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Abstract—Real world complex networks may contain hidden
structures called communities or groups. They are composed of
nodes being tightly connected within those groups and weakly
connected between them. Detecting communities has numerous
applications in different sciences such as biology, social network
analysis, economics and computer science. Since there is no
universally accepted definition of community, it is a complicated
task to distinguish community detection algorithms as each of
them use a different approach, resulting in different outcomes.
Thus large number of articles are devoted to investigating
community detection algorithms, implementation on both real
world and artificial data sets and development of evaluation
measures.

In this article several state of the art algorithms and evaluation
measures are studied which are used in clustering and community
detection literature. The main focus of this article is to survey
recent work and evaluate community detection algorithms using
stochastic block model.

Keywords— Network Science, Community Detection, Stochas-
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I. INTRODUCTION

In recent years network science gained more attention with

the advent of modern computational machines enabling to

challenge more complex problems and rapid increase in the

amount of data.

Real world networks are usually represented as undirected,

directed or weighted graphs, composed of nodes and edges,

where edges serve as connections between the nodes. While

random graphs imply an homogeneous degree distribution, that

is to say the probability of having an edge between every two

nodes is the same, real world networks have inhomogeneous

structure resulting in groupings of nodes being tightly con-

nected to each other and weakly connected with nodes from

other groups.

This property of real world complex networks is known to

be a community structure, where communities or clusters are

defined as groups of nodes having higher intra-connectivity

(inside the groups) and weak inter-connectivity (between

groups) [1]. The aim of community detection is to identify the

groups with high concentrations using the information encoded

in the graph topology.

Revealing communities in networks proved to have count-

less applications in protein-to-protein interactions from biol-

ogy, social network analysis, recommendation systems from

on-line product purchasing, machine learning problems or

adaptive systems [2] etc. [3].

Although there is no universally accepted definition of com-

munity, various structural definitions and scoring functions

exist [4] to quantitatively assess how community-like are the

groups of nodes (e.g. conductance, triangle participation ratio,

modularity) that we will describe later. Modern networks may

have up to millions or billions of nodes and edges which

obscures the process of community detection due to computa-

tional issues, however there are well designed algorithms with

low complexity [1], [5] to overcome these obstacles and give

promising outcomes.

The results of the algorithms differ from network to network

and it is mandatory to test and compare them on many net-

works to make acceptable conclusions. However the number

of large real world networks is limited and benchmark models

such as Lancichinetti Fortunato Radicchi (LFR) benchmark [6]

or the Stochastic Block Model (SBM) [7] generating networks

with community structure resembling real world networks are

used to overcome the limitations.

Large number of articles are devoted to comparing community

detection algorithms using LFR benchmark [5], [6] so we

will only use SBM for our investigation. After a community

detection algorithm is implemented and graph is partitioned

into communities, another research problem is to analyze how

”good” or ”bad” are the detected communities.

This can be done by comparing the estimated commu-

nity structure with reference structure or ground truth using

external measures or by assessing the quality of detected

communities internally. The aim of this paper is to provide

the reader with an overview of the methods that have been

developed for community detection.

The paper is organized as follows: In Section 2 we describe

the benchmark models, community detection algorithms and

evaluation measures and show some experimental results in

Section 3. Section 4 concludes this paper.



II. COMMUNITY DETECTION ALGORITHMS AND

EVALUATION MEASURES

Various community detection algorithms have been devel-

oped which differ in terms of complexity and network types

they target (e.g. undirected, directed, weighted, etc.). The

process of community detection is rather simple in terms of

sequential processes being implemented which are network

selection, implementation of an algorithm and evaluation of

the final results.

A. Real World vs Simulated Network

In recent years with the rapid increase of data collection

various large networks became available. However even large

networks are available, the number of networks with pre-

known community structure or ground truth is limited. This

limitation is overpassed by generating unlimited networks

similar to real networks using the LFR benchmark and the

SBM.

LFR benchmark generates networks with pre- known com-

munity structure where degree and community size distribu-

tions are heterogeneous and power-law. Mixing parameter μ
is used to control the fraction of nodes a node shares inside

and outside the community [6].

SBM is a generative model for random graphs, generating

networks with community structure with predefined number

of vertices, community sizes and probability matrix of intra

and inter community edges [7]. These two approaches can be

used to generate unlimited benchmark models resembling real

world networks to implement and compare the algorithms and

evaluate the results.

B. Algorithms

Solving community detection problems on modern real

world networks can sometimes be much complicated due

to computational complexity as networks may have large

numbers of nodes and edges where exact detection can be

NP-hard problem. Even nowadays distinguishing between al-

gorithms and characterizing which algorithm works best on

particular network is a hard task. In such cases heuristics or

approximation algorithms are used to approximately optimize

some objective function to detect almost ”real” communities.

Despite these barriers, plenty of successful algorithms exist

in the literature, including those that were initially developed

for cluster analysis. These algorithms are mainly classified

into the following categories: modularity-based algorithms,

spectral algorithms, algorithms based on random walks, label

propagation and information-theoretical measures [1] that we

develop in the next sub-sections.

a) Algorithms Based on Modularity Optimization: Mod-

ularity and other community scoring functions are character-

izing how community-like are the groups of nodes in the

network. Algorithms based on modularity optimization such

as Newman’s greedy algorithm [8] and its updated version by

Clauset et. al (Fast Greedy) [9] join vertices which result in

highest increase in modularity. After iterative process when

modularity cannot be maximized any more, the network is

partitioned into communities. Another popular modularity

optimization method is Louvain algorithm which initially finds

small communities by optimizing modularity locally and then

aggregating nodes belonging to the same community and

creating a network whose nodes represent the communities.

This process is iterated until maximum modularity is reached

and a hierarchy of communities are produced [10].

b) Algorithm based on eigenvectors of modularity ma-
trix: This algorithm by Newman (Leading Eigenvector) [11]

uses eigenspectrum of modularity matrix. Initially this algo-

rithm initially creates the modularity matrix and finds eigen-

vector of the largest eigenvalue. Finally it labels nodes in

corresponding communities knowing the sign of the elements

in the eigenvector.

c) Random Walks: In general communities in networks

have more intra connectivity then inter connectivity. Thus

it is expected to have more edges inside those groups than

between them. When implementing a short random walk, the

probability that both the starting and ending points will be

in the same group rather than in different groups, is higher.

Algorithms based on random walks like Walktrap [12] use this

idea to detect communities in networks.

d) Infomap: Infomap is an information theoretic method

used to reveal community structure in the networks. At the

beginning every node is assigned to its own community. Then

nodes are moved to neighboring communities that results in

the largest decrease of the map equation. After an iterative

process when no move results in decrease of the map equation,

network splits into communities [13].

e) Label Propagation: Unlike other community detection

algorithms, label propagation does not optimize any given

objective function and it does not require to have a priori

information about the network structure. Initially every node

has its own label and during an iterative process nodes gain

the label which is frequent in their neighborhood. When every

node has the label that the maximum number of its neighbors

have, algorithm stops, resulting in densely connected groups.

Among discussed algorithms label propagation is preferred

due to its near linear time complexity [14].

C. Comparative Evaluation of Algorithms

After a community detection algorithm is implemented and

the network is partitioned into communities, it is of paramount

importance to interpret the results i.e. to know which algorithm

performed well and detected meaningful communities.

Algorithms can be compared by their performance which

is the time taken to partition the network and by qualitatively

assessing how ”good” are the derived communities.

Measures used to assess the quality of detected communities

are divided into two main categories:

• Internal: Evaluating communities internally by using

community scoring functions.

• External: Comparison of communities derived by the

algorithm with reference structure or ground truth.



a) Internal Measures:
Internal measures are used to quantitatively assess how

community-like is the given set of nodes in the network. As

the global definition of community is based on the idea that

it has high connectivity within a group and weak connectivity

with other groups, scoring functions are based on this intuition.

Here we will point out conductance, triangle participation ratio

and modularity with the reason that conductance and trian-

gle participation ratio give optimal results when identifying

ground truth communities [4] and modularity which is the

most widespread evaluation criteria used in the literature.

Conductance
Conductance is the fraction of total edges that goes outside

the community and is defined as:

Conductance =
Oc

2Ic +Oc

where Oc and Ic are the number of edges pointing outside

from community c and the number of edges in c respectively.

Using conductance as a community goodness metric

Leskovec et.al showed that best possible communities get less

community like when they grow in size [15]. In their other

study while experimenting on 230 large real world networks,

conductance and triangle participation ratio gave best results

in identifying ground truth communities [4].

Triangle participation ratio
Triangle participation ratio is the fraction of nodes that belong

to a triangle and is defined as:

TriangleParticipationRatio =
Tc

Nc

where Tc is the number of vertices that form a triangle in c
and Nc is the number of nodes in c.

Modularity
Modularity is the difference of fraction of the edges that

fall within communities and expected number of edges in a

random graph

Modularity =
1

2M

∑

xy

(Axy − dxdy
2M

)δ(cx, cy).

Experiments on both real and artificial networks show that

modularity suffers from resolution limit merging small groups

in case of low resolution and splitting large groups in case

of high resolution i.e. missing important structures in the

network [16] and often it is not possible to eliminate both

biases simultaneously.

b) External Measures:
Normalized Mutual Information
Mutual Information (MI) is an information-theoretic measure

that quantifies the mutual dependence between two random

variables. In other terms MI measures how much information

can be obtained about one random variable through another.

Normalized Mutual Information (NMI) between two random

variables X and Y is defined as the ratio of mutual information

I(X,Y ) and the average of entropies of X and Y

NMI(X,Y ) =
2I(X,Y )

H(X) +H(Y )
,

where H(X) and H(Y ) are the entropies of random variables

X and Y respectively.

Considering X and Y as two different partitions,

NMI(X,Y ) shows the similarity of the two partitions.

Adjusted Rand Index
Adjusted Rand Index is a similarity measure of two different

partitions of a network like NMI. Given a set of n elements

S = (d1, d2, ..., dn) and two partitions of S, X and Y
respectively, where X and Y partition S into different subsets.

Adjusted rand index is defined as:

AdjustedRandIndex =
SS +DD

SS + SD +DS +DD

where

SS is the number of pairs of elements in S that are in the

same subset in X and in the same subset in Y .

DD is the number of pairs of elements in S that are in different

subsets in X and in different subsets in Y .

SD is the number of pairs of elements in S that are in the

same subset in X and in different subsets in Y .

DS is the number of pairs of elements in S that are in different

subsets in X and in the same subset in Y .

Purity
Purity is also used to compare two partitions.

Consider X = (x1, x2, ..., xp) and Y = (y1, y2, ..., yq) to be

two random variables representing different partitions of the

network, where xp and yq are parts of these partitions.

Denote Nxp
and Nyq

number of nodes in xp and yq parts

respectively, Nxp,yq
number of nodes in xp∩yq and N number

of nodes in the network.

The purity of partition X related to partition Y is defined as

Purity(X,Y ) =
1

N

∑

p

max
q

Nxp,yq
.

According to Orman and Labatut, these three common eval-

uation measures ignore the network topology [17]. Based on

this idea Labatut introduced modified versions, which enabled

to include the topological importance of the nodes. The idea

is based on assigning a weight to each node by combination

of the degree and community embeddedness.

Tests on artificial networks assume that modified NMI was

able to assess the correspondence with reference structure in

terms of community memberships and topological properties

[18]. Another novel approach was proposed by Rossetti et.

al and Zhang. Rossetti et. al used community precision and

community recall, where community precision quantifies the

level of label homophily between community and ground truth

while community recall quantifies the correspondence between

a community and ground truth. Unlike NMI, this method

works fast in large networks [19].



Zhang proposed a relative normalized mutual information
(rNMI) measure which considers statistical significance of

NMI by comparing it with expected NMI of random partitions.

Zhang claims that regular NMI is affected by errors when the

network size is finite and rNMI overcomes this barrier [20].

In this paper we use modularity to assess the quality of

detected communities by algorithms. We will also measure

effectiveness considering the processing time of the algorithms

in various configurations.

III. RESULTS

We used SBM to generate networks with community struc-

ture, where number of vertices, community sizes and edge

probabilities in communities and between communities are

known a priori. In our experiments, generated networks have

200 nodes and they are grouped into five equally sized com-

munities. We compared six algorithms using modularity score

for different Pout ∈ [0, 1] and Pin = 1 values, where Pout

and Pin represent probability of edge between communities

and in communities respectively.

Observing more than 300 random models and averaging

the results we noticed that Louvain and leading eigenvector

algorithms give best results identifying communities which

have high modularity score compared with other methods (Fig.

1.)

Fig. 1. Probability of edge between communities (Pout) vs Modularity for
N = 200 nodes and Pin = 1.

Infomap and Label propagation reach to zero modularity

sooner i.e. being unable to find ”good” communities when

Pout increases (Fig. 1.).

In the next stage of our experiments we compared these

algorithms based on the time of detection, using Pout and the

number of vertices in the network N .

Results displayed in (Fig. 2.) and (Fig. 3.) show that

Louvain and label propagation algorithms remain relatively

Fig. 2. Probability of edge between communities (Pout) vs Modularity for
N = 200 nodes and Pin = 1.

Fig. 3. Probability of edge between communities (Pout) vs Modularity for
N = 200 nodes and Pin = 1.

fast compared with infomap, fast greedy and walktrap, when

the number of vertices in the network and probability of edge

between communities increase.

IV. CONCLUSION AND FUTURE WORK

In this paper we surveyed six state of the art community

detection algorithms.

Stochastic block model was used to generate random net-

works to compare the algorithms based on modularity score,

detection time and network size.



In future we plan to include real world networks with

ground truth communities, use more internal and external

evaluation measures to assess both the quality of detected

communities and correspondence with ground truth as well

as more algorithms.
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