ltered vetors are obtained from

F
(j)
k = 2H̃kF

(j−1)
k − F

(j−2)
k (j = 2 . . .m) (9)

Augmenting the degree of the �lter by one requires one additional matrix-vetor

produt and one vetor-vetor addition. After F
(j)
k is generated, it is redued

with ALS. Eah matrix-vetor produt is done by exploiting the CP format of
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the vetor. As explained by Saad [43, 41℄, the polynomial �lter an magnify

the oe�ient of the ground state eigenvetor beyond the over�ow limit if high

Chebyshev orders are used. The use of a saling parameter σj is neessary to

prevent this. The algorithm is:

1. Generate an initial blok of vetors F = (F1 . . .FB), initial eigenvalue
estimates, and an initial spetral range.

2. For k = 1 . . . B:

(a) Set ck and dk as desribed in Eq. (8); set σ1 = c1
d1−E1

; ompute

F
(1)
k = σ1H̃kF

(0)
k

(b) For j = 2 . . .m:

i. Compute σj =
(

2
σ1

− σj−1

)

−1

ii. Chebyshev iteration: F
(j)
k = σj

(

2H̃kF
(j−1)
k − σj−1F

(j−2)
k

)

iii. Redue the rank of F
(j)
k using ALS

3. Orthogonalize the vetors, make the matrix H′ = F
tHF and overlap

matrix S = F
t
F .

4. Solve the generalized eigenvalue problem to obtain eigenvalues and eigen-

vetors; update vetors in F ; redue ranks; bak to step 2.

The omputational ost of �ltering a subspae of dimension B is dominated

by the ost of evaluatingmmatrix-vetor produts and doingm rank redutions,

i.e.

O(mBTRDn2) +O(mN
ALS

BD(R3 + nTR2)). (10)

We typially use polynomials of degree m = 10.

2.4. Redued-rank Blok Davidson method

The original Davidson algorithm begins with a start vetor and builds a spae

adapted to the alulation of a single eigenvalue by adding one vetor at a time

[3℄. The best estimate of the desired eigenvalue is obtained by projeting the

eigenvalue problem into the spae spanned by the Davidson vetors. Davidson

uses a form of preonditioning to favor the onvergene of the desired eigenvalue.

We use a blok version of Davidson [4℄. From one iteration to the next the

power method replaes the previous basis with a new basis of the same size.

The size of the matrix does not inrease as the alulation proeeds. The size

of the blok Davidson basis does inrease during the iteration beause at eah

iteration B vetors are added to the basis. B new vetors are generated and then

orthogonalized with respet to vetors already in the basis. The basis is then

augmented with the orthogonalized vetors, a generalized eigenvalue problem is

solved and eigenvetors with the lowest eigenvalues are used either to ompute

the B new vetors to be added at the next iteration (see algorithm), or as new

start vetors. The blok Davidson algorithm we use is essentially a CP version

of the one in Ref. [4, 5℄. We restart the algorithm every Nrs iterations. The

algorithm to ompute B eigenvetors is:
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1. Preparation:

(a) De�ne an initial subspae F = (F1 . . .FB); set B
′ = B.

(b) Make the matrix H′ = F
tHF and overlap matrix S = F

t
F .

() Solve the eigenvalue problem, redue the ranks of the eigenvetors.

(d) Selet B eigenvetors ψm orresponding to the lowest eigenvalues

Em, m = 1 . . . B.
2. For j = 1 . . .Ncycle:

(a) For k = 1 . . .Nrs:

i. Compute the residuals qm = (H− EmI)ψm; redue the rank.

ii. Preondition: Compute (in an approximate way, see text below)

the new vetors

FB′+m = (Em −H0)
−1qm for m = 1 . . . B.

iii. Orthogonalize with respet to previous vetors in F , redue the

rank.

iv. Set B′ ← B′ +B; augment H′
; augment S;

v. Diagonalize, redue the ranks of the eigenvetors.

vi. Selet B eigenvetors ψm orresponding to the lowest eigenvalues

Em, m = 1 . . . B.

(b) Restart: set B′ = B, update the basis set, keeping only the �rst B
eigenvetors approximations; update H′

and S.

A good starting blok is important for the onvergene of the Davidson algo-

rithm. We use rank-one eigenvetors of the unoupled, separable part of the

Hamiltonian as start vetors.

The main di�ulty is applying the preonditioner in step (2(a)ii). In our

alulations H0 is diagonal. The orresponding operator is the separable part

of the Hamiltonian. With this hoie, H0 is naturally represented as a sum of

produts. (Em −H0)
−1

is also diagonal in the diret produt basis. However,

it is not in low-rank sum-of-produt form. The orresponding operator an be

written as a sum of

∏

k nk terms of rank one by using a spetral expansion of

(Em −H0)
−1

in the diret produt basis set,

∑

i1...iD

1

Em − E0
i1...iD

|Θi1...iD 〉〈Θi1...iD | (11)

where {E0
i1...iD

,Θi1...iD} are the eigenpairs of H0. We do not use (Em −H0)
−1

beause applying it to a vetor would inrease it rank by a fator of

∏

k nk.

Instead, we replae diagonal elements of (Em − H0)
−1

with E0,ut-o�, if the

i1 . . . iD diagonal element of H0 is larger than E0,ut-o�. Denote this modi�ed

matrix MJ0
, where J0 is the set of indies, i1 . . . iD, for whih E0,i1...iD ≤

E0,ut-o�. There are Nlr (lr means �low rank") elements in J0. MJ0
is a matrix

whose rank is

∏

k nk. It an be written as a sum of two matries,

MJ0
= Mlr

J0
+ λI (12)

where λ = 1
Em−E0,ut-o�

and Mlr
J0

is a diagonal matrix whose i1 . . . iD diagonal

element is

(

1
Em−E0

i1...iD

− λ

)

, if i1 . . . iD ∈ J0 and zero otherwise. Applying
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Mlr
J0

to a vetor inreases its rank by a fator of Nlr. Applying I to a vetor

does not hange its rank. Therefore applying MJ0
to a vetor inreases its

rank by a fator of Nlr + 1. An ALS redution must be done immediately after

applying MJ0
. If step (2(a)ii) is ignored, the iteration still onverges beause

the Davidson spae beomes idential to a Lanzos subspae (but with vetors

di�erent from those we would obtain using the Lanzos method, whih does not

inlude a diagonalization step).

One important advantage of the Davidson algorithm is that the seletion

riteria (step 2(a)vi) an take several forms. Here we will always selet the

eigenvetors orresponding to the lowest eigenvalues. We ould also hoose

some overlap riteria or speify a given spetral window.

The memory ost depends on the number of iterations between restarts,

Nrs. The maximum memory ost is reahed just before restarting and sales

as O(NrsBTRDn). The alulation ost sales as the number of matrix-vetor

produts, equal to (2BNcycleNrs) beause there are B matrix-vetor produts

for alulating the residuals and B more for making or augmenting the H′

matrix, for eah value of the j and k indies. This has to be multiplied by the

ost of one produt and one redution, Eqs. (6) and (7). This estimate does

not inlude the ost of applying the preonditioner whih signi�antly a�ets

the overall ost if the ut-o� is large.

2.5. Parallelization

There are two parallelization strategies. Both the Davidson and the Cheby-

shev eigensolvers an be parallelized over vetors in the blok (di�erent vetors

in a blok are omputed on di�erent threads) or the operations required to

ompute a single vetor an be parallelized. The �rst strategy is easier to im-

plement but requires more memory beause one must store many high rank

vetors generated by doing MVP. The seond strategy allows one to store, one

at a time, the high-rank vetors arising from matrix-vetor produts. In pra-

tie, we usually parallelize over vetors in the blok, as is done in Ref. [37℄.

Some of the alulations have been done sequentially in order to failitate CPU

time omparisons.

3. Numerial results on the Aetonitrile moleule

In this setion we show that the three eigensolvers presented in setion 2 all

work well and all give aurate eigenvalues for a 12-D problem. In this paper,

we use the eigensolvers only in two layer alulations. Sine we do not exploit

the hierarhial (ontration) ideas of Ref. [39℄, we do not demand that the

energies be as aurate as in [39℄. The omparison in this paper is a relative

omparison of the di�erent redued-rank eigensolvers. If the Chebyshev and/or

Davidson eigensolver is more e�ient than the shifted power method it an be

used in onjuntion with the hierarhial idea. The most demanding part of

the hierarhial alulation is omputing eigenfuntions of the node at the top

of the tree, whih typially requires many RRBPM iterations. A more e�ient

eigensolver ould therefore be used to improve the H-RRBPM.

9



3.1. Hamiltonian and basis set

We ompute the aetonitrile (CH3CN) vibrational spetrum. This is a six-

atom moleule and we alulate eigenvalues and eigenstates of a 12D quarti

Hamiltonian. The normal-oordinate Hamiltonian is

Ĥ(q1, . . . , q12) = −
1

2

12
∑

i=1

ωi

∂2

∂q2i
+

1

2

12
∑

i=1

ωiq
2
i +

1

6

12
∑

i=1

12
∑

j=1

12
∑

k=1

φ
(3)
ijkqiqjqk

+
1

24

12
∑

i=1

12
∑

j=1

12
∑

k=1

12
∑

ℓ=1

φ
(4)
ijkℓqiqjqkqℓ, (13)

with the same assumptions as in [13℄. In Eq. (13), oordinates q1 to q4 are

non-degenerate, oordinates q5 to q12 are members of doubly-degenerate pairs.

The potential oe�ients are those used in [13℄ and are based on the onstants

reported in [44℄. The diret produt basis set is a produt of 1D anharmoni

eigenfuntions. The 1D funtions are obtained by diagonalizing 1D unoupled

Hamiltonians that are obtained by setting all but one normal oordinate equal

to zero. This preliminary alulation has been done in a basis of harmoni

osillator eigenfuntions. The Hamiltonian operator is then fatorized following

[39℄ to minimize the number of terms that need to be applied to eah vetor.

After fatorization, there are 216 terms in Ĥ .

3.2. Numerial results

To ompare the three redued rank eigensolvers, we list di�erenes between

energy levels and the zero-point energy (ZPE), and orresponding errors after

20 and 100 matrix-vetor produts (MVP), see Table 1. The number of MVP

is roughly proportional to the ost of the alulation. It is not atually the

MVP itself that is ostly, but the rank redution that is done after eah MVP.

All the alulations have been done with the same bases (idential to those of

[13, 37℄), the same initial blok made of B = 32 eigenvetors of the separable

approximation to the Hamiltonian. We have used the same redution rank

R = 50 for all the alulations and a �xed number of ALS iterations, NALS = 15
for rank redutions. RRBPM alulations were done with an energy shift of

σ = 170000 m−1
[37℄. Diagonalization and vetor updates were done every 10

iterations. When using the Redued Rank Blok Chebyshev (RRBC) method,

diagonalizations and vetor updates were done every 10 Chebyshev iterations.

The value of Emax used to ompute the �lter parameters was padded by adding

3173.7 m−1
. The Redued Rank Blok Davidson (RRBD) method is restarted

every Nrs = 4 iterations to redue CPU ost. The preonditioning step (Eq.

(11) in setion 2.4) is applied within an ative subspae made of the �rst 500
basis funtions of the diret produt basis set.

In the third olumn of table 1, we show di�erenes between levels omputed

using the RRBD method and the orresponding ZPE, for the �rst 32 vibrational

states of aetonitrile. These results are obtained after 200 matrix-vetor prod-

uts. Inreasing the number of MVP auses them to osillate. The osillations
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ould be redued by inreasing the target rank, R. In olumns 4-9 we report

errors with respet to the Smolyak results of Ref. [13℄ for the RRBP, RRBC and

RRBD methods. In the RRBPM and the RRBC olumns of table 1, di�erenes

are given for a �xed number of matrix-vetor produts (either 20 MVP or 100

MVP). The number of MVP is given per omputed vetor, i.e. we ount all the

MVP and divide by B.
From table 1, one onludes that all methods onverge to the true eigenval-

ues. It is also lear that the RRBC and RRBD methods onverge substantially

faster than the RRBPM. All errors of RRBD alulations are smaller than

their RRBPM ounterparts, both after 20 matrix-vetor produts and after

100 matrix-vetor produts. The same is true after 100 matrix-vetor prod-

ut for the redued-rank Chebyshev method, but some errors are larger and

some are smaller than those of the RRBPM if we ompare the energies after

only 20 matrix-vetor produts. It should be noted that errors are alulated

by taking di�erenes of energy di�erenes and this means that the error in the

zero-point energy also ontributes to the error estimates given in table 1. For all

three eigensolvers, the highest two energy levels in the blok have larger errors

(about 4 m

−1
). Exept these two states, all errors in energy di�erenes are

between [0.01, 1.32] m−1
for the Chebyshev results, [0.08, 1.76] m−1

for the

blok-Davidson method whereas the RRBPM errors are between [0.13, 6.25],
after 100 MVP.

Convergene urves for two representative levels, the �rst exited state ν11
and the 13th state ν4 + ν11, are given in Fig. 1. Convergene urves for the

power method are almost monotoni but dereases slowly. The Davidson re-

sults exhibit �rst a global desent but then small osillations. The Davidson

osillations our beause error inreases when the algorithm is restarted with a

new, smaller blok of vetors, and dereases as number of vetors in spae again

inreases. The �rst few MVP derease the RRBD error very quikly.

The RRBC algorithm onverges muh more quikly than the RRBPM during

the �rst tens of iterations for all energy levels onsidered. However, later on

osillations set in, due to the imposed redution rank. For the RRBPM, the

osillations do not appear for all levels, but for the levels that do osillate they

are typially less than 0.01 m

−1
in magnitude. For the RRBC algorithm the

osillations are larger, having magnitudes of ∼0.1 m

−1
for all levels. For both

solvers the osillations an be dampened by inreasing the rank.

In the RRBD method there are also orthogonalization and preonditioning

steps whih do not in�uene the number of MVP but do inrease the CPU ost.

Therefore, it is also important to ompare the ost of the three alulations.

In table 2, we report ratios of RRBC and RRBD CPU times to the RRBPM

CPU time. These speed-up ratios are omputed using the CPU time, with no

parallelization, required to ahieve a di�erene of less than 2 m

−1
with respet

to Smolyak results for the �rst ten, for the �rst twenty, and for the �rst twenty-

�ve energy levels. The RRBD method redues the CPU ost by fator of 3-4 for

all three groups of states. The CPU time ratios ould be further improved by

omitting the orthogonalization step and the assoiated redution (step 2(a)iii

of the Davidson algorithm in subsetion 2.4), whih are not essential beause

11



Table 1: First 32 levels (from whih the ZPE has been subtrated) (m

−1
) and di�erenes

with Smolyak results [13℄, after a �xed number of matrix-vetor produts (mean number per

omputed vetor). Comparison of three redued-rank eigensolvers: redued-rank blok power

method (RRBPM), redued-rank blok Chebyshev method (RRBC) and redued-rank blok

Davidson method (RRBD). The results in olumn 3 are those of the Davidson alulation

after 200 matrix-vetor produts.

Assign. Sym. Energy Error after 20 mvp Error after 100 mvp

level RRBPM RRBC RRBD RRBPM RRBC RRBD

ZPE 9837.498

ν11 E 361.08 0.39 1.59 0.16 0.13 0.05 0.08

361.15 0.48 1.57 0.18 0.17 0.02 0.10

2ν11 E 723.25 0.88 3.14 0.20 0.25 0.13 0.11

723.63 1.12 2.75 0.53 0.57 0.25 0.36

2ν11 A1 724.35 1.30 3.02 0.61 0.64 0.17 0.50

ν4 A1 900.78 5.59 3.73 0.27 1.75 0.19 0.11

ν9 E 1034.40 9.39 3.92 0.31 1.79 0.21 0.19

1034.74 10.04 3.84 0.37 1.84 0.20 0.23

3ν11 A1 1087.27 6.28 2.87 1.10 2.95 0.49 0.60

3ν11 A2 1087.40 6.32 2.69 1.29 3.10 0.57 0.64

3ν11 E 1088.55 6.51 3.25 1.27 3.30 0.50 0.52

1088.63 6.59 3.06 1.29 3.50 0.52 0.73

ν4 + ν11 E 1260.12 8.04 3.81 1.02 2.86 0.25 0.43

1260.26 8.05 3.51 1.11 2.92 0.29 0.46

ν3 A1 1390.79 5.77 3.85 1.29 2.45 0.57 1.05

ν9 + ν11 E 1395.50 11.23 3.74 1.08 2.76 0.23 0.60

1395.64 11.77 3.37 1.30 3.39 0.76 1.29

ν9 + ν11 A2 1396.46 11.78 3.40 1.18 3.21 0.63 1.76

ν9 + ν11 A1 1398.56 10.66 3.73 1.77 3.10 0.64 1.02

4ν11 E 1452.04 8.27 3.24 1.22 3.94 0.69 0.62

1452.04 8.37 2.96 1.30 4.02 1.12 0.97

4ν11 E 1454.33 8.85 2.17 1.52 4.89 0.61 0.83

1454.51 9.03 1.81 1.59 5.68 0.74 1.13

4ν11 A1 1454.79 9.47 2.09 2.04 5.36 0.98 1.57

ν7 E 1483.57 5.48 5.39 0.54 1.14 0.02 0.20

1483.61 6.89 5.38 0.58 1.59 0.01 0.26

ν4 + 2ν11 E 1620.57 11.28 2.75 1.21 4.26 0.29 0.45

1621.41 11.66 2.35 1.95 4.87 0.71 1.23

ν4 + 2ν11 A1 1622.25 13.26 1.04 2.49 6.25 1.32 1.51

ν3 + ν11 E 1753.08 8.77 1.23 4.34 5.94 4.27 3.91

1753.18 8.81 0.79 4.50 6.01 4.42 4.11
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Figure 1: Convergene urves for two levels: ν11 (upper urves) and ν4 + ν11 (lower urves),

using RRBPM (solid line), RRBD method (dashed line) and RRBC method (dotted line).

The horizontal axis is the number of matrix-vetor produts per omputed vetor and the

errors are alulated with respet to results of [13℄.

Table 2: Speed-up ratios with respet to RRBPM [37℄, based on the CPU time required

to ahieve frequenies within 2 m

−1
of the Smolyak values, for the �rst 10, 20, 25 levels

above the ground state, for the redued rank Chebyshev and Davidson methods desribed in

setion 2. The last olumn is obtained by omitting the orthogonalization step in the Davidson

algorithm. The speed-up ratios are omputed using CPU times from sequential alulations.

Number of onverged

Tcpu(RRCheb)
Tcpu(RRBPM)

Tcpu(RRBDav.)
Tcpu(RRBPM)

Tcpu(RRBDav.)
Tcpu(RRBPM)

levels no orthog.

�rst 10 0.295 0.249 0.217

�rst 20 0.218 0.293 0.287

�rst 25 0.180 0.321 0.279
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we diagonalize using a generalized eigenvalue algorithm anyway. The RRBC

method is a bit more e�ient than the Davidson method, the former being 4-5

times faster than the RRBPM. The largest speed-up ratio is obtained when

omparing onvergene for larger numbers of eigenvalues beause the RRBPM

generally fails to give the largest eigenvalues in the wanted blok. We onlude

that both redued rank iterative methods presented in setion 2 onverge faster

than the RRBPM with similar speed-up ratios, with the Chebyshev method

being slightly faster.

All three eigensolvers require little memory and the memory ost sales lin-

early with dimensionality. The RRBD method has the highest memory ost,

sine the subspae size inreases during the alulation. However, due to the

use of CP format, the memory requirement is so low that it is not important.

One redued CP-vetor with rank 50 takes 55 kB. After multipliation by H,

the rank beomes temporarily larger (approximately 10000) with a memory ost

of 12 MB per vetor.

4. Conlusion

The memory ost of variational alulations has limited them to moleules

with fewer than about six atoms. Modern methods all use an iterative algo-

rithm, based on evaluating matrix-vetor produts, to ompute eigenvalues and

eigenvetors and require storing only a few vetors in memory. Nonetheless, if

a simple diret produt basis is used the memory ost of suh alulations is

prohibitive beause eah vetor has nD
omponents. Although it is possible to

avoid diret produt bases, they have the advantage of being simple and easy to

use. It is therefore important to explore ideas that make it possible to use a di-

ret produt basis without storing nD
numbers. For potentials in SOP form this

is possible if one uses an iterative eigensolver in onjuntion with tensor rank

redution. One uses an iterative eigensolver to generate basis vetors, redues

their rank, and then omputes eigenvalues by projeting into the spae spanned

by the redued basis vetors [37℄. Many variants of this idea are possible [35℄.

It is lear that the blok power method used in Ref. [37℄ is not optimal. In this

paper we have assessed the advantages of two other iterative eigensolvers. Both

the Cheybshev and the Davidson methods signi�antly redue the CPU time.

The memory ost of the RRBD method is greater than that of the RRBPM of

Ref. [37℄ due to the growth of subspae. The memory ost of the RRBC method

is essentially the same as that of the RRBPM. However, the memory ost is very

low (and sales linearly with D) ompared to that of standard iterative diret

produt alulation. The RRBPM remains the simplest method to implement.

Improved eigensolvers an be oupled with the hierarhial ideas of [39℄ that use

suessive ontrations and intermediate diagonalizations.
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