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Abstra
t

Vibrational spe
tra and wavefun
tions of polyatomi
 mole
ules 
an be 
al
u-

lated at low memory 
ost using low-rank sum-of-produ
t (SOP) de
ompositions

to represent basis fun
tions generated using an iterative eigensolver. Using a

SOP tensor format does not determine the iterative eigensolver. The 
hoi
e

of the interative eigensolver is limited by the need to restri
t the rank of the

SOP basis fun
tions at every stage of the 
al
ulation. We have adapted, im-

plemented and 
ompared di�erent redu
ed-rank algorithms based on standard

iterative methods (blo
k-Davidson algorithm, Chebyshev iteration) to 
al
ulate

vibrational energy levels and wavefun
tions of the 12-dimensional a
etonitrile

mole
ule. The e�e
t of using low-rank SOP basis fun
tions on the di�erent

methods is analyzed and the numeri
al results are 
ompared with those ob-

tained with the redu
ed rank blo
k power method introdu
ed in J. Chem. Phys.

140, 174111 (2014). Relative merits of the di�erent algorithms are presented,

showing that the advantage of using a more sophisti
ated method, although

mitigated by the use of redu
ed-rank sum-of-produ
t fun
tions, is noti
eable in

terms of CPU time.

1. Introdu
tion

Understanding the internal motion of the nu
lei of a polyatomi
 mole
ule

is an important problem in mole
ular physi
s. Given a potential energy sur-

fa
e, the most general approa
h to 
ompute vibrational spe
tra is to 
al
ulate

eigenvalues and eigenve
tors of a matrix representing the Hamiltonian operator

in some basis. When a dire
t produ
t basis, with fun
tions that are produ
ts
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of fun
tions of a single 
oordinate, is used, the 
omputational 
ost in
reases

exponentially with the number of internal degrees of freedom (D = 3N−6 for a
mole
ule with N atoms). This problem is well-known as the �
urse of dimension-

ality". For example, to use a dire
t produ
t basis to 
al
ulate the vibrational

spe
trum for a mole
ule with 6 atoms, one would need about 8 × 1015 GB to

store the matrix, assuming there are 10 basis fun
tions for ea
h 
oordinate. If

one uses an iterative eigensolver [1, 2, 3, 4, 5℄ it is possible to 
ompute a spe
-

trum without storing (or 
omputing) the Hamiltonian matrix [6, 7, 8, 9, 10, 11℄.

One must only store a few ve
tors, however a single ve
tor requires about 8000

GB. Iterative methods only require the ability to apply the Hamiltonian matrix

to ve
tors.

Di�erent strategies have been employed to drasti
ally redu
e the memory


ost of storing these ve
tors. To some extent they 
an be used together. These

in
lude: pruning the basis set by retaining only some of the dire
t produ
t basis

fun
tions [12, 13, 14, 15, 16, 17, 18, 19, 20℄; using basis fun
tions lo
alized in the


lassi
ally allowed regions [21, 22, 23, 24℄; making 
ontra
ted basis fun
tions by

diagonalizing redu
ed-dimension Hamiltonians for strongly 
oupled 
oordinates

[25, 26, 27℄. All of these strategies aim to redu
e the number of required basis

fun
tions. Instead, one 
an work with a dire
t produ
t basis, but obviate the

need to store ve
tors with nD

omponents, where n is a representative number

of basis fun
tions for a single 
oordinate. This 
an be a
hieved by representing

basis ve
tors with low-rank tensors. One 
an think of the multi-
on�guration

time-dependent Hartree (MCTDH) method as representing wavefun
tions in the

Tu
ker tensor format [28, 29, 30℄. The Tu
ker format does not defeat the 
urse

of dimensionality be
ause it is a dire
t produ
t representation. The advantage

of MCTDH is the optimization of the 1D basis fun
tions. There is also a multi-

layer MCTDH method using what mathemati
ians 
all a hierar
hi
al-Tu
ker

format [31, 32℄. There are several other tensor formats that 
an be used, su
h

as the Matrix Produ
t States [33℄ (equivalent to the Tensor Train format [34, 35℄)

or the Canoni
al de
omposition (CP format) [30, 36℄, whi
h we exploit in this

arti
le.

Tensors 
an be used to 
ompute vibrational energy levels in two ways. One

way to use tensors is to represent the desired eigenve
tors in tensor format and

to optimize elements of the tensors. The well-known density matrix renormal-

ization group (DMRG) method is of this type. Another way is to 
ompute

eigenvalues by proje
ting into a spa
e ea
h of whose ve
tors is in a tensor for-

mat. The ve
tors may be 
al
ulated using a standard iterative algorithm. In

this arti
le we use this se
ond way. It 
an only be used if the Hamiltonian

matrix is also low rank. The tensor format we use is CP and we therefore

require that the Hamiltonian be a sum of produ
ts. Whenever the Hamilto-

nian is applied to a ve
tor, the rank (i.e. the number of terms) in
reases and

must be redu
ed to keep the memory 
ost within a

eptable limits. This redu
-

tion step also requires optimization and is the 
omputational bottlene
k. For

both ways, the optimization is usually done with a variant of the alternating

least squares algorithm. The idea of using a basis of ve
tors in a tensor format

to 
ompute vibrational levels was introdu
ed in Ref. [37℄, where the Redu
ed
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Rank Blo
k Power Method (RRBPM) was presented. It was later shown that

the RRBPM is 
ompatible with symmetry partitioning of the basis set, whi
h

fa
ilitates 
omputing and assigning levels [38℄. A hierar
hi
al version of the

RRBPM, taking advantage of su

essive 
ontra
tions for strongly 
oupled 
o-

ordinates was proposed in Ref. [39℄. Making intermediate basis fun
tions using

a tree stru
ture greatly improved the a

ura
y and redu
ed the required CPU

time. The H-RRBPM of Ref. [39℄ uses the two-layer RRBPM of Ref. [37℄ at

ea
h layer.

In this arti
le, we test a method similar to the original RRBPM but with a

better eigensolver. We do not use the hierar
hi
al version, but the ideas we in-

trodu
e 
ould be used in 
onjun
tion with it. The power method used in [37℄ is

a 
rude and simple iterative method. It is well known to 
onverge slowly, espe-


ially if the density of states is high. The CPU time required to obtain 
onverged

eigenvalues 
an thus be quite long. The power method was originally used not

only be
ause it is simple but also be
ause the intermediate ve
tors it generates

be
ome in
reasing similar to eigenve
tors whi
h are assumed to be �redu
ible".

Here redu
ible means that little error is in
urred when the rank is redu
ed. In

this arti
le, we show that it is possible to use more elaborate eigensolvers. In

se
tion 2, we brie�y re
all the main ideas of the RRBPM and introdu
e the

modi�
ations required to use two other eigensolvers. One is a Chebyshev �l-

ter method and the other is a blo
k-Davidson method. These algorithms are

then used to 
al
ulate vibrational eigenstates of a
etonitrile (CH3CN), a 12D

problem, in se
tion 3.

2. Redu
ed-rank Iterative Methods for 
al
ulating spe
tra

2.1. Sum-of-produ
t format for fun
tions and operators

In all 
al
ulations in this arti
le basis ve
tors are in CP format [30℄. Eigen-

ve
tors of the Hamiltonian matrix are obtained as linear 
ombinations of the

CP basis ve
tors and hen
e they also are in CP format. In general, one 
an

expand a multidimensional fun
tion in a dire
t produ
t basis,

F (q1, . . . , qD) ≃

n1−1
∑

i1=0

· · ·

nD−1
∑

iD=0

Fi1i2...iD

D
∏

k=1

θkik(qk), (1)

where {θkik(qk), ik = 0 . . . (nk − 1)}, is a set of basis fun
tions asso
iated with


oordinate qk, k = 1 . . .D. The expansion 
oe�
ient is in CP format if

Fi1i2...iD =

R
∑

ℓ=1

D
∏

k=1

f
(ℓ,k)
ik

, (2)

where the f
(ℓ,k)
ik

, ik = 0 . . . (nk − 1) are 
omponents of one-dimensional ve
tors

f (ℓ,k) whi
h generally appear only on
e ea
h in the expansion. There is no need
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for them to be orthogonal or normalized. If Fi1i2...iD is in CP format then

F (q1, . . . , qD) is a sum of produ
ts (SOP),

F (q1, . . . , qD) =

R
∑

ℓ=1

D
∏

k=1

φ(ℓ,k)(qk) =

R
∑

ℓ=1

D
∏

k=1

(

nk−1
∑

ik=0

f
(ℓ,k)
ik

θkik(qk)

)

. (3)

The important idea underlying all tensor-based methods is: in general the mem-

ory 
ost of storing Fi1i2...iD s
ales as nD
but the memory 
ost of storing the right

side of Eq. (2) s
ales as RDn [37, 39℄.

Ve
tors generated by the iterative eigensolver from a ve
tor in CP format

will themselves only be in CP format if the Hamiltonian is a SOP. Throughout

this arti
le, we shall assume that the potential energy surfa
e is known and

expressed as a SOP. The kineti
 energy operator (KEO) is often a SOP. In this

arti
le we use normal 
oordinates and negle
t the π − π term [40℄ so that the

KEO is a sum of terms ea
h of whi
h depends on a single 
oordinate,

Ĥ(q1, . . . , qD) =
T
∑

k=1

D
∏

j=1

ĥkj(qj), (4)

where ĥkj is a one-dimensional operator a
ting in a Hilbert spa
e asso
iated

with 
oordinate qj . The appli
ation of Ĥ on ve
tors is the 
ru
ial step in every

iterative method. When ve
tors are in CP format and the operator is a SOP,

the appli
ation of H requires only one-dimensional operations, this 
an be seen

by multiplying Eq. (4) and Eq. (3) [37℄. Only the small (nj × nj) Hamiltonian

matri
es representing ĥkj(qj) have to be 
omputed and stored in memory. In

the following subse
tions, we des
ribe several methods to make a small basis of

low-rank SOP basis fun
tions with whi
h one 
an 
ompute low-lying levels of

mole
ules with more than �ve atoms.

2.2. Redu
ed-rank Blo
k Power method

In the power method, the matrix H is applied re
ursively to a start ve
tor

F0, to 
al
ulate the eigenve
tor asso
iated with the largest eigenvalue [41, 42℄.

To obtain several eigenvalues one uses a blo
k of ve
tors. To 
al
ulate the lowest

eigenvalues, the matrix is also shifted by −σI. The RRBPM uses a shifted blo
k

power method and stores H as a SOP of small matri
es and the ve
tors in CP

format. Ea
h matrix-ve
tor produ
t in
reases the rank of a ve
tor by a fa
tor

of T . The rank also in
reases, to a lesser extent, when ve
tors in the blo
k are

orthogonalized and updated, see Ref. [37℄. The rank must be redu
ed after ea
h

operation whi
h in
reases it. As in Ref. [37, 38℄, an old (large-rank) ve
tor

Fold

is redu
ed from rank Rold

(typi
ally a few thousands) to rank Rnew

(a few

tens) using an alternating-least-squares (ALS) algorithm. For 
onsisten
y of


omparison we will use the same implementation of ALS as in [37, 38℄, based

on [36℄. ALS is an iterative pro
ess in whi
h linear equations are solved to �nd

new ve
tors

newf
(ℓ,k)
ik

whi
h minimize the di�eren
e ‖ Fnew − Fold ‖. The ALS
redu
tion is a 
ru
ial step in the redu
ed rank methods des
ribed below and is
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responsible for a majority of the 
al
ulation time. The main redu
tion has to

be performed after the matrix-ve
tor produ
t whi
h is responsible for the most

important in
rease of the rank. The algorithm 
an be summarized as follows:

1. Generate initial guess for the blo
k of SOP eigenve
torsF = (Fk=1 . . .Fk=B)

2. For m = 1 . . .Nrs (with Nrs ≃ 10)

(a) For k = 1 . . . B, Fm+1
k ← (H− σI)Fm

k .

(b) Redu
e the ranks using alternating least squares.

3. Orthogonalize the ve
tors, make a matrix H′ = F
tHF representing Ĥ in

this SOP basis set and 
ompute the overlap matrix S = F
t
F .

4. Solve the generalized eigenvalue problem to obtain eigenvalues and eigen-

ve
tors.

5. Redu
e the rank, update the ve
tors with eigenve
tors; go ba
k to step 2.

In the above algorithm Nrs is the number of power iterations done between two

updates of the basis ve
tors using redu
ed eigenve
tors of H′
. Note that the

basis size does not grow during the 
al
ulation; in step 2 (a) the basis at step

(m+ 1) repla
es the basis at step m. The energy shift is σ = (EB + Emax)/2,
where Emax is the highest eigenvalue of H determined by doing a few unshifted

power iterations [37℄. The memory 
ost s
ales as

O(BTRDn) (5)

where B is the size of the 
omputed subspa
e, T the number of terms in the

Hamiltonian, R the redu
tion rank (we keep it �xed for simpli
ity), D the

number of 
oordinates and n the number of basis fun
tions per 
oordinate. The


ost of performing matrix ve
tor produ
ts in the subspa
e s
ales as

O(N
pow

BTRDn2) (6)

where N
pow

is the number of power iterations. The overall 
omputational 
ost

of rank redu
tions using ALS [36℄ s
ales as

O(N
pow

N
ALS

BD(R3 + nTR2)) (7)

with N
ALS

as the number of internal iterations for the least squares pro
edure

used to redu
e the rank. The memory 
ost and the 
omputational 
ost of

redu
tions thus s
ale linearly with D.

2.3. Redu
ed-rank Chebyshev �lter te
hnique

There are many ways to push a blo
k of ve
tors towards the spa
e spanned

by the eigenve
tors with the lowest eigenvalues. The shifted blo
k power method

does push a blo
k of ve
tors in the right dire
tion, however, the spa
e it generates

in
ludes 
ontributions from eigenve
tors whose 
orresponding eigenvalues are

not in the set of the lowest B. It might be better to use a �lter that ex
ludes

ve
tors outside the blo
k. Here, we apply a sequen
e of �lter fun
tions to ea
h

ve
tor in the blo
k, where a di�erent �lter is used for ea
h ve
tor. The �lter

5



for the kth ve
tor is designed to ex
lude all ve
tors 
orresponding to eigenvalues

above the kth. The �lters we use are 
arefully 
hosen polynomials, Fk,purified =
P k
m (H)Fk, where P

k
m is a polynomial of degree m.

Following Saad [43, 41℄, we use a Chebyshev polynomials of the �rst kind,

P k
m (H) = Tm

(

H̃k

)

, where H̃k = H−dkI

ck
denotes a Hamiltonian that has been

shifted and s
aled. We 
hoose the s
aling parameter ck and the shift parameter

dk as

ck =
Emax − Ek+1

2

dk =
Emax + Ek+1

2
. (8)

This 
hoi
e means that for Fk, the 
ontribution of eigenve
tors 
orresponding

to the eigenvalues Ek+1 . . . Emax, whi
h are mapped into the interval [−1, 1], is
de
reased and the 
ontribution of eigenve
tors 
orresponding to the eigenvalues

E1 . . . Ek, whi
h are mapped to < −1, is in
reased [43, 41℄. This is true be
ause
if −1 ≤ x ≤ 1, −1 ≤ Tm (x) ≤ 1 and if x is outside of [−1, 1], Tm (x) is the most

rapidly growing of all mth
-order polynomials. This �lter will therefore a

entu-

ate 
ontributions from eigenve
tors whose eigenvalues are less than Ek+1. Using

a di�erent �lter for ea
h ve
tor in the blo
k makes the ve
tors more redu
ible.

Ea
h �lter a

entuates 
ontributions from eigenve
tors with smaller eigenvalues

more than eigenve
tors with larger eigenvalues. For instan
e, if there are B = 80
states in the blo
k, the �lter for the Bth

ve
tor a

entuates the E0 eigenve
tor

more than the EB eigenve
tor. As a result, it is ne
essary to orthogonalize the

kth ve
tor to ve
tors 1 . . . k − 1 after applying the �lter.

To 
ompute parameters ck and dk, one needs an estimate of eigenvalues Ek+1

and Emax. We estimate Emax by doing a few (non-shifted) power iterations. If

the Emax estimate is too low, then the true value of Emax will be mapped to a

value larger than one and ve
tors in the blo
k will be
ome �
ontaminated� with


ontributions from the eigenve
tor 
orresponding to Emax, ruining 
onvergen
e.

To avoid this we �pad� our estimate of Emax by adding 0.01(Emax−Emin). For
k = B, we do not have an estimate of Ek+1 = EB+1 sin
e EB+1 lies outside

of the blo
k. In this 
ase we use the estimate EB+1 ≈ 2EB − EB−1 where EB

and EB−1 are from the previous iteration. If the a
tual spa
ing between EB

and EB+1 is smaller than the spa
ing between EB and EB−1, EB will 
onverge

slowly.

To apply the polynomial �lter Pm (H) one must evaluate m matrix-ve
tor

produ
ts. This is done re
ursively. Beginning with F
(0)
k ≡ F and F

(1)
k = H̃kF

(0)
k ,

the other �ltered ve
tors are obtained from

F
(j)
k = 2H̃kF

(j−1)
k − F

(j−2)
k (j = 2 . . .m) (9)

Augmenting the degree of the �lter by one requires one additional matrix-ve
tor

produ
t and one ve
tor-ve
tor addition. After F
(j)
k is generated, it is redu
ed

with ALS. Ea
h matrix-ve
tor produ
t is done by exploiting the CP format of
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the ve
tor. As explained by Saad [43, 41℄, the polynomial �lter 
an magnify

the 
oe�
ient of the ground state eigenve
tor beyond the over�ow limit if high

Chebyshev orders are used. The use of a s
aling parameter σj is ne
essary to

prevent this. The algorithm is:

1. Generate an initial blo
k of ve
tors F = (F1 . . .FB), initial eigenvalue
estimates, and an initial spe
tral range.

2. For k = 1 . . . B:

(a) Set ck and dk as des
ribed in Eq. (8); set σ1 = c1
d1−E1

; 
ompute

F
(1)
k = σ1H̃kF

(0)
k

(b) For j = 2 . . .m:

i. Compute σj =
(

2
σ1

− σj−1

)

−1

ii. Chebyshev iteration: F
(j)
k = σj

(

2H̃kF
(j−1)
k − σj−1F

(j−2)
k

)

iii. Redu
e the rank of F
(j)
k using ALS

3. Orthogonalize the ve
tors, make the matrix H′ = F
tHF and overlap

matrix S = F
t
F .

4. Solve the generalized eigenvalue problem to obtain eigenvalues and eigen-

ve
tors; update ve
tors in F ; redu
e ranks; ba
k to step 2.

The 
omputational 
ost of �ltering a subspa
e of dimension B is dominated

by the 
ost of evaluatingmmatrix-ve
tor produ
ts and doingm rank redu
tions,

i.e.

O(mBTRDn2) +O(mN
ALS

BD(R3 + nTR2)). (10)

We typi
ally use polynomials of degree m = 10.

2.4. Redu
ed-rank Blo
k Davidson method

The original Davidson algorithm begins with a start ve
tor and builds a spa
e

adapted to the 
al
ulation of a single eigenvalue by adding one ve
tor at a time

[3℄. The best estimate of the desired eigenvalue is obtained by proje
ting the

eigenvalue problem into the spa
e spanned by the Davidson ve
tors. Davidson

uses a form of pre
onditioning to favor the 
onvergen
e of the desired eigenvalue.

We use a blo
k version of Davidson [4℄. From one iteration to the next the

power method repla
es the previous basis with a new basis of the same size.

The size of the matrix does not in
rease as the 
al
ulation pro
eeds. The size

of the blo
k Davidson basis does in
rease during the iteration be
ause at ea
h

iteration B ve
tors are added to the basis. B new ve
tors are generated and then

orthogonalized with respe
t to ve
tors already in the basis. The basis is then

augmented with the orthogonalized ve
tors, a generalized eigenvalue problem is

solved and eigenve
tors with the lowest eigenvalues are used either to 
ompute

the B new ve
tors to be added at the next iteration (see algorithm), or as new

start ve
tors. The blo
k Davidson algorithm we use is essentially a CP version

of the one in Ref. [4, 5℄. We restart the algorithm every Nrs iterations. The

algorithm to 
ompute B eigenve
tors is:

7



1. Preparation:

(a) De�ne an initial subspa
e F = (F1 . . .FB); set B
′ = B.

(b) Make the matrix H′ = F
tHF and overlap matrix S = F

t
F .

(
) Solve the eigenvalue problem, redu
e the ranks of the eigenve
tors.

(d) Sele
t B eigenve
tors ψm 
orresponding to the lowest eigenvalues

Em, m = 1 . . . B.
2. For j = 1 . . .Ncycle:

(a) For k = 1 . . .Nrs:

i. Compute the residuals qm = (H− EmI)ψm; redu
e the rank.

ii. Pre
ondition: Compute (in an approximate way, see text below)

the new ve
tors

FB′+m = (Em −H0)
−1qm for m = 1 . . . B.

iii. Orthogonalize with respe
t to previous ve
tors in F , redu
e the

rank.

iv. Set B′ ← B′ +B; augment H′
; augment S;

v. Diagonalize, redu
e the ranks of the eigenve
tors.

vi. Sele
t B eigenve
tors ψm 
orresponding to the lowest eigenvalues

Em, m = 1 . . . B.

(b) Restart: set B′ = B, update the basis set, keeping only the �rst B
eigenve
tors approximations; update H′

and S.

A good starting blo
k is important for the 
onvergen
e of the Davidson algo-

rithm. We use rank-one eigenve
tors of the un
oupled, separable part of the

Hamiltonian as start ve
tors.

The main di�
ulty is applying the pre
onditioner in step (2(a)ii). In our


al
ulations H0 is diagonal. The 
orresponding operator is the separable part

of the Hamiltonian. With this 
hoi
e, H0 is naturally represented as a sum of

produ
ts. (Em −H0)
−1

is also diagonal in the dire
t produ
t basis. However,

it is not in low-rank sum-of-produ
t form. The 
orresponding operator 
an be

written as a sum of

∏

k nk terms of rank one by using a spe
tral expansion of

(Em −H0)
−1

in the dire
t produ
t basis set,

∑

i1...iD

1

Em − E0
i1...iD

|Θi1...iD 〉〈Θi1...iD | (11)

where {E0
i1...iD

,Θi1...iD} are the eigenpairs of H0. We do not use (Em −H0)
−1

be
ause applying it to a ve
tor would in
rease it rank by a fa
tor of

∏

k nk.

Instead, we repla
e diagonal elements of (Em − H0)
−1

with E0,
ut-o�, if the

i1 . . . iD diagonal element of H0 is larger than E0,
ut-o�. Denote this modi�ed

matrix MJ0
, where J0 is the set of indi
es, i1 . . . iD, for whi
h E0,i1...iD ≤

E0,
ut-o�. There are Nlr (lr means �low rank") elements in J0. MJ0
is a matrix

whose rank is

∏

k nk. It 
an be written as a sum of two matri
es,

MJ0
= Mlr

J0
+ λI (12)

where λ = 1
Em−E0,
ut-o�

and Mlr
J0

is a diagonal matrix whose i1 . . . iD diagonal

element is

(

1
Em−E0

i1...iD

− λ

)

, if i1 . . . iD ∈ J0 and zero otherwise. Applying

8



Mlr
J0

to a ve
tor in
reases its rank by a fa
tor of Nlr. Applying I to a ve
tor

does not 
hange its rank. Therefore applying MJ0
to a ve
tor in
reases its

rank by a fa
tor of Nlr + 1. An ALS redu
tion must be done immediately after

applying MJ0
. If step (2(a)ii) is ignored, the iteration still 
onverges be
ause

the Davidson spa
e be
omes identi
al to a Lan
zos subspa
e (but with ve
tors

di�erent from those we would obtain using the Lan
zos method, whi
h does not

in
lude a diagonalization step).

One important advantage of the Davidson algorithm is that the sele
tion


riteria (step 2(a)vi) 
an take several forms. Here we will always sele
t the

eigenve
tors 
orresponding to the lowest eigenvalues. We 
ould also 
hoose

some overlap 
riteria or spe
ify a given spe
tral window.

The memory 
ost depends on the number of iterations between restarts,

Nrs. The maximum memory 
ost is rea
hed just before restarting and s
ales

as O(NrsBTRDn). The 
al
ulation 
ost s
ales as the number of matrix-ve
tor

produ
ts, equal to (2BNcycleNrs) be
ause there are B matrix-ve
tor produ
ts

for 
al
ulating the residuals and B more for making or augmenting the H′

matrix, for ea
h value of the j and k indi
es. This has to be multiplied by the


ost of one produ
t and one redu
tion, Eqs. (6) and (7). This estimate does

not in
lude the 
ost of applying the pre
onditioner whi
h signi�
antly a�e
ts

the overall 
ost if the 
ut-o� is large.

2.5. Parallelization

There are two parallelization strategies. Both the Davidson and the Cheby-

shev eigensolvers 
an be parallelized over ve
tors in the blo
k (di�erent ve
tors

in a blo
k are 
omputed on di�erent threads) or the operations required to


ompute a single ve
tor 
an be parallelized. The �rst strategy is easier to im-

plement but requires more memory be
ause one must store many high rank

ve
tors generated by doing MVP. The se
ond strategy allows one to store, one

at a time, the high-rank ve
tors arising from matrix-ve
tor produ
ts. In pra
-

ti
e, we usually parallelize over ve
tors in the blo
k, as is done in Ref. [37℄.

Some of the 
al
ulations have been done sequentially in order to fa
ilitate CPU

time 
omparisons.

3. Numeri
al results on the A
etonitrile mole
ule

In this se
tion we show that the three eigensolvers presented in se
tion 2 all

work well and all give a

urate eigenvalues for a 12-D problem. In this paper,

we use the eigensolvers only in two layer 
al
ulations. Sin
e we do not exploit

the hierar
hi
al (
ontra
tion) ideas of Ref. [39℄, we do not demand that the

energies be as a

urate as in [39℄. The 
omparison in this paper is a relative


omparison of the di�erent redu
ed-rank eigensolvers. If the Chebyshev and/or

Davidson eigensolver is more e�
ient than the shifted power method it 
an be

used in 
onjun
tion with the hierar
hi
al idea. The most demanding part of

the hierar
hi
al 
al
ulation is 
omputing eigenfun
tions of the node at the top

of the tree, whi
h typi
ally requires many RRBPM iterations. A more e�
ient

eigensolver 
ould therefore be used to improve the H-RRBPM.
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3.1. Hamiltonian and basis set

We 
ompute the a
etonitrile (CH3CN) vibrational spe
trum. This is a six-

atom mole
ule and we 
al
ulate eigenvalues and eigenstates of a 12D quarti


Hamiltonian. The normal-
oordinate Hamiltonian is

Ĥ(q1, . . . , q12) = −
1

2

12
∑

i=1

ωi

∂2

∂q2i
+

1

2

12
∑

i=1

ωiq
2
i +

1

6

12
∑

i=1

12
∑

j=1

12
∑

k=1

φ
(3)
ijkqiqjqk

+
1

24

12
∑

i=1

12
∑

j=1

12
∑

k=1

12
∑

ℓ=1

φ
(4)
ijkℓqiqjqkqℓ, (13)

with the same assumptions as in [13℄. In Eq. (13), 
oordinates q1 to q4 are

non-degenerate, 
oordinates q5 to q12 are members of doubly-degenerate pairs.

The potential 
oe�
ients are those used in [13℄ and are based on the 
onstants

reported in [44℄. The dire
t produ
t basis set is a produ
t of 1D anharmoni


eigenfun
tions. The 1D fun
tions are obtained by diagonalizing 1D un
oupled

Hamiltonians that are obtained by setting all but one normal 
oordinate equal

to zero. This preliminary 
al
ulation has been done in a basis of harmoni


os
illator eigenfun
tions. The Hamiltonian operator is then fa
torized following

[39℄ to minimize the number of terms that need to be applied to ea
h ve
tor.

After fa
torization, there are 216 terms in Ĥ .

3.2. Numeri
al results

To 
ompare the three redu
ed rank eigensolvers, we list di�eren
es between

energy levels and the zero-point energy (ZPE), and 
orresponding errors after

20 and 100 matrix-ve
tor produ
ts (MVP), see Table 1. The number of MVP

is roughly proportional to the 
ost of the 
al
ulation. It is not a
tually the

MVP itself that is 
ostly, but the rank redu
tion that is done after ea
h MVP.

All the 
al
ulations have been done with the same bases (identi
al to those of

[13, 37℄), the same initial blo
k made of B = 32 eigenve
tors of the separable

approximation to the Hamiltonian. We have used the same redu
tion rank

R = 50 for all the 
al
ulations and a �xed number of ALS iterations, NALS = 15
for rank redu
tions. RRBPM 
al
ulations were done with an energy shift of

σ = 170000 
m−1
[37℄. Diagonalization and ve
tor updates were done every 10

iterations. When using the Redu
ed Rank Blo
k Chebyshev (RRBC) method,

diagonalizations and ve
tor updates were done every 10 Chebyshev iterations.

The value of Emax used to 
ompute the �lter parameters was padded by adding

3173.7 
m−1
. The Redu
ed Rank Blo
k Davidson (RRBD) method is restarted

every Nrs = 4 iterations to redu
e CPU 
ost. The pre
onditioning step (Eq.

(11) in se
tion 2.4) is applied within an a
tive subspa
e made of the �rst 500
basis fun
tions of the dire
t produ
t basis set.

In the third 
olumn of table 1, we show di�eren
es between levels 
omputed

using the RRBD method and the 
orresponding ZPE, for the �rst 32 vibrational

states of a
etonitrile. These results are obtained after 200 matrix-ve
tor prod-

u
ts. In
reasing the number of MVP 
auses them to os
illate. The os
illations
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ould be redu
ed by in
reasing the target rank, R. In 
olumns 4-9 we report

errors with respe
t to the Smolyak results of Ref. [13℄ for the RRBP, RRBC and

RRBD methods. In the RRBPM and the RRBC 
olumns of table 1, di�eren
es

are given for a �xed number of matrix-ve
tor produ
ts (either 20 MVP or 100

MVP). The number of MVP is given per 
omputed ve
tor, i.e. we 
ount all the

MVP and divide by B.
From table 1, one 
on
ludes that all methods 
onverge to the true eigenval-

ues. It is also 
lear that the RRBC and RRBD methods 
onverge substantially

faster than the RRBPM. All errors of RRBD 
al
ulations are smaller than

their RRBPM 
ounterparts, both after 20 matrix-ve
tor produ
ts and after

100 matrix-ve
tor produ
ts. The same is true after 100 matrix-ve
tor prod-

u
t for the redu
ed-rank Chebyshev method, but some errors are larger and

some are smaller than those of the RRBPM if we 
ompare the energies after

only 20 matrix-ve
tor produ
ts. It should be noted that errors are 
al
ulated

by taking di�eren
es of energy di�eren
es and this means that the error in the

zero-point energy also 
ontributes to the error estimates given in table 1. For all

three eigensolvers, the highest two energy levels in the blo
k have larger errors

(about 4 
m

−1
). Ex
ept these two states, all errors in energy di�eren
es are

between [0.01, 1.32] 
m−1
for the Chebyshev results, [0.08, 1.76] 
m−1

for the

blo
k-Davidson method whereas the RRBPM errors are between [0.13, 6.25],
after 100 MVP.

Convergen
e 
urves for two representative levels, the �rst ex
ited state ν11
and the 13th state ν4 + ν11, are given in Fig. 1. Convergen
e 
urves for the

power method are almost monotoni
 but de
reases slowly. The Davidson re-

sults exhibit �rst a global des
ent but then small os
illations. The Davidson

os
illations o

ur be
ause error in
reases when the algorithm is restarted with a

new, smaller blo
k of ve
tors, and de
reases as number of ve
tors in spa
e again

in
reases. The �rst few MVP de
rease the RRBD error very qui
kly.

The RRBC algorithm 
onverges mu
h more qui
kly than the RRBPM during

the �rst tens of iterations for all energy levels 
onsidered. However, later on

os
illations set in, due to the imposed redu
tion rank. For the RRBPM, the

os
illations do not appear for all levels, but for the levels that do os
illate they

are typi
ally less than 0.01 
m

−1
in magnitude. For the RRBC algorithm the

os
illations are larger, having magnitudes of ∼0.1 
m

−1
for all levels. For both

solvers the os
illations 
an be dampened by in
reasing the rank.

In the RRBD method there are also orthogonalization and pre
onditioning

steps whi
h do not in�uen
e the number of MVP but do in
rease the CPU 
ost.

Therefore, it is also important to 
ompare the 
ost of the three 
al
ulations.

In table 2, we report ratios of RRBC and RRBD CPU times to the RRBPM

CPU time. These speed-up ratios are 
omputed using the CPU time, with no

parallelization, required to a
hieve a di�eren
e of less than 2 
m

−1
with respe
t

to Smolyak results for the �rst ten, for the �rst twenty, and for the �rst twenty-

�ve energy levels. The RRBD method redu
es the CPU 
ost by fa
tor of 3-4 for

all three groups of states. The CPU time ratios 
ould be further improved by

omitting the orthogonalization step and the asso
iated redu
tion (step 2(a)iii

of the Davidson algorithm in subse
tion 2.4), whi
h are not essential be
ause
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Table 1: First 32 levels (from whi
h the ZPE has been subtra
ted) (
m

−1
) and di�eren
es

with Smolyak results [13℄, after a �xed number of matrix-ve
tor produ
ts (mean number per


omputed ve
tor). Comparison of three redu
ed-rank eigensolvers: redu
ed-rank blo
k power

method (RRBPM), redu
ed-rank blo
k Chebyshev method (RRBC) and redu
ed-rank blo
k

Davidson method (RRBD). The results in 
olumn 3 are those of the Davidson 
al
ulation

after 200 matrix-ve
tor produ
ts.

Assign. Sym. Energy Error after 20 mvp Error after 100 mvp

level RRBPM RRBC RRBD RRBPM RRBC RRBD

ZPE 9837.498

ν11 E 361.08 0.39 1.59 0.16 0.13 0.05 0.08

361.15 0.48 1.57 0.18 0.17 0.02 0.10

2ν11 E 723.25 0.88 3.14 0.20 0.25 0.13 0.11

723.63 1.12 2.75 0.53 0.57 0.25 0.36

2ν11 A1 724.35 1.30 3.02 0.61 0.64 0.17 0.50

ν4 A1 900.78 5.59 3.73 0.27 1.75 0.19 0.11

ν9 E 1034.40 9.39 3.92 0.31 1.79 0.21 0.19

1034.74 10.04 3.84 0.37 1.84 0.20 0.23

3ν11 A1 1087.27 6.28 2.87 1.10 2.95 0.49 0.60

3ν11 A2 1087.40 6.32 2.69 1.29 3.10 0.57 0.64

3ν11 E 1088.55 6.51 3.25 1.27 3.30 0.50 0.52

1088.63 6.59 3.06 1.29 3.50 0.52 0.73

ν4 + ν11 E 1260.12 8.04 3.81 1.02 2.86 0.25 0.43

1260.26 8.05 3.51 1.11 2.92 0.29 0.46

ν3 A1 1390.79 5.77 3.85 1.29 2.45 0.57 1.05

ν9 + ν11 E 1395.50 11.23 3.74 1.08 2.76 0.23 0.60

1395.64 11.77 3.37 1.30 3.39 0.76 1.29

ν9 + ν11 A2 1396.46 11.78 3.40 1.18 3.21 0.63 1.76

ν9 + ν11 A1 1398.56 10.66 3.73 1.77 3.10 0.64 1.02

4ν11 E 1452.04 8.27 3.24 1.22 3.94 0.69 0.62

1452.04 8.37 2.96 1.30 4.02 1.12 0.97

4ν11 E 1454.33 8.85 2.17 1.52 4.89 0.61 0.83

1454.51 9.03 1.81 1.59 5.68 0.74 1.13

4ν11 A1 1454.79 9.47 2.09 2.04 5.36 0.98 1.57

ν7 E 1483.57 5.48 5.39 0.54 1.14 0.02 0.20

1483.61 6.89 5.38 0.58 1.59 0.01 0.26

ν4 + 2ν11 E 1620.57 11.28 2.75 1.21 4.26 0.29 0.45

1621.41 11.66 2.35 1.95 4.87 0.71 1.23

ν4 + 2ν11 A1 1622.25 13.26 1.04 2.49 6.25 1.32 1.51

ν3 + ν11 E 1753.08 8.77 1.23 4.34 5.94 4.27 3.91

1753.18 8.81 0.79 4.50 6.01 4.42 4.11
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Figure 1: Convergen
e 
urves for two levels: ν11 (upper 
urves) and ν4 + ν11 (lower 
urves),

using RRBPM (solid line), RRBD method (dashed line) and RRBC method (dotted line).

The horizontal axis is the number of matrix-ve
tor produ
ts per 
omputed ve
tor and the

errors are 
al
ulated with respe
t to results of [13℄.

Table 2: Speed-up ratios with respe
t to RRBPM [37℄, based on the CPU time required

to a
hieve frequen
ies within 2 
m

−1
of the Smolyak values, for the �rst 10, 20, 25 levels

above the ground state, for the redu
ed rank Chebyshev and Davidson methods des
ribed in

se
tion 2. The last 
olumn is obtained by omitting the orthogonalization step in the Davidson

algorithm. The speed-up ratios are 
omputed using CPU times from sequential 
al
ulations.

Number of 
onverged

Tcpu(RRCheb)
Tcpu(RRBPM)

Tcpu(RRBDav.)
Tcpu(RRBPM)

Tcpu(RRBDav.)
Tcpu(RRBPM)

levels no orthog.

�rst 10 0.295 0.249 0.217

�rst 20 0.218 0.293 0.287

�rst 25 0.180 0.321 0.279
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we diagonalize using a generalized eigenvalue algorithm anyway. The RRBC

method is a bit more e�
ient than the Davidson method, the former being 4-5

times faster than the RRBPM. The largest speed-up ratio is obtained when


omparing 
onvergen
e for larger numbers of eigenvalues be
ause the RRBPM

generally fails to give the largest eigenvalues in the wanted blo
k. We 
on
lude

that both redu
ed rank iterative methods presented in se
tion 2 
onverge faster

than the RRBPM with similar speed-up ratios, with the Chebyshev method

being slightly faster.

All three eigensolvers require little memory and the memory 
ost s
ales lin-

early with dimensionality. The RRBD method has the highest memory 
ost,

sin
e the subspa
e size in
reases during the 
al
ulation. However, due to the

use of CP format, the memory requirement is so low that it is not important.

One redu
ed CP-ve
tor with rank 50 takes 55 kB. After multipli
ation by H,

the rank be
omes temporarily larger (approximately 10000) with a memory 
ost

of 12 MB per ve
tor.

4. Con
lusion

The memory 
ost of variational 
al
ulations has limited them to mole
ules

with fewer than about six atoms. Modern methods all use an iterative algo-

rithm, based on evaluating matrix-ve
tor produ
ts, to 
ompute eigenvalues and

eigenve
tors and require storing only a few ve
tors in memory. Nonetheless, if

a simple dire
t produ
t basis is used the memory 
ost of su
h 
al
ulations is

prohibitive be
ause ea
h ve
tor has nD

omponents. Although it is possible to

avoid dire
t produ
t bases, they have the advantage of being simple and easy to

use. It is therefore important to explore ideas that make it possible to use a di-

re
t produ
t basis without storing nD
numbers. For potentials in SOP form this

is possible if one uses an iterative eigensolver in 
onjun
tion with tensor rank

redu
tion. One uses an iterative eigensolver to generate basis ve
tors, redu
es

their rank, and then 
omputes eigenvalues by proje
ting into the spa
e spanned

by the redu
ed basis ve
tors [37℄. Many variants of this idea are possible [35℄.

It is 
lear that the blo
k power method used in Ref. [37℄ is not optimal. In this

paper we have assessed the advantages of two other iterative eigensolvers. Both

the Cheybshev and the Davidson methods signi�
antly redu
e the CPU time.

The memory 
ost of the RRBD method is greater than that of the RRBPM of

Ref. [37℄ due to the growth of subspa
e. The memory 
ost of the RRBC method

is essentially the same as that of the RRBPM. However, the memory 
ost is very

low (and s
ales linearly with D) 
ompared to that of standard iterative dire
t

produ
t 
al
ulation. The RRBPM remains the simplest method to implement.

Improved eigensolvers 
an be 
oupled with the hierar
hi
al ideas of [39℄ that use

su

essive 
ontra
tions and intermediate diagonalizations.
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