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Abstract—In this paper, we present a generalized polyphase
representation for Continuous Phase Modulation (CPM) signals
suited to the detection over frequency-selective channels. We first
develop two different equalizers based on this representation and
relate them to the State of Art. We also derive a Least Squares
(LS) channel estimation and an improved LS estimation using a
priori on the channel. Simulation results show the equivalence
between existing equalizers and also show that our channel
estimation leads only to a small degradation in term of Bit Error
Rate (BER) in the case of an aeronautical communication over
a satellite link.

I. INTRODUCTION

CPM signals are commonly known for their good spectral

efficiency and for their constant envelope, a useful feature for

embedded amplifiers enabling robustness to non-linearities.

They are considered for a wide range of applications as

military communication, aeronautical communication by

satellite or Machine to Machine applications.

To our knowledge, only a few works consider channel

equalization for CPM. The optimal technique consists

in a Maximum A Priori Detection (MAP) for joint

channel equalization and detection with complexity scaling

exponentially with both channel and CPM signal memories,

yielding to a prohibitive complexity.

Hence, most proposed solutions consider the separation of

channel equalization and CPM detection. Several papers have

investigated CPM equalization based on the Minimum Mean-

Squared Error (MMSE) criterion. First, [1] presents different

fractionally spaced MMSE-based equalizers, such as linear

block MMSE, a Block-Decision Feedback Equalizer and

the corresponding turbo-equalizer. All proposed equalization

schemes were derived in the frequency domain capitalizing on

the Laurent decomposition. More recently, [2] also develops

a slightly different block MMSE-based equalizer structure

in the frequency domain using the Laurent decomposition.

The main differences will be emphasized in the following.

A completely different approach has been proposed by [3].

It chose to work on the over-sampled received signal and

presents different filter-based equalizers both in the time

and frequency-domain using an MMSE criterion, applying

the turbo principle based on soft linear filtering as proposed

by Tuchler [4]. [5] presents two different symbol-based

equalizers based on a orthogonal representation of the signal

or based on the received signal filtered by the matched

filters of Laurent decomposition. [6] uses equalizer based on

Basis-function. It seems that two orthogonal basis functions

are sufficient to represent the signal and perform frequency-

domain MMSE equalization like the one in [5] as it considers

an orthogonal representation of the signal.

Generally, all those works have been done under the hypothesis

of perfect channel knowledge and perfect carrier recovery.

Only [2] presents simulation results with channel estimation

errors and [6], [7] perform a frequency-domain channel

estimation with interpolation (using B-spline functions). To

our knowledge, several works deals with channel estimation

for CPM. [8] performs frequency-domain channel estimation

with superimposed pilots. [9] has developed a joint channel

estimation and carrier recovery for M -ary CPM schemes over

frequency-selective channels.

In this paper, we develop a generalized polyphase model

for circular block-based CPM signals. Based on this general

representation, which mainly consists in the generalization

of the models used in [2] and [1], we then derive the

different equalizer structures used in the literature, showing

their equivalence up to a linear transformation in some cases

or emphasizing their difference when operating at different

sampling rate. Then, LS channel estimation will be derived

for the proposed model for both parametric and non-parametric

channel model.

The paper is organized as follows. In section II, we derive
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∗TéSA/IRIT/University of Toulouse

romain.chayot@tesa.prd.fr

†ENSEEIHT/IRIT/University of Toulouse
firstname.name@enseeiht.fr

‡Thales Alenia Space
nicolas.van-wambeke@thalesaleniaspace.com

§Centre National d’ ́Etudes Spatiales

guy.lesthievent@cnes.fr



our polyphase representation for any oversampling factor.

Then, in section III, block MMSE equalizers are derived for

several models of the existing literature and their similitude,

differences and limits are pointed out. In section IV, we will

present a LS channel estimation based on this polyphase model

with or without a parametric channel model. We will provide

some simulation results with an emphasis on the aeronautical

channel via a satellite link in section V. Finally, conclusions

are drawn in section VI.

II. POLYPHASE REPRESENTATION OF CIRCULAR

BLOCK-BASED CPM

We consider a block of N coded symbols taken in the M -

ary alphabet denoted {αn}0≤n≤N−1 ∈ {±1,±3, . . . ,±M −
1}N . The equivalent baseband complex envelope sb(t) of the

transmitted CPM signal is:

sb(t) =

√
2Es

Ts

exp (jθ(t,α)) (1)

where θ(t,α) = πh
N−1∑

i=0

αiq(t− iTs) (2)

and q(t) =

{∫ t

0
g(τ)dτ, t ≤ Lcpm

1/2, t > Lcpm

(3)

Es is the symbol energy, Ts is the symbol duration, θ(t,α) is

the information phase, g(t) is the frequency pulse, h = k/p is

the modulation index with k and p relative prime number and

Lcpm is the CPM memory. For channel equalization and CPM

signal detection, we will consider the Laurent decomposition

presented in [10] for binary CPM signals. This decomposition

has been then extended in [11] for M -ary CPM signals.

Without loss of generality and for ease of presentation, we

only consider binary CPMs in this paper, but results can be

extented to the non binary case. This decomposition allows

us to describe the CPM signal as a sum of P linear Pulse

Amplitude Modulation (PAM) {lp(t)} (also called Laurent

Pulses LP) with complex pseudo-symbols bp,n:

s(t) =

P−1∑

p=0

NT−1∑

n=0

bp,nlp(t− nTs) (4)

It will be useful to derive a model that allows frequency

domain equalization, enabling significant gain in complexity

at the receiver. To perform frequency domain equalization, we

first need to circularize the channel, as for linear modulation,

enabling the efficient use of FFT operators at the receiver. To

do so, we can use several methods such as a Cyclic Prefix

(CP) or a known Unique Word (UW) (also called Training

Sequence). We suppose the use of UW despite its loss of

spectral efficiency compared to CP. This is mainly motivated

by the fact that UW can be used to perform parameters

estimation as carrier and phase frequency, channel estimation...

[12]. It seems important to recall that, due to the CPM

memory, some termination symbols must be added at the end

of the data block in order to ensure the phase continuity and

the uniqueness of the UW. Furthermore, the length of a UW

must be larger than the time dispersion of the channel to avoid

interference between CPM blocks (as for linear modulations).

In order to differentiate a matrix and a vector, a vector will

be represented by an underlined letter (v) and a matrix by a

doubly underlined letter (m). We note F
N

the Fourier matrix

of size N ×N which corresponds to a FFT of size N . F
N,M

is a block diagonal matrix of size MN×MN with each block

is F
N

. The matrix I
N

is the identity matrix of size N ×N .

We define a circulant matrix as:

[ẋ](n,m) = [x](
mod(n−m+1,N),1

) (5)

The polyphase components of a signal are noted as, for a

sampling rate of kRs where Rs is the symbol rate:

xi
m = x(mTs +

i

k
Ts) = x[km+ i] (6)

We consider a transmission over a frequency-selective channel

with impulse response hc =
∑L−1

l=0 alδ(t − τl) where L
is the number of paths, τl and al are the delay and the

complex attenuation of the lth path. Contrary to [5], there is

no hypothesis on the delays τl.
Our received signal goes trough a low-pass filter Ψ(t) (as-

sumed here as ideal). Denoting h(t) = (Ψ∗hc)(t), the received

signal can be written as:

r(t) = h ∗ s(t) + w(t) (7)

=
∑

m

s[m]h
(
t−m

Ts

k

)
+ w(t) (8)

Sampling at rate kRs, ie. at t = (kn + i)Ts

k
with i ∈

{0, 1, . . . , k − 1}, the sampled signal rin=̇r[kn+ i] reads as:

rin =
∑

m

s[m]h[kn+ i−m] + w[kn+ i] (9)

Hence, the polyphase component i can be written as:

rin =
i−1∑

j=0

∑

m

sjmhi−j
n−m +

∑

m

simh0
nm

+
k−1∑

j=i+1

∑

m

sjmhk+i−j
n−m−1 + wi

n (10)

We now define the following vectors and matrices:

[lip](n,m) = lp

(
(n−m)Ts +

i

k
Ts

)
(11)

[hi](n,m) = h
(
(n−m)Ts +

i

k
Ts

)
(12)

[h]i
′

(n,m) = h
(
(n−m− 1)Ts +

i

k
Ts

)
(13)



h=̇




ḣ
0

ḣ
(k−1)′

. . . ḣ
1′

ḣ
1

ḣ
0 . . .

...
...

. . .
. . . ḣ

(k−1)′

ḣ
k−1

. . . ḣ
1

ḣ
0




(14)

et l=̇




l̇
0

0
l̇
0

1
. . . l̇

0

P−1

l̇
1

0
l̇
1

1
. . . l̇

1

P−1
...

...
...

...

l̇
k−1

0
l̇
k−1

1
. . . l̇

k−1

P−1




(15)

We can remark that h is block Toeplitz matrix and each

block is a circulant matrix. Similarly, the blocks of the matrix

l are also circulant matrices. We now obtain a matrix-wise

representation of the received signal:

r = hlb+w (16)

In the specific case where k = 2, we obtain the same model as

[2]. In the Frequency-Domain, we have the following matrix-

wise representation:

R = F
N,k

r = HLB +W (17)

= F
N,k

hF
H

N,k︸ ︷︷ ︸
=̇H

F
N,k

lF
H

N,P︸ ︷︷ ︸
=̇L

F
N,P

b

︸ ︷︷ ︸
=̇B

+F
N,k

w

︸ ︷︷ ︸
=̇W

(18)

Note that by FFT property, the blocks of H and L are

diagonal.

III. CPM EQUALIZATION IN THE FREQUENCY DOMAIN

The optimal approach consists in performing jointly the

channel equalization and the detection of the transmitted

sequence. However, due to the non-linearity of CPMs, the

complexity of this approach is prohibitive. A conventional

choice is to perform separately the channel equalization and

the CPM detection. We derive here equalizers that are based

on the MMSE criterion. After equalization, we will use the

MAP detector developed by [13].

A. Channel MMSE Equalizer

This first approach consist in considering only the channel

contribution given by H . Hence, by defining S = LB,

R
SS

= LR
BB
L

H and K = HR
SS
H

H +N0I2N
, the MMSE

equalizer is given by:

G
MMSE

= R
SS
H

H
K
−1 (19)

We can note the correlation matrix R
BB

of the pseudo-symbols

vector B and the correlation matrix R
SS

of the vector S can

be precomputed using [10]. This can be extended to the M -ary

case. Then the equalized signal is

Ŝ = G
MMSE

R (20)

We can note that this equalizer extend the one in [2], which as

been developed for a sampling rate of 2Rs. After equalization,

Ŝ is filtered by the oversampled matched filters of the Laurent

components, this operation is equivalent to multiply Ŝ by L
H .

B. Channel and Laurent Pulse MMSE Equalizer

In [1], by analyzing the general polyphase representation, it

turns out that the derived structure perform joint equalization

of both the channel (given by H) and the Laurent pulses

(given by L): each filter linked to the PAM representation is

jointly considered with the channel. This equalizer has been

only developed for sampling rate of 2Rs. Here, we propose to

extend this equalizer to a sampling rate of kRs (k is an integer)

in order to study it in the same condition as the previous

one. Hence, using the generalized polyphase representation,

denoting P = HL, the equalizer is given by:

D
LE

= R
BB
P

H [PR
BB
P

H +N0I2N
]−1 (21)

Hence, the equalized pseudo-symbols are B̂ = D
LE

R. The

main disadvantage of this equalizer is the used of a non-

conventional detector. Indeed, the equalized pseudo-symbols

B̂ cannot be used in a conventional trellis-based MAP detector

as [13] and we have to use the modified detector introduced

by [1] and based on [14]. By analogy with the previous

equalizer, we can derive a quite simple yet efficient method

to compensate for this disadvantage: we can reconstruct the

emitted signal using the equalized pseudo-symbols S̃ = LB̂.

Indeed, we can remark that

S̃ = LB̂ = Ŝ (22)

as G
MMSE

= LD
LE

(23)

Hence, by reconstructing the signal, we show that both

equalizers are finally strictly equivalent when used with a

conventional detector if proper processing is done on the

equalized pseudo-symbols.

C. Tan and Stüber’s MMSE Equalizer

In [5], the authors propose a symbol rate equalizer based

on the received signal which has been filtered by the matched

filters of the LPs. Hence, in this case, the signal to equalize

using the generalized polyphase representation can be written

as:

rf = l
H
r = l

H
hlb+ l

H
w

︸︷︷︸
=̇w̃

(24)

In the frequency domain, we have:

Rf = L
H
HLB + W̃ (25)

In their hypothesis, the authors consider that all the channel

paths have a delay which is multiple of Ts. Hence, all the

polyphase component but the first one are equals to 0 and

so the matrix H is diagonal H = diag(H0). For ease of

presentation and without loss of generality, let us take the

case where k = 2 (we sample the received signal at 2Rs).

The output [Rf]k of the kth filter is:

[Rf]k =
P−1∑

j=0

(
L

0H

k
(L0H

j
H

0 +L
1

j
H

1′)

+L
1H

k
(L0

j
H

1 +L
1

j
H

0)
)
Bj (26)



With the hypothesis on the delays of the frequency-selective

channel, we obtain h
1 = h

1′ = 0. Hence, our system can be

written as:

[Rf]k =
P−1∑

j=0

(
L

0H

k
L

0

j
H

0 +L
1H

k
L

1

j
H

0
)
Bj (27)

= H
0
P−1∑

j=0

(
L

0H

k
L

0

j
+L

1H

k
L

1

j

)
Bj (28)

and so R = diag(H0)LH
LB + W̃ (29)

We obtain the same system as in [5]. The equalizer consists

in fact in P parallel diagonal equalizer. The kith coefficient

of the pith equalizer is:

Wk,p =
H[k]∗

|H[k]|2 +N0C(p, p; k)
(30)

The function C(p, p; k) is the inter-correlation function of the

pseudo-symbols. We can remark that this model does not hold

when a delay is fractional of Ts as the interference of the

second polyphase component of the channel are not taken into

account. This is a major drawback of this solution.

IV. CHANNEL ESTIMATION

Several papers consider channel estimation. As we have

presented some equalizers under an unified and generalized

polyphase model, we will use this model to develop some

polyphase channel estimators. In order to perform such esti-

mation, we consider a known sequence of J symbols at the

receiver. Hence, we can define a slightly different matrix-wise

representation of the received signal:

h=̇
[
h
0T

h
1T . . . h

k−1T
]T

(31)

and s=̇




ṡ
0

ṡ
(k−1)′ . . . ṡ

1′

ṡ
1

ṡ
0 . . .

...
...

. . .
. . . ṡ

(k−1)′

ṡ
k−1 . . . ṡ

1
ṡ
0




(32)

where the matrix s is of size kJ × kJ and the vector h is the

channel vector of length kJ to estimate. Thus, our received

signal is:

r = sh+w (33)

As we work with block-based CPM, we can notice that in the

case where our channel impulse channel has a length larger

than the size of our UW, the model does not work (we have

inter-block interference). Hence, the maximum length of our

estimated channel can be chosen equal to the size of the UW.

The size of the block-matrix can so be reduced to N × LUW.

One can also choose a different estimated channel length Lh

as long as Lh < J . In this paper, we choose Lh = LUW.

A. Least Squares Estimation

A standard approach to estimate the propagation channel in

the case of linear modulations is to perform a LS estimation.

As the noise in our system model is a white Gaussian noise,

the LS estimate of the channel h is known as:

ĥLS = (sHs)−1
s
H
r (34)

The main difference between this estimation and the classical

one for linear modulations is the sampling rate which has to

be superior to 2Rs. The LS operator needs a matrix inversion

where the square matrix to inverse is of size kLh × kLh.

However, it can be pre-computed at the receiver side and so the

operator will only consist in a matrix multiplication between

a matrix of size kLh × kJ and a vector of size kJ .

B. Parametric Least Squares Estimation

We can improve our approach by performing jointly the

estimation of the attenuations and the delays of the different

path. Such method has been already considered for linear

modulations in [15] by using a Parametric Model and is called

Structured LS estimation. In this paper, we will follow the

same approach to improve the previous LS channel estimation.

We define the vector τ = [τ0, . . . , τL−1] which contains the

delay of the different paths and a = [a0, . . . , aL−1]
H the

complex attenuations. For 0 ≤ l ≤ L − 1, we define the

following vector of size N :

[Ψi(τl)]n = Ψ(nTs + i
Ts

k
− τl) (35)

In this case, in order to introduce a parametric dependence on

the delays, we can introduce the matrix P (τ ) of size kN ×L
such as:

P (τ ) =




Ψ
0(τ0)

H
. . . Ψ

0(τL−1)
H

Ψ
1(τ0)

H
. . . Ψ

1(τL−1)
H

...
...

...

Ψ
k−1(τ0)

H
. . . Ψ

k−1(τL−1)
H




(36)

and so h = P (τ )a (37)

Now, by defining s
P
=̇sP , our system using this parametric

model can be written as

r = sh+w (38)

= s
P
a+w (39)

In the case of linear modulations, some papers already deal

with the estimation of the delays. Some may estimate τ

using a ML estimation or a sphere detection [16]–[18]. This

problem will not be addressed here and therefore the delays

are assumed known at the receiver.

For the aeronautical channel via a satellite link, this vector can

be assumed known at the receiver by geometrical consideration

given by GPS positioning. Indeed, we can compute the delays

with a great accuracy using geometrical consideration as



shown in [15]. Hence, our parametric LS channel estimation

can be reduced to:

â = (sH
P
s
P
)−1

s
H

P
r (40)

and ĥ = Pa (41)

Using this parametric LS operator, we need to inverse the

square matrix s
H

P
s
P

of size L × L. The complexity of this

operator is low compared to the LS estimation presented in

the previous section for any sparse channel such as L ≤ kLh.

Indeed, we will only estimate a vector of L values instead of

a vector of size kLh. The gain of such method will increase

with the sampling factor k. However, we will need to compute

this operator as soon as the vector τ changes significantly. In

the case of a aeronautical sparse channel where L = 2, we

only inverse a square matrix of size 2× 2.

V. RESULTS

For simulations, we choose two binary CPM schemes with a

raised-cosine pulse shape (noted RC), a memory of Lcpm = 3
and a modulation index h ∈ {14 ,

1
2}. The block of received

signal (with termination and Unique Word included) has a

length of 512 symbols and the UW has a length of 16 symbols.

We will consider only a transmission over the aeronautical

channel via a satellite link. This frequency-selective channel

can be modelled with two paths. The received signal is sam-

pled at 2Rs. In a first subsection, we will show the equivalence

between the different equalizers presented in section 3. Then,

we will present some results with channel estimation.

A. Equivalence and difference between equalizers

We present in Fig 1 the uncoded BER obtained by sim-

ulation for a generic frequency-selective channel . We use

the channel (chan 1) proposed in [5]. However, instead of

considering delays which are multiples of Ts, we consider the

same Power Delay Profile with delays multiples of Ts/2. No

difference can be seen for the channel and joint channel and

LPs equalizers as shown theoretically for both CPM schemes

as theoretically proved in this paper. In order to be as much

complete as possible, we have also implemented the joint

channel and LPs equalizer under the system model of [1] and

there is no difference of performance. We can see that the Tan

and Stüber’s equalizer exhibits a floor as it does not take into

account all the interference between signal components due to

the frequency-selective channel.

B. Results with channel estimation

In this part, we will consider the 3-RC with hcpm = 1
2

CPM signals for the uncoded case. In Fig 2, we show the

Mean Square Error (MSE) for channel estimation for different

size of training sequence and also with or without a priori

information on the second path delay. With no surprise, we

can see that the use of a priori information outperforms

the classical Least Square estimation. Also, we remark that

we obtain performance similar to [7] for the classical Least

Squares estimate. When we double the number of symbols in

the training sequence, we obtain a gain of almost 6dB which

Fig. 1. Uncoded BER over general ISI channel

Fig. 2. Channel estimation MSE over the aeronautical channel

seems obvious as for the same numbers of path attenuation to

be estimated, we have four times more observations. However,

with the structured LS, the gain is only of 3 dB. Fig 3 shows

the Bit Error Rate for the channel equalizer with channel

estimation. We can see that with the structured Least Squares

estimation, our receiver shows a degradation less than 0.5dB.

Furthermore, the performance with a classical Least Squares

estimation on 64 symbols presents a degradation of 2dB for a

BER of 10−3. Finally, Fig 4 shows some results with turbo-

detection for the 3-RC CPM with h = 1/4. Prior to the

CPM modulator, the information bits are encoded using a rate

one-half convolutional code with octal representations (5, 7)8



Fig. 3. Uncoded BER over the aeronautical channel with channel estimation

leading to codewords of size 1170. Random interleaving is

applied between the channel encoder and the CPM modulator.

We then divide these codewords into 5 subframes for which

we add a termination and a UW of 16 symbols and of total

size 256. We also consider three cases for channel estimation:

perfect knowledge, structured LS estimation with 32 or 64
symbols. At a BER of 10−3, the channel estimation over 64

Fig. 4. BER over aeronautical channel with channel estimation and turbo-
detection

symbols introduces a degradation of 0.75dB. However, with

a channel estimation over 32 symbols, the error introduces is

more important (degradation of around 1.5dB at a BER of

10−2).

VI. CONCLUSION

In this paper, we have presented a generalized polyphase

representation of CPM signals. It allowed us to rederive dif-

ferent equalizers of the literature to point out their equivalence

and differences. We also used this representation to develop a

new Least Squares Channel Estimation which can be enhanced

when parametric estimation is possible as in the case of the

aeronautical channel over a satellite link. Future works will

deal with carrier-recovery for transmission over frequency-

selective channels and non-linear equalization schemes.
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