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Abstract: Clay minerals play an important role in shrinking–swelling of soils and off–road vehicle 

mobility mainly due to the presence of smectites including montmorillonites. Since soils are 

composed of different minerals intimately mixed, an accurate estimation of its abundance is 

challenging. Imaging spectroscopy in the short wave infrared spectral region (SWIR) combined 

with unmixing methods is a good candidate to estimate clay mineral abundance. However, the 

performance of unmixing methods is mineral-dependent and may be enhanced by using 

appropriate spectral preprocessings. The objective of this paper is to carry out a comparative study 

in order to determine the best couple spectral preprocessing/unmixing method to quantify 

montmorillonite in intimate mixtures with clays, such as montmorillonite, kaolinite and illite, and 

no-clay minerals, such as calcite and quartz. To this end, a spectral database is built with laboratory 

hyperspectral imagery from 51 dry pure mineral samples and intimate mineral mixtures of 

controlled abundances. Six spectral preprocessings, standard normal variate (SNV), continuum 

removal (CR), continuous wavelet transform (CWT), Hapke model, first derivative (1st SGD) and 

pseudo–absorbance (Log(1/R)), are applied and compared with reflectance spectra. Two linear 

unmixing methods, fully constrained least square method (FCLS) and multiple endmember 

spectral mixture analysis (MESMA), and two non-linear unmixing methods, generalized bilinear 

method (GBM) and multi-linear model (MLM), are compared. Global results showed that the 

benefit of spectral preprocessings occurs when spectral absorption features of minerals overlap for 

SNV, CR, CWT and 1st SGD, whereas the use of reflectance spectra performs the best when no 

overlap is present. With one mineral having no spectral feature (quartz), montmorillonite 

abundance estimation is difficult and gives RMSE higher than 50%. For the other mixtures, 

performances of linear and non-linear unmixing methods are similar. Consequently, the 

recommended couple spectral preprocessing/unmixing method based on the trade-off between its 

simplicity and performance is 1st SGD/FCLS for clay binary and ternary mixtures (RMSE of 9.2% 

for montmorillonite–illite mixtures, 13.9% for montmorillonite–kaolinite mixtures and 10.8% for 

montmorillonite–illite–kaolinite mixtures) and reflectance/FCLS for binary mixtures with calcite 

(RMSE of 8.8% for montmorillonite–calcite mixtures). These performances open the way to 

improve the classification of expansive soils. 

Keywords: clay; calcite; quartz; imaging spectroscopy; unmixing; spectral preprocessings 
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1. Introduction 

Soil shrinking and swelling due to expansive clays have consequences on urban planning for 

decision makers since they cause billions of dollars in building damages every year [1–3]. They are 

also responsible for off-road vehicle mobility, the latter being impacted by the sinking and stickiness 

of wet soils [4–6]. Aluminum-rich smectite (montmorillonite) has been demonstrated to be the clay 

mineral having the most expansive potential hazard [7]. Thus to monitor soil shrinking and 

swelling, the characterization of clay mineralogy is needed, both in terms of detection and 

quantification. In mid-latitude regions, smectite (whose montmorillonite represents the most 

common variety), illite and kaolinite are the main clay minerals found in soils affected by swelling 

risk [8]. For soil swell–shrinking application, Dufréchou et al. and Chassagneux et al. [9,10] defined 

four classes linking shrink–swell potential and montmorillonite content: low swelling potential (< 

10%), moderate swelling potential (between 10% and 50%), high swelling potential (between 50% 

and 70%) and very high swelling potential (> 70%). Many well-used techniques, either qualitative or 

quantitative, can assess clay minerals characterization, but they only provide little and local 

information due to a low number of soil samplings along a coarse grid such as: ground geotechnical 

engineering techniques measuring soil swelling potential [11] and X-ray diffraction (XRD) for 

mineral identification/quantification, and infrastructure damage reports for expansive clay 

qualitative assessment. However, the use of these methods mainly remains expensive and 

time-consuming.  

An alternative to overcome these limitations is the use of hyperspectral imaging spectroscopy, 

which is able to discriminate clay minerals using their specific spectral absorption features in the 

short wave infrared region (SWIR) 2100–2500 nm [12–14]. However, clay minerals are rarely pure in 

soils and are usually intimately mixed with other minerals, water and organic matter. Spectral 

preprocessings are used to overcome intraclass spectral variability, remove some non-linear 

illumination effects and enhance shallow absorption features [15–20]. For example, the identification 

of soil minerals using spectral similarity distance increases up to 18% using continuous wavelet 

transform [20]. Using spectral preprocessings could be a first preliminary step to further 

discrimination/quantification methods [16,20,21]. 

Two classes of methods exist in order to map mineral clays in soils: the first is based on spectral 

features and the second on unmixing. The first class includes the use of spectral indices (Dufréchou 

et al., [12] obtained a root mean square error (RMSE) of 15.4% for montmorillonite, 25.2% for 

kaolinite and 29.8% for illite), and linear regression methods using clay spectral feature 

characteristics (e.g., depth, width and position close to 2200 nm; [22–25]), and decision tree methods 

(Mulder et al., [26] obtained a RMSE of 9% for clay–calcite intimate mixtures). Expert systems such 

as Tetracorder use spectral features in order to detect and discriminate minerals, such as clays [27], 

for example to map clay alteration of Hawaii volcanoes [28]. These characteristics can also be 

automatically extracted using partial least square regression (Viscarra Rossel et al. [29,30] obtained a 

RMSE of 3% for illite, kaolinite and smectite in clay–quartz–organic mixtures). Neural networks 

have been tested for mineral sub-pixel classification [31], on a Hyperion dataset. Compared to 

ground reference, fraction prediction provides a correlation coefficient r² value of 0.62 for 

illite/montmorillonite class and 0.6 for kaolinite class. 

The second class of methods using unmixing relies on the knowledge of pure mineral spectra or 

endmembers [32–35]. Linear unmixing methods only consider materials at the surface that are 

contiguously distributed (named in the following "aeral mixture", [36] Figure 1a) while non linear 

unmixing methods consider mixed pixels several soil elements of volumetric distribution (also 

called “intimate mixture”, [32,36] Figure 1b). On one side, the most used linear unmixing methods 

considering only one spectrum per endmember class are the fully constrained least square (FCLS; 

[37]) and mixture tuned matched filtering (MTMF; [38]). On contrary, several algorithms account for 

the endmember spectral intraclass variability such as multiple endmember spectral mixture analysis 

(MESMA; [39]), the spectral assistant, (TSA; [40]) and the unmixing within a multi-task Gaussian 

process framework (UMTGP; [41]). For example, Chabrillat and Bedini [42,43] used MTMF and 

MESMA to discriminate illite/smectite from kaolinite in soils with airborne data. On the other side, 



Remote Sens. 2020, 12, 1723 3 of 28 

 

Heylen [44] gave a review of performance of nonlinear unmixing methods, including the Hapke 

model [45], generalized bilinear model (GBM; [46]) and multi-linear model (MLM; [34]). For 

example, [34] showed with laboratory spectroscopy datasets of quartz–alunite intimate mixtures 

that the Hapke model delivers the best result (bias of 1%–2% between estimated and measured 

abundances), then MLM (bias of 10%–20%) and at last both GBM and FCLS have a similar 

performance (bias 30%–40%). Robertson et al. [47] compared a version of the Shkuratov model [48] 

with the Hapke model to quantify laboratory mineral mixtures of montmorillonite–gypsum. In these 

samples, minerals fractions are estimated with an error less than 10% for both models. Unmixing 

methods can also be embedded in expert systems such as Tetracorder in order to increase the 

accuracy of mineral discrimination [27]. 

 

Figure 1. (a) Mixed pixel composed of a linear mixture of two surface materials illustrating the "aeral 

mixture" (green: vegetation, brown: bare soil) and (b) mixed pixel composed of a volumetric 

distribution of intimate soil constituents illustrating the "intimate mixture”. 

The advantage of using unmixing methods is to be not site-dependent and they do not require a 

learning stage with a representative training dataset, which is the case with the first class of 

methods. The difficulty to choose the most appropriate unmixing method is that their performance 

differs from the mineral mixture composition of soils. Few studies have used unmixing methods to 

estimate clay minerals fraction, but unmixing is more used for mineral discrimination. Moreover, 

very few studies have combined spectral preprocessings with unmixing methods, but they 

demonstrated the ability to decrease mineral fraction estimation errors using spectral preprocessing 

[16,20,21]. 

Then, by using airborne and satellite hyperspectral imaging spectroscopy, the sensor spatial 

resolution and the possible presence of vegetation overlaid on soil within a pixel degrade the 

performances of mineral estimation [42,43,49]. A first step commonly practiced is to study 

spectroscopy data under laboratory conditions to avoid environmental factors such as atmospheric 

and soil water content and soil/vegetation mixtures [12,26,29,50–52]. 

The main objective of this study is to compare the performance of both linear and non-linear 

unmixing methods combined with spectral preprocessings to estimate montmorillonite abundance 

in mineral mixtures. For this purpose, this pioneer work is based on spectroscopic measurements of 

intimate mixtures composed of different mineral types (clays, calcite and quartz) and controlled 

abundances, manually generated in the laboratory with dry conditions and further used as proxies 

for soil samples. Performances of the spectral preprocessings and unmixing methods will be 

assessed from the spectral database deriving from them. Another scenario considering synthetic 

mineral aeral mixtures computed from spectral measurements of pure minerals will be also 

analyzed in order to compare the performances of spectral preprocessings and unmixing methods 

between aeral and intimate mixtures. Thus, the spectral database of intimate and aeral mixtures and 

the laboratory imaging spectroscopy setup are presented in Section 2. The methodology including 

the spectral preprocessing and selected unmixing methods are described in Section 3. Results are 

presented in Section 4 and discussed in Section 5, with the conclusions exposed in Section 6. 
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2. Material 

2.1. Laboratory Imaging Spectroscopy Setup 

The laboratory setup (Figure 2) was similar to the one used in [50] under dry conditions. Two 

halogen lamps light the sample with an incidence zenith angle of 35°. The reflected signal was 

acquired by a hyperspectral camera HySpex SWIR–320me [53] (NorskElektroOptikk) whose 

characteristics are summarized in Table 1. Each dry mineral mixture was placed in a plastic 

container lying on a tray that moved horizontally during the acquisition process to obtain a 

hyperspectral image Radsample (Figure 2). The final image was the average of 10 acquisitions, reducing 

the noise by √10. Further, an image, Radspec, of a standard white Spectralon® panel was recorded in 

order to convert the acquired sample images expressed in radiance unit to reflectance unit such as: 

�(�, �, �)������ =
���(�, �, �)������

���(�, �, �)����

× �(�)����  (1)

With Rad(λ, i, j) the radiance of image pixel (i, j) with i the line number, j the column number 

and λ the wavelength, ρ(λ)spec the Spectralon® reflectance and ρ(λ,i,j)sample the sample reflectance. 

An area of 150 pixels × 200 pixels (11.25 × 15.0 cm²) was selected over each image to avoid 

possible stray light from the container borders (Figure 2b). Saturated pixels were removed, 

corresponding to 2% in the average for each image. For each mineral mixture, a mean reflectance 

over the area of interest of the image was computed and stored in a spectral database. 

Table 1. Characteristics of the HySpex hyperspectral camera. 

 Hyspex SWIR–320m–e camera 

Spectral range (nm) 1000–2500 

Spectral resolution (nm) 6 

Number of spectral bands 256 

Field of view (°) 13.5 

Number of pixels across track 320 

 

Figure 2. (a) Laboratory setup and (b) RGB composite image of a mixture sample with the region of 

interest (ROI) selected for the study (black rectangle). 

2.2. Spectral Database 
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The spectral database was built from five pure clay mineral samples (illite, kaolinite, 

montmorillonite, calcite and quartz) and two mixture types were considered, aeral and intimate, for 

a total of 46 mixtures. In one hand, the spectral reflectance of aeral mixtures was computed from the 

linearly mixed combination of pure mineral samples pondered by their respective abundance. On 

the other hand, the spectral reflectance of intimate mixtures was measured from the facilities 

presented in Section 2.1. This last scenario is a proxy to consider soil mixtures, without any organic 

matter and soil water content affecting spectral signatures [54]. Investigating unmixing performance 

with aeral mixtures enables to (i) highlight the benefit or not of spectral preprocessings over 

reflectance spectra, and (ii) compare the performance of linear unmixing methods independently of 

non-linear effects occurring in intimate mixtures. For this purpose, the mineral abundance should be 

as close as possible between aeral and intimate mixtures. 

Each sample was labeled as a suite of capital initials of the mineral’s name followed by its 

abundance in weight percentage (wt %), and the same for quartz and calcite. For example, I20K80 

refers to illite and kaolinite with an abundance of 20 wt % and 80 wt %, respectively. M20S70C10 

corresponds to a mixture with a 20 wt % abundance of montmorillonite, 70 wt % of quartz and 10 wt 

% of calcite, respectively. 

2.2.1. Pure Clay Mineral Samples 

The following clay minerals are: illite from Saint Paulien (France) commercialized by Argiles du 

Velay, kaolinite from Clérac (France) commercialized by Imerys, montmorillonite from Villanova 

Tulo (Sardinia, Italy) commercialized by Argiles du Bassin Méditerranéen (ABM). Clays are 

provided as a powder with a grain size less than 80 µm. Quartz is collected from a sand mine in 

Fontainebleau (France) commercialized by Sifraco and calcite comes from Orgon (France). Quartz 

has a grain size less than 300 µm, and calcite less than 70 µm. Collected minerals were oven-dried 

and have been stored in dry conditions before use. 

Clay spectral features are present in the SWIR domain, at 1400 nm, 1900 nm and more 

specifically, between 2100 and 2500 nm [12–14] (Figure 3). As atmospheric water vapor content has 

low transmittance at 1400 and 1900 nm [14,55], only the reduced spectral domain of 2100 – 2425 nm 

will be further considered in this study. Clays exhibit several spectral features, which result from the 

presence of vibrational hydroxyl processes: 

 The absorption feature around 2200 nm is due to the Al–OH vibrational mode. Its 

accurate location depends on the clay type: 2208 nm for illite, 2212 nm for 

montmorillonite and 2206 nm for kaolinite. Kaolinite also has a double absorption 

feature (2160 nm and 2206 nm), which is leftward asymmetric. The typical absorption 

bandwidth is around 100 nm whatever the clay type. 

 The absorption features due to OH-stretching bands combined with lattice vibrations at 

approximately 2360 nm is shallow for illite and sharp for kaolinite. Kaolinite has also in 

addition two more absorption features at 2320 nm and 2380 nm. 

Calcite and quartz were very reflective with a maximum reflectance of 0.94 for calcite and 0.8 

for quartz (Figure 3). Calcite had strong absorption bands corresponding to the vibrational modes of 

CO�
��ions between 2300 and 2350 nm, and a weak absorption feature close to 2140 nm. Quartz 

remained spectrally flat in this spectral domain. 
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Figure 3. Spectral mean reflectance of illite, montmorillonite, kaolinite, quartz and calcite samples 

measured in the laboratory. 

2.2.2. Synthetic Mineral Aeral Mixtures 

Aeral mixtures are synthetically generated using spectral data of pure minerals (Figure 3). In 

order to reproduce variability of pure mineral spectra, 1000 pixel spectra have been randomly 

selected in each hyperspectral image of pure minerals. Then, using these spectra, a linear mixing was 

applied to these spectra for each mineral following the equation below: 

� = ∑ (����)
�
���  ���ℎ 0 ≤ �� ≤ 1 and ∑ (��)

�
��� = 1, (2)

With ��the abundance of mineral i and ��the spectral reflectance. As the focus of the study is on 

the discrimination of the montmorillonite, only binary aeral mixtures combined with 

montmorillonite are considered (Figure 4): illite–montmorillonite, kaolinite–montmorillonite, 

calcite–montmorillonite and quartz–montmorillonite. Each mineral abundance of a given mixture 

was measured by weight percentage (wt %). The abundances vary from 20 to 80 wt % by a step of 

20%. 

2.2.3. Mineral Intimate Mixtures 

Twelve binary and 9 ternary mixtures of clay minerals (Figure 4a) and 8 binary mixtures of 

montmorillonite with either quartz or calcite (Figure 4b) were considered in order to uniformly 

cover as much as possible the area of the ternary diagrams. Each mixture had a volume of 300 mL 

(corresponding to a sample thickness of 2 cm in a plastic container of surface 22 × 26 cm²). This 

abundance was converted from volume to weight percentage in order to be compared with its aeral 

counterpart. As it can be seen in Figure 4, this measurement protocol did not allow us to necessarily 

have a superposition in terms of mineral abundance between the intimate and patchwork like 

mixture. 

Then, the minerals were manually and homogeneously mixed in the plastic container. The 

surface of each sample was leveled to avoid non-linear interactions due to the roughness of the 

sample. The mixture homogeneity was assessed by deriving the standard deviation of the spectral 

reflectance measured over the image area of interest (cf. Figure 2, Section 2.1)). The latter ranged 

between 1% to 2.5% reflectance for each mixture, which proved good uniformity within the sample 

at the surface. 
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Figure 4. Ternary diagrams of (a) clay mixtures and (b) montmorillonite–quartz/calcite mixtures 

(unit: wt %). 

3. Methods 

The methodology consists of the application of spectral preprocessing (Section 3.1), then 

unmixing methods (Section 3.2), and the accuracy of the retrieved abundance maps was further 

assessed with evaluation criteria (Section 3.3; Figure 5). 

 

Figure 5. Processing chain to estimate montmorillonite abundance. Linear unmixing performances 

on aeral mixtures are compared with linear and nonlinear unmixing performances. 

3.1. Spectral Preprocessings 

Six spectral preprocessings already used with unmixing methods or commonly used in the soil 

scientific community were selected (Table 2). Among them, a first group conserving the reflectance 

continuum includes pseudo-absorbance (Log(1/R)), the Hapke model and standard normal variate 

(SNV), while a second group suppressing it includes continuum removal (CR), continuous wavelet 

transform (CWT) and first Savitzky–Golay derivative (1st SGD).  

The chosen Hapke model considers the soil medium as an isotropic mixture with the same 

granulometry for all components [45]. The acquisition conditions were fixed to 35° for the zenithal 

incident angle (i.e., µ0 =cos(35)) and 0° for the zenithal viewing angle (i.e., µ =cos(0)).  
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CWT deconvolves the signal into a linear sum of a wavelet-base function (ψ) defined as the 

second order derivative of Gaussian. Ten wavelets were computed from the original spectrum. 

Consequently, only the second to the fifth scale wavelets were kept in order to remove the 

contribution of the noise and continuum as recommended by Feng et al. [56].  

The 1st SGD is the result of the convolution of the reflectance spectra by the Savitzky–Golay 

filter [57]. It was performed with a second order polynomial fit on a window size of seven bands. 

Higher orders of derivative were not tested since Heydley et al., [58] showed that they did not 

improve unmixing performance. 

Table 2. Selected spectral preprocessing methods: reflectance at wavelength λ:ρλ, averaged 

reflectance: �̅, wavelet-base function: ψ, wavelet scale: S, cosinus of the incident zenithal angle: µ0, 

cosinus of the viewing zenithal angle: µ, the half width of the smooth filter: m, smoothed spectra: �̅�, 

center of the smoothing window: �� , coefficient of the �th point of the filter of the �th order of 

derivative: ��
(�)

. 

Preprocessing Equation Reference 

Pseudo 

absorbanceLog(1/R) 

��
� =  log(1/��) [19] (Rinnan 

et al., 2009) 

Hapke Model (W) 

��
�

=  1

− �
�(�� +  �)���

� + (1 + 4�����)(1 − ��) − (�� +  �)��

(1 + 4�����)
�

�

 

[44] (Heylen 

et al., 2014) 

Standard Normal 

Variate (SNV) 

��
� =

(�� − �̅)

�
∑(�����)�

���

 
[59] (Barnes 

et al., 1989) 

Continuum Removal 

(CR) 

��
� =  ��/���������� [60] (Clark 

and Roush, 

1984) 

Continuous Wavelet 

Transform (CWT) 

��
� =  � ���

���

�� ��

� �
(λ� − λ)δt

�
� 

[20] (Rivard 

et al., 2008) 

First Savitzky–Golay 

Derivative (1st SGD) 
��

� =
���̅�

���
=  � ��

(�)
����

�

����

 
[61] (Tsai and 

Philpot, 

1998) 

3.2. Unmixing Methods 

Four unmixing methods were chosen: two linear methods, FCLS (the most commonly used) 

and MESMA (accounts for intraclass variability), and two non-linear methods, GBM (able to 

considered first and second order interactions) and MLM (multiple interactions; Table 3). In 

MESMA, each endmember was modeled by six spectra (mean spectrum, mean spectrum ± standard 

deviation, mean spectrum ± 3 × standard deviation and median spectrum). The non-linear 

contribution was estimated by GBM with its γij parameter and by MLM with the P parameter.  

The implementation of the FCLS algorithm comes from the pysptools python’s package. We 

coded our own version of MESMA based on [39]. GBM and MLM implementation from [44] were 

used. 
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Table 3. Unmixing methods. Reflectance: ρ, number of endmembers: p, endmember abundance: f�, 

endmembers spectra: ρ�  and ρ� , residual term: ε , free additional parameter γ�� , probability to 

undergo multiple interactions: P. 

Unmixing Equation Reference 

Fully Constraint Least Square 

(FCLS) � = �(����)

�

���

 ���ℎ 0 ≤ ��

≤ 1 and �(��)

�

���

= 1 

[37] (Heinz and 

Chang, 2001) 

Multiple Endmember Spectral 

Mixture Analysis (MESMA) � = �(����) +  �

�

���

 ���ℎ 0 ≤ ��

≤ 1 and �(��)

�

���

= 1  

and ��� = �
∑ (�)²�

���

�
�

�/�

 

[39] (Roberts et al., 

1998) 

Generalized Bilinear Model (GBM) 
� = �(����) +

�

���

� � ����������

�

�����

���

���

⊙ ��� 

[46] (Halimi et al., 2011) 

Multi-Linear Model (MLM) 
� =

(1 − �) ∑ ����
�
���

1 − � ∑ ����
�
���

 
[34] (Heylen and 

Scheunders, 2016) 

3.3. Evaluation Criteria 

Three evaluation criteria expressed in percentage of weight abundances (wt %) will assess the 

performance of the couple spectral preprocessing–unmixing model. 

The mean bias (MB) will evaluate the mean error between the estimated abundance ��� and the 

measured one �� for a pixel n among the region of interest (ROI) image N pixels: 

�� =  
�

�
�∑ (��� −  ��

�
���  )� , (3)

The standard deviation around the mean bias (STDB) is as follows: 

���� = �
�

���
�∑ ((��� − ��

�
���  ) − ��)��, (4)

The root mean square error (RMSE) is expressed as: 

���� = ���� + ����², (5)

4. Results 

4.1. Comparison between Reflectance and Preprocessed Spectra 

4.1.1. Clay Mixtures 

Reflectance spectra for illite–montmorillonite (IM) and montmorillonite–kaolinite (MK) 

intimate mixtures show that the reflectance level decreased when the montmorillonite abundance 

increased. For IM mixtures, a spectral shift of 6 nm was observed from I100 to M100 spectra, 

simultaneously with a slope change in the range 2220–2250nm (Figure 6b). For MK mixtures, the 

double absorption feature at both 2160 nm and 2200 nm disappeared when montmorillonite 

abundance was more than 50% (data not shown).  
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Intrasample spectral variations were more important for reflectance, Hapke and Log(1/R), than 

for SNV, CR, CWT and 1st SGD whatever IM (Figure 6) and MK mixtures (data not shown). For 

instance, these variations for reflectance spectra had an amplitude around 2% for illite and 5% for 

montmorillonite, while for IM mixtures they were around 5% (Figure 6a,b).  

The non-linear behavior of intimate mixtures relative to montmorillonite abundance was 

compared with the linear behavior of aeral ones. For IM mixtures, the mean spectral difference 

between the two mixture types was not centered to zero, thus highlighting this non-linear behavior 

(Figure 6). Then, the latter was the most emphasized in clay absorption spectral features for SNV, 

CR, CWT and 1st SGD suppressing the continuum (Figure 6o,r,u). For reflectance spectra, the 

non-linearity was quantified up to 1.5% for M20I80 (Figure 6c). 

For clay ternary mixtures, same conclusions as before were derived from the analysis of the 

spectral preprocessing (data not shown). 
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Figure 6. Montmorillonite–illite mixtures: from (a) to (c) reflectance spectra and from (d) to (u) 

application of the 6 spectral preprocessings for aeral mixtures (first column) and intimate mixture 

(second column), difference between mean spectra of aeral and intimate mixtures (third column; line: 

mean reflectance, ribbon: mean ± one standard deviation). 
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4.1.2. Montmorillonite–calcite/quartz Binary Mixtures 

For MC intimate mixtures, the montmorillonite spectral absorption feature started 

disappearing when calcite abundance was comprised between 80% and 100% (Figure 7b). 

The same conclusions as for clay binary mixtures applied for the intrasample spectral variations 

(Figure 7). For reflectance spectra, they accounted for less than or about 5% (Figure 7b). However 

contrary to these previous clay mixtures, a better intersample discrimination was noticed with 

reflectance, Hapke and Log(1/R). 

The study of the non-linear behavior of intimate mixtures led to the same conclusions as 

previously. However, the non-linear effect tended to be higher when calcite abundance dominated, 

and achieved 4%–6% for M20C80 (Figure 7c). 

For MQ reflectance spectra, all spectra seemed to overlap for M abundance superior to 11% 

(Figure 8b). For this reason, the use of spectral preprocessing brought no benefit for spectra 

separability (Figure 8). MQ aeral mixtures were not shown because of abundances values between 

aeral and intimate mixtures did not match (cf. Figure 4). 
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Figure 7. Montmorillonite–calcite: from (a) to (c) reflectance spectra and from (d) to (u) application of 

the 6 spectral preprocessings from aeral mixtures (first column), intimate mixture (second column), 

difference between mean spectra of aeral and intimate mixtures (third column; line: mean 

reflectance, ribbon: mean ± one standard deviation). 
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Figure 8. Montmorillonite–quartz: from (a) to (b) reflectance spectra and from (c) to (n) application of 

the 6 spectral preprocessings from aeral mixtures (first column), intimate mixture (second column; 

line: mean reflectance, ribbon: mean ± one standard deviation). 
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4.2. Performances of Linear Unmixing Methods 

4.2.1. Clay Mixtures 

Linear unmixing method performances depend on the intrinsic errors due to the unmixing 

algorithms and the errors due to the non-linearity of intimate mixtures. The first was estimated by 

applying the unmixing methods on aeral mixtures, and the second would be deduced from the 

comparison of these results to those obtained with intimate mixtures. These two steps were detailed 

for clay binary mixtures, while for clay ternary ones; only the global error was given, which 

accounted for both intrinsic and non-linearity errors (no aeral mixtures available). 

For IM aeral mixtures (respectively MK), the best RMSE performance is shown for FCLS 

applied on SNV, CR, CWT and 1st SGD with RMSE from 2.4% to 3.8% (respectively from 3.2% to 

6.2%) (Table 4). Moreover, CWT and 1st SGD biases were close to zero. Oppositely, FCLS applied on 

reflectance, Hapke or Log(1/R) led to a large range in M abundance estimates with STDB > 14% 

(respectively > 16%) with an underestimated mean bias (highest bias for Hapke with –5.3%, 

respectively  –3.9%; Figure 9a). For MESMA and both IM and MK aeral mixtures, the best RMSE 

performance was achieved with whatever reflectance and spectral preprocessing except for Hapke 

and ranges between 2.6% and 5.3%. However, the range in montmorillonite abundance estimates 

was strongly reduced compared to FCLS for reflectance, Hapke or Log(1/R) by a maximum factor of 

4, but this reduction was not significant for SNV, CR, CWT and 1st SGD (Figure 9b).  

For IM intimate mixtures (respectively MK), FCLS methods delivered similar best results with 

SNV, CR, CWT and 1st SGD with RMSE ranging from 8.4% to 12.7% (respectively from 13.6% to 

15.7%; Table 4). Their mean bias in M estimated abundances increase compared to the aeral mixture, 

from 7.1% to 12.2% for IM intimate mixtures (respectively from 12.5% to 14.8%) and below 2.1% for 

aeral ones whatever the IM/MK mixtures. For MESMA and IM intimate mixtures, the best results 

were achieved with reflectance and whatever spectral preprocessing except Log(1/R) with RMSE 

less than 13% (respectively 15.7% for MK). For IM and MK, a degradation of performances 

compared to aeral ones was observed around a factor of 2, except for Log(1/R) (degradation by a 

factor of 5) and Hapke (improvement by a factor of 2 only for IM). 

For illite-montmorillonite-kaolinite (IMK) intimate mixtures, better results with FCLS were 

with SNV, CR, CWT and 1st SGD for RMSE between 9.1% and 14.8% (Table 5). However, the use of 

SNV led to higher absolute mean biases (MB of around 13.9%) than the others (MB between 7.4% 

and 9.7%) while the variability in estimates was comparable among them (STDB between 4.8% and 

5.2%). For the MESMA method, results performed the same for reflectance and all spectral 

preprocessing with RMSE ranging from 7.1% (Hapke) to 14.5% (SNV) and similar values of STDB 

from 5% to 9.5%. 
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Figure 9. Performances of montmorillonite abundance estimation in illite–montmorillonite aeral 

mixtures with the (a) fully constrained least square method (FCLS) and (b) multiple endmember 

spectral mixture analysis (MESMA) unmixing method. 

Table 4. Performances of linear unmixing methods to estimate montmorillonite abundances for 

illite–montmorillonite (IM) and montmorillonite–kaolinite (MK) aeral and intimate mixtures with 

different combinations of spectral preprocessings (best results in grey cells with bold font). 

Mixture 

 Aeral 
 

Intimate 
  

 
FCLS 

   
MESMA 

   
FCLS 

   
MESMA 

  

 
R² MB STDB RMSE 

R² 
MB STDB RMSE R² MB STDB 

RM

SE R² MB STDB RMSE 

IM REF 0.66 0.1 15.3 15.3 0.95 –0.2 5.2 5.2 0.14 5.7 22.8 23.5 0.90 7.1 6.9 9.9 

 
Log(1/R) 0.67 –1.7 15.0 15.1 0.96 –2.3 4.8 5.3 0.23 7.2 21.1 22.3 0.27 9.2 32.4 29.5 

 
Hapke 0.68 –5.3 14.4 15.3 0.79 –6.5 10.5 12.3 0.30 4.0 19.6 20.0 0.91 0.0 6.6 6.6 

 
SNV 0.99 2.1 2.2 3.1 0.99 2.2 2.5 3.3 0.98 12.2 3.4 12.7 0.98 12.3 3.4 12.7 

 CR 0.98 1.7 3.4 3.8 0.94 1.3 5.3 5.4 0.94 9.4 5.3 10.8 0.95 5.9 5.1 7.8 

 
CWT 0.99 0.1 2.5 2.5 0.96 0.1 4.6 4.6 0.96 7.1 4.5 8.4 0.80 5.5 10.9 12.2 

 
1st SGD 0.99 0.1 2.4 2.4 0.97 –0.2 4.1 4.1 0.97 8.3 4.0 9.2 0.97 8.3 4.0 9.3 

MK REF 0.51 –1.3 19.8 19.8 0.97 0.9 3.7 3.8 0.21 12.6 20.9 24.4 0.90 13.3 6.8 15.0 

 
Log(1/R) 0.53 –2.3 18.9 19.1 0.97 –2.6 3.7 4.5 0.24 15.5 20.2 25.4 0.73 17.4 14.0 21.2 

 
Hapke 0.58 –3.9 16.9 17.3 0.85 –7.5 9.1 11.8 0.26 11.7 20.1 23.2 0.86 8.8 8.3 12.1 

 
SNV 0.99 2.1 2.4 3.2 0.99 2.1 2.3 3.1 0.94 14.8 5.4 15.7 0.94 14.8 5.5 15.7 

 CR 0.93 1.4 6.0 6.2 0.98 –1.9 3.6 4.1 0.94 14.2 6.4 15.5 0.94 11.3 6.3 13.0 
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CWT 0.96 0.0 4.6 4.6 0.99 0.0 2.5 2.5 0.95 12.5 5.2 13.6 0.92 12.7 6.3 14.1 

 
1st SGD 0.98 0.0 3.5 3.5 0.99 0.3 2.5 2.6 0.94 12.8 5.3 13.9 0.94 12.8 5.3 13.9 

Table 5. Performances of linear unmixing methods to estimate montmorillonite abundances for 

illite-montmorillonite-kaolinite (IMK) intimate mixtures with different combinations of spectral 

preprocessings (best results in grey cells with bold font). 

IMK 

FCLS   MESMA     

Montmorillonite       

R² MB STDB RMSE R² MB STDB RMSE  

REF 0.21 0.8 24.3 24.3 0.86 10.8 5.5 12.1  

Log(1/R) 0.21 –0.2 23.5 23.5 0.93 8.4 5.1 9.7  

Hapke 0.25 –2.9 20.7 20.9 0.77 2.3 6.8 7.1  

SNV 0.93 13.9 5.0 14.8 0.92 13.6 5.0 14.5  

CR 0.87 8.8 5.2 10.2 0.86 6.3 5.3 8.2  

CWT 0.87 7.4 5.2 9.1 0.65 6.0 9.5 11.2  

1st SGD 0.89 9.7 4.8 10.8 0.88 10.2 5.1 11.4  

4.2.2. Montmorillonite–calcite/quartz Mixtures 

For MC aeral mixtures (respectively MQ), linear unmixing provides similar results for 

reflectance, Log(1/R), CR, CWT and 1st SGD with RMSE from 2.9% to 7% ( respectively from 2.3% to 

7.2%; Table 6). For MC/MQ mixtures and both FLCS and MESMA, the use of reflectance, CWT and 

1st SGD introduced almost no bias in the estimates (≤ 0.4 %).  

For MC intimate mixtures, FCLS and MESMA with reflectance or Log(1/R) delivered the best 

performance with RMSE less than 10.8% and STDB less than 8%. In a least extent, the use of CR with 

MESMA gave a RMSE of 16% while RMSE accounted for more than 21% for the other spectral 

preprocessings with both FCLS and MESMA. Furthermore, a large increase in mean bias was 

observed for FCLS and MESMA coupled to SNV, CR, CWT, Hapke or 1st SGD (MB between 14.3% 

and 36.6%). Compared to aeral mixtures, poorer performances were obtained with these spectral 

preprocessing–unmixing method couples by a factor worst than 2, excepted for Log(1/R)–MESMA 

(no explanation found).  

For MQ intimate mixtures, unmixing performance is very low for all linear unmixing methods, 

with and without spectral preprocessing, with a RMSE higher than 50%. Thus compared to aeral 

mixtures, performance are the worst for intimate mixtures by a factor of more than 7. 

Table 6. Performances of linear unmixing methods to estimate montmorillonite abundances for MC 

and MQ aeral and intimate mixtures with different combinations of spectral preprocessings (best 

results in grey cells with bold font). 

Mixture 

 Aeral 
 

Intimate 
  

 
FCLS 

   
MESMA 

   

FCL

S 
   

MESMA 
  

 
R² MB STDB RMSE 

R² 
MB STDB 

RMS

E R² MB STDB RMSE R² MB STDB RMSE 

MC REF 0.96 0.2 4.8 4.8 0.99 0.3 2.5 2.5 0.92 –3.8 8.0 8.8 0.94 7.6 5.4 9.3 

 
Log(1/R) 0.96 –5.2 4.8 7.0 0.98 –11.5 3.6 12.0 0.93 –8.5 6.7 10.8 0.99 1.6 2.2 2.5 

 
Hapke 0.91 –20.8 6.6 21.9 0.85 –27.3 8.9 28.7 0.91 –22.6 6.9 23.6 0.87 –23.8 8.3 25.2 
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SNV 0.97 12.8 4.1 13.4 0.97 12.9 4.1 13.5 0.86 36.6 12.3 38.6 0.86 36.6 12.3 38.6 

 CR 0.98 –5.2 3.6 6.3 0.98 –4.2 4.1 5.9 0.95 19.1 8.6 21.0 0.95 14.3 7.0 16.0 

 
CWT 0.98 0.0 3.3 3.3 0.98 0.0 3.3 3.3 0.94 21.7 8.3 23.2 0.91 21.4 8.9 23.2 

 
1st SGD 0.98 0.0 2.9 2.9 0.98 0.1 3.2 3.2 0.96 21.3 7.7 22.6 0.95 22.0 8.1 23.4 

MQ REF 0.93 –0.1 6.2 6.2 0.99 0.4 2.2 2.3 0.29 55.9 17.7 58.6 0.71 53.0 15.1 55.1 

 
Log(1/R) 0.93 –3.9 6.1 7.2 0.99 –7.2 2.7 7.7 0.29 55.0 17.6 57.8 0.69 53.1 14.7 54.6 

 
Hapke 0.92 –13.2 6.5 14.7 0.83 –22.4 9.3 24.2 0.32 48.7 18.0 51.9 0.35 48.4 17.8 51.6 

 
SNV 0.86 35.5 12.3 37.5 0.86 35.5 12.4 37.6 0.00 61.8 20.9 65.2 0.00 61.8 20.9 65.2 

 CR 0.98 –5.0 3.4 6.1 0.97 –6.0 3.9 7.2 0.65 51.2 14.4 53.1 0.63 52.1 14.9 54.1 

 
CWT 0.98 0.0 3.1 3.1 0.98 0.0 3.0 3.0 0.67 53.1 15.6 55.3 0.16 51.2 20.3 55.1 

 
1st SGD 0.99 0.0 2.8 2.8 0.98 –0.3 3.5 3.5 0.71 53.0 15.3 55.2 0.68 53.1 15.6 55.3 

4.3. Performances of Non-Linear Unmixing Methods 

4.3.1. Clay Binary Mixtures 

For GBM, the best results were obtained with CR, CWT and 1st SGD, leading to RMSE ranging 

between 13.4% and 13.9% for MK intimate mixtures, and between 7.7% and 9.2% for IM ones (Table 

7). The worst performance was achieved for reflectance and Log(1/R). Comparing MK with IM 

mixtures, mean biases were higher with MB of around 12.4% for the first and 7% for the second. The 

non-linear contribution estimated by GBM was examined through the parameter γ and only for MK 

mixtures (same conclusions for IM ones; Figure 10). Histograms of γ had narrow peaks close to zero 

for all spectral preprocessing and reflectance, with CR and 1st SGD having a mean value almost null.  

Oppositely, performance of MLM was less dependent on the use or not of spectral 

preprocessing with RMSE in the range 12.4%–14.8% for MK mixtures and 7.0%–12.9% for IM ones. 

Histograms of P, the non-linear contribution of MLM, were centered around zero with a wider 

distribution covering both positive and negative values (Figure 11). The wider ones were observed 

for reflectance and Log(1/R). 

 

Figure 10. Histograms of parameter γ (non-linearity contribution of the generalized bilinear model 

(GBM)) for MK mixtures: (a) reflectance data, (b)–(d) for each spectral preprocessing (red: average 

value of γ). 
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Figure 11. Histograms of parameter P (non-linearity contribution of multi-linear model (MLM)) for 

MK mixtures: (a) reflectance data, (b)–(d) for each spectral preprocessing (red: average value of P). 

Table 7. Performances of non-linear unmixing methods to estimate montmorillonite abundances for 

IM and MK intimate mixtures with different combinations of spectral preprocessings (best results in 

grey cells bold font). 

Mixture  GBM    MLM    
 R² MB STDB RMSE R² MB STDB RMSE 

IM REF 0.56 12.7 14.8 19.6 0.97 9.2 3.8 10.0 

 Log(1/R) 0.47 2.0 16.6 16.7 0.97 5.8 4.0 7.0 

 SNV 0.98 12.6 3.5 13.0 0.98 11.1 3.3 11.6 

 CR 0.95 5.9 4.9 7.7 0.94 11.4 5.9 12.9 

 CWT 0.96 7.7 4.4 8.8 0.96 8.2 4.5 9.4 

 1st SGD 0.97 8.3 4.0 9.2 0.97 9.4 4.1 10.3 

MK REF 0.56 20.3 14.6 25.0 0.95 13.4 5.1 14.4 

 Log(1/R) 0.51 10.0 15.8 18.7 0.95 11.3 5.1 12.4 

 SNV 0.94 15.0 5.4 16.0 0.94 13.8 5.3 14.8 

 CR 0.94 12.3 6.4 13.9 0.94 12.7 6.1 14.1 

 CWT 0.95 12.3 5.2 13.4 0.95 12.4 5.3 13.5 

 1st SGD 0.94 12.8 5.3 13.9 0.95 12.9 5.2 14.0 

4.3.2. Montmorillonite–calcite/quartz Mixtures 

For MC intimate mixtures, GBM combined with reflectance and Log(1/R) gave the best results, 

respectively with RMSE of 8.2% and 10.8% (Table 8). In the least extent, GBM with CR gave a RMSE 

of 17.9% while using the other spectral preprocessings led to RMSE more than 17.9% due to higher 

values of MB. Associated histograms of γ were close to zero (Figure 12). MLM results brought more 
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degradation in global performance with RMSE superior to 27%, except for Log(1/R) with RMSE 

equal to 14.7%. Associated histograms of P were centered to zero for CWT and 1st SGD with narrow 

peaks, while the histograms of reflectance, CR and Log(1/R) were more spread with negative and 

positive values (Figure 13). At last for SNV, the histogram was a narrow peak around a mean 

negative value. 

For MQ intimate mixtures, both GBM and MLM presented poor performance with RMSE more 

than 50% (Table 8). 

 

Figure 12. Histograms of parameter γ (non-linearity contribution of GBM) for MC mixtures: (a) 

reflectance data, (b)–(d) for each spectral preprocessing (red: average value of γ). 

 

Figure 13. Histograms of parameter γ (non-linearity contribution of GBM) for MC mixtures: (a) 

reflectance data, (b)–(d) for each spectral preprocessing (red: average value of γ). 
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Table 8. Performances of non-linear unmixing methods to estimate montmorillonite abundances for 

MC and MQ intimate mixtures with different combinations of spectral preprocessings (best results in 

grey cells bold font). 

 

Mixture 
 

GBM     MLM    

R² MB STDB RMSE  R² MB STDB RMSE 

MC REF 0.92 5.2 6.3 8.2  0.65 26.3 13.4 29.5 

 Log(1/R) 0.93 –8.5 6.7 10.8  0.88 12.3 8.1 14.7 

 SNV 0.86 35.8 11.9 37.7  0.87 35.3 11.8 37.2 

 CR 0.96 16.2 7.8 17.9  0.85 26.3 8.8 27.7 

 CWT 0.94 21.6 8.3 23.1  0.88 25.8 8.9 27.3 

 1st SGD 0.96 21.3 7.7 22.6  0.89 26.4 8.5 27.7 

MQ REF 0.38 57.4 17.2 59.9  0.70 52.8 15.0 54.9 

 Log(1/R) 0.32 54.3 17.2 57.0  0.73 48.8 12.9 50.4 

 SNV 0.01 61.8 20.9 65.3  0.01 61.7 20.8 65.1 

 CR 0.65 52.2 14.6 54.2  0.00 56.7 23.2 61.2 

 CWT 0.67 53.1 15.6 55.4  0.36 53.9 17.4 56.6 

 1st SGD 0.71 53.1 15.3 55.2  0.03 51.5 22.5 56.2 

4.3.3. Clay Ternary Mixtures 

For the GBM method, the best results were obtained with CR, CWT and 1st SGD, RMSE 

respectively of 7.5%, 10.2% and 10.8%, and MB and STDB of the same order of magnitude (Table 9). 

SNV delivered higher absolute mean biases of around 20.5% and RMSE of 21%. For the MLM 

method, performances were similar whatever the spectral preprocessings (RMSE between 9.9% and 

12.7%) except for CR with RMSE of 17.1%. The main errors were driven by MB (15.6%) in 

comparison with STDB (6.8%). 

Table 9. Performances of non-linear unmixing methods to estimate montmorillonite abundances for 

IMK intimate mixtures with different combinations of spectral preprocessings (best results in grey 

cells with bold font). 

IMK. 

GBM    MLM    

Montmorillonite      

R² MB STDB 

RM

SE R² MB STDB RMSE 

REF 0.43 12.3 15.3 19.6 0.93 12.0 4.1 12.7 

Log(1/R) 0.30 –3.7 18.8 19.2 0.90 8.8 4.6 9.9 

Hapke         

SNV 0.91 20.5 4.5 21.0 0.93 7.6 5.5 9.3 

CR 0.87 5.4 5.2 7.5 0.84 15.6 6.8 17.1 

CWT 0.88 8.9 5.1 10.2 0.89 8.3 5.3 9.9 

1st SGD 0.89 9.7 4.8 10.8 0.91 10.6 4.9 11.6 

5. Discussion 

5.1. Non-linearity of Intimate Mixtures Depending on the Mineralogical Composition 



Remote Sens. 2020, 12, 1723 22 of 28 

 

Following the increase in montmorillonite abundance, the non-linearity of intimate mixtures 

was put into evidence compared to aeral mixtures. For two minerals having the same granulometry 

(around 80 µm), the main contribution of this non-linearity was due to the mean level of reflectance 

if the minerals have close spectral absorption features such as illite and montmorillonite. Then, with 

two minerals having no overlapping spectral features such as calcite and montmorillonite, the 

spectral variations in the absorption features were added as a second contributor to the 

non-linearity. At last, in the presence of a mineral without any absorption feature such as quartz, the 

spectral effect of the non-linearity increased drastically. Actually, the reflectance could be 

decomposed into two components, the volume and the surface reflectances, whose relative 

contribution depended on the granulometry. First, due to the high reflectance of quartz, the volume 

reflectance was favored by the multiple scattering inside the mixture and as such increased the 

chance for a photon to interact with montmorillonite mineral. As a consequence, the non-linearity 

was observed in the absorption band of montmorillonite, even if its abundance was low as it had 

already been mentioned by Clark [62]. Second, the surface reflectance depended on the reflective 

value and the abundance of each mineral. The higher the granulometry, the higher is the surface 

reflectance relative contribution. Thus for quartz/montmorillonite mixtures, the non-linearity 

contribution might be partially compensated by the quartz particle size (300 µm). 

5.2. Spectral Variability Reduction with Spectral Preprocessings 

Application of spectral preprocessings on intimate mixtures spectra showed that 1st SGD, 

CWT, SNV and CR significantly reduced the intrasample spectral variability while Log(1/R) and 

Hapke gave an intrasample spectral variability with the same order of magnitude as with reflectance 

spectra, but sometimes much worse.  

Actually, two classes of spectral preprocessings could be distinguished based on their spectral 

transformation: quasi-linear (1st SGD, CWT) and non-linear (SNV, CR, Log(1/R), Hapke). These two 

spectral preprocessing classes led to different spectra and introduced some artifacts. CWT 

decomposes the spectrum into a sum of linear signals and preserves additive properties of the 

spectra [20] while the 1st SGD is only sensitive to the local spectral variations. SNV is based on a 

centered-reduced spectrum normalization [17,19] corresponding to a multiplicative correction 

causing a loss of any additive contribution. Clark et al. [60,62] showed that CR correctly identifies 

the location of spectral absorption features with spectra having a steep slope continuum but to the 

detriment of the deformation of the spectral feature [20,62]. Log(1/R) transforms data into the 

logarithmic space, which, in relationship with Lambert–Beer’s law increases linearity between 

spectral data and constituent abundance [17,19]. However, additive and multiplicative properties of 

the spectrum are not suppressed, so that the variability is not reduced. Hapke transforms the data 

into the albedo space, leading to the same conclusions as Log(1/R). 

As a result, the weak intrasample spectral variability of spectra deduced from quasi-linear and 

non-linear spectral preprocessings 1st SGD, CWT, SNV and CR, was explained by their low 

sensitivity to the reflectance mean level. On the contrary, the non-linear Hapke and Log(1/R) 

preserved the intrasample spectral variability of the reflectance. However, the reduction of the latter 

did not lead to a better discrimination between the different mixture spectra because our samples 

were homogeneous and thus had low intraclass variability. 

5.3. Performance of Linear Unmixing Methods with Spectral Preprocessings 

For clay binary aeral mixtures (IM and MK) and reflectance spectra, MESMA is expected to 

have better performances than FCLS, as it takes into account the intrasample variability of 

endmember [39]. Improved estimation results were particularly noticeable with reflectance spectra 

and Log(1/R) having a large intrasample spectral variability, but improvements were very small 

with the other spectral preprocessings already having a reduced intrasample spectral variability. 

Overall, FCLS and MESMA had comparable performances with SNV, CR, CWT and 1st SGD. 

However, SNV and CR carried higher biases in montmorillonite abundance estimation. For calcite 
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and quartz aeral mixtures (MC and MQ), the same conclusions as before could be done in the main 

lines, with the best results achieved with 1st SGD, CWT and CR.  

For clay binary intimate mixtures, the best spectral preprocessings were SNV, CR, CWT and 1st 

SGD for FCLS whereas for MESMA, Hapke and reflectance spectra were added. MK mixtures had 

larger montmorillonite estimation errors than for IM ones, oppositely to the clay aeral mixtures. 

Possible reasons might be that bias values were more important for intimate mixtures than aeral 

ones. Then for the latter, since there was a strong spectral overlapping of IM mixtures within the 

range of the intrasample spectral variability (Figure 6a), confusions might occur in finding the best 

unmixing solution, whereas, confusions might be added due to the non-linear effects for intimate 

mixtures (more important for MK than IM mixtures). Among the best couples spectral 

preprocessing/unmixing method, CWT or 1st SGD/FCLS or MESMA were selected. By comparing 

their results between the aeral and intimate mixtures, the main source of error based on the RMSE 

came from the non-linearity of the intimate mixtures with an increase by a factor of 2–6. For 

calcite/montmorillonite intimate mixtures, the best couples spectral preprocessing/unmixing 

method were REF/FCLS or MESMA. Performances were similar with IM intimate mixtures but 

better than MK ones. The impact of the non-linearity within the intimate mixtures compared to the 

aeral mixtures increased by a factor of 2–4. For quartz/montmorillonite intimate mixtures, the 

non-linearity effect due to the presence of quartz was too strong to be taken into account by the 

linear unmixing methods and the performances were very low. For ternary clay intimate mixtures, 

CR or CWT/FCLS or /MESMA were the best couples and their performance had the same order of 

magnitude as those of clay binary mixtures. 

As a first conclusion, when two minerals present overlapped absorption features (clay 

mixtures), the best spectral preprocessings were those enhancing the slight spectral local changes, 

such as SNV, CR, CWT and 1st SGD. However, SNV was not recommended since it might bring 

higher errors on mineral abundance estimation in some cases. Oppositely, when no overlap 

occurred (mixtures with calcite), Hapke, and reflectance spectra performed the best because they 

rely on the global variation of the spectrum (i.e., continuum), which varied linearly with the addition 

of minerals. 

5.4. Performance of Allunmixing Methods with Spectral Preprocessings 

For clay binary intimate mixtures and whatever linear or non-linear unmixing method, results 

of montmorillonite abundance estimation were in the range 10.8%–25.4% (RMSE) for MK mixtures 

and 7.0%–29.5% for IM ones. MESMA, FCLS and GBM had comparable performances when using 

SNV, CR, CWT and 1st SGD, the same as MLM combined with whatever spectral preprocessing. 

MLM algorithm might compensate the higher intrasample spectral variability with the P non-linear 

parameter, because this spectral variability had a larger amplitude than the non-linearity of the 

intimate mixture for similar grain size in clay mixtures [34]. Revel et al. [63] have also observed the 

prevalence of intraclass variability over non-linear effects on the performance of unmixing methods 

in another context. 

For calcite/montmorillonite intimate mixtures, RMSE ranged between 8.2% and 38.6%. GBM 

had a very close performance with reflectance and Log(1/R) compared to FLCS and MESMA with 

reflectance, while MLM performed the worst. Compared to clay binary intimate mixtures, this last 

case may be explained because the P parameter of MLM had negative values. Heylen et al. [34] 

mentioned that the use of MLM could lead to errors in the case of high reflective materials, like 

calcite.  

For quartz/montmorillonite intimate mixtures, results of montmorillonite abundance 

estimation were very poor with RMSE around 50.4%–65.3%. The difficulties raised in this study with 

mixtures containing quartz are also noticed by Asadzadeh et al., Viscarra Rossel et al. and Mulder et 

al. [15,26,29] since detecting and quantifying quartz are still major limitations for soil mineralogy 

spectroscopy in the range 400–2500 nm. Indeed, some studies chose to neglect the impact of quartz 

abundance [26]. However, Debba et al. [16] demonstrated that taking into account quartz abundance 

as an endmember for unmixing produces more accurate results. 
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For clay ternary intimate mixtures, besides the increasing impact of non-linear effects from clay 

binary to clay ternary intimate mixtures, the performance was globally similar whatever the 

unmixing method with montmorillonite abundance estimation in the range 7.5%–24.3% (RMSE). 

The best performance was obtained for CWT or 1st SGD/FCLS or MESMA or GBM or MLM. 

Globally several trends could be deduced, except for the quartz/montmorillonite mixtures: 

1. For clay intimate mixtures either binary or ternary and whatever unmixing methods, the best 

spectral preprocessings were CWT and 1st SGD while for calcite/montmorillonite intimate 

mixtures, the best results were obtained without the use of spectral preprocessing. 

Consequently, it was recommended to use quasi-linear spectral preprocessings (CWT or 1st 

SGD) when the absorption bands of minerals overlap and keep the reflectance in the other cases 

(calcite). Attention should be paid with the use of SNV leading to higher biases in 

montmorillonite abundance estimations, and Log(1/R)/Hapke leading to non robust results 

dependent on the mixture type and the unmixing method. The only best results for Hapke were 

obtained with MESMA for clay intimate mixtures (IM: RMSE of 6.6%, MK: RMSE of 12.1% and 

IMK: RMSE of 7.1%) with minerals of similar granulometry (80 µm), which is in agreement with 

Heylen and Scheunders [31] (RMSE less than 2% for alunite–quartz mixtures having similar 

grain size). However, with minerals of different granulometry (calcite: 70 µm, quartz: 300 µm), 

performance was poor because it violated the main assumption of the Hapke algorithm used in 

this paper [44]. 

2. Similar performances in terms of RMSE were noticed between the use of linear and non-linear 

unmixing methods. As a result, the use of the simplest linear unmixing method, FCLS, was 

advised, coupled with the simplest spectral preprocessing, 1st SGD, for clay intimate mixtures 

and without the use of spectral preprocessing with calcite/montmorillonite. 

3. The error in montmorillonite abundance estimation achieved for the best couple mentioned in 

Section 2, a RMSE of 9.2% for IM mixtures, 13.9% in MK mixtures, 10.8% in clay ternary 

mixtures and 8.8% for MC mixtures. These results were better than those obtained by [12] using 

a geometrical analysis for montmorillonite–illite–kaolinite mixtures (RMSE 15.5%). For more 

complex mixtures, the performance gave an RMSE of around 8% using a regression tree for 

smectite–kaolinite–muscovite–calcite–quartz mixtures [26] and an RMSE of around 3.4% using 

a multivariate analysis for smectite–illlite–kaolinite–carbonate–quartz mixtures [29]. 

6. Conclusions 

A comparative study was carried out in order to assess the performance of combining unmixing 

methods (two linear and two non-linear methods, FCLS and MESMA, GBM and MLM, 

respectively), with and without the use of six spectral preprocessings (SNV, CR, CWT, Hapke, 1st 

SGD and Log(1/R)), for the estimation of montmorillonite abundance. The objective of this work was 

to analyze the sources of non-linearities as a function of the mixture type (aeral versus intimate), the 

number of minerals (binary and ternary) and their nature (clay, calcite and quartz).  

The major results included the following: (i) spectral preprocessing SNV, CR, CWT and 1st SGD 

reduced the spectral intrasample variability, (ii) the benefit of the spectral preprocessings CWT and 

1st SGD occurred when spectral absorption features of minerals overlapped, whereas the reflectance 

spectra without spectral preprocessing performed the best when no overlap occurred, (iii) SNV 

carried non-linear effects, which led to biases for montmorillonite estimation and the use of Log(1/R) 

and Hapke sometimes led to non robust results, (iv) unmixing on mixtures with quartz achieved the 

worst performance with RMSE higher than 50%, (v) linear and non-linear unmixing methods had 

similar performance and so the use of FCLS, the simplest method, might be recommended and (vi) 

the most robust couple of spectral preprocessing and unmixing method was 1st SGD and FCLS for 

the clay binary mixtures and reflectance and FCLS for the mixtures with calcite, with RMSE ranging 

between 8.8% and 13.9%. For soil swell–shrinking application, our results with ternary and binary 

clay and clay–calcite mixtures gave an RMSE less than 15%, the use of unmixing methods could be of 

interest in order to improve the classification of expansive soils. 
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This study was only carried out with mineral mixtures manually generated in laboratory 

conditions, in order to study non-linear interactions due to mineralogy alone. However, these 

mixtures did not represent real soil composition, mainly because they did not include the presence 

of soil organic matter and water content and because of the homogeneous mineral content (little 

variability in a mixture, with a controlled grain size). Thus, future work will be to carry out the same 

comparative study applied on real soils with very high resolution hyperspectral imaging in order to 

take into account the impact of soil composition like mineralogy and, water content and organic 

matter content [7,29], as well as environmental factors like soil surface roughness [64] and shadow 

effects [64–67] and the presence of either sparse green or dry vegetation with soil within a pixel 

[49,68–70]. As quartz and carbonates minerals possess distinct features in long wave infrared (LWIR, 

7.5–14 µm) [56,71], we propose in a further perspective to use the combination of SWIR and LWIR 

spectral domains in order to improve clay estimation in soil. 
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