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The identification of alignments between heterogeneous ontologies is one of the main research issues in the semantic web. The manual matching of the ontologies is a complex, time consuming and an error prone task. Therefore, ontology matching systems aims to automate this process. Usually, these systems perform the matching process by combining element and structural level matchers. Selecting the optimal string similarity measure associated with its threshold is an important issue in order to enhance the effectiveness of the element level matcher, which in turn will improve the whole ontology system results. In this paper, we present POMap, an ontology matching system based on a syntactic study covering element and structural levels. For the element level matcher we have adopted the best configuration based on the analysis of the performances of many string similarity measures associated with their thresholds. For the structural level, we have performed a syntactic study on both subclasses and siblings in order to infer the structural similarity. Our proposed matching system is validated and evaluated on the Anatomy, the Conference and the Large Biomedical tracks provided by the benchmark of OAEI 2016 ontology matching campaign.

INTRODUCTION

To ensure the interoperability between different platforms, ontologies has been used as the essence of the semantic web. An ontology can model a particular domain as well as the relationships between its entities in order to allow data to be shared, reused, integrated and queried by different stakeholders. Ontology matching is the process of finding a set of mappings between the entities of two or more ontologies representing a similar domain [START_REF] Shvaiko | Ontology matching: state of the art and future challenges[END_REF]. Therefore, the ontology matching community has been proposing a variety of strategies in order to automate the ontology matching process.The ontology matching process takes as an input two ontologies, which contain a set of entities. Usually the mappings between two entities is evaluated by a score of similarity ∈ [0,1]. This score defines the degree of confidence of a mapping relationship. This confidence value is configured automatically by the matching system. A matcher is an algorithm that processes two ontologies and returns the set of mappings between them along with a similarity value. Usually, a matching system combines several distinct matchers depending on the input ontologies characteristics. This combination aims to improve the final align-ment effectiveness. A single matcher is not sufficient to achieve a high-quality alignments results. Matchers are classified into two main levels: element level matchers and structure level matchers [START_REF] Shvaiko | Ontology matching: state of the art and future challenges[END_REF]. Each level can rely on different techniques and methodologies such as syntactic, semantic and structural based matching.

In this paper, we address the problematic of ontology matching while focusing on the syntactic characteristics of both element level and structural level. As a first step, we focus on finding the optimal similarity measure and threshold in order to perform the element level matching process. The two target ontologies are matched using the element matcher while exploring all the names of an ontology class, such as labels, local name and synonyms. We performed a series of tests in order to define the optimal similarity measure and threshold. Since we are adopting a sequential composition, the output of element level matcher is the input of the structural based matcher. Dealing with the structural matching, Almost the existing research works focus on the propagation of the syntactic similarity score in order to derive new structural mappings. However, this propagation do not take into consideration the syntactic characteristics of the target entities. Therefore, we propose two struc-DOI: 10.5220/0006492201610168 tural matchers, guided by the syntactic treatments on the subclasses and the sibling entities without measuring any structural similarity score. Each structural matcher focuses on a part of the ontology hierarchy in order to obtain a new set of alignments. These matchers take profit of the hierarchical relationships of an ontology siblings and subclasses exploiting by a syntactic treatments of common words.

The remainder of this paper is organized as follows: Section 2 discusses the existing ontology matching systems. Section 3 presents the POMap ontology system including the element and structural level matchers. Section 4 evaluates and discusses the obtained results. Conclusion and suggestions for future work are shown in section 5.

RELATED WORKS

Matching Levels. Usually, a matching system employs different matchers which in turn follow distinct matching techniques [START_REF] Otero-Cerdeira | Ontology matching: A literature review[END_REF] [START_REF] Megdiche | An extensible linear approach for holistic ontology matching[END_REF].

The element level matchers determine the mappings between two entities without taking into consideration the existing relationships between these entities. The state of the art element level matchers are mostly relying on string based techniques, which compute the similarity between two entities through syntactic similarity measures. Language-based techniques can also be employed by the element level matchers. These techniques rely on natural language processing (NLP) such as the stop words removal and lemmatisation in order to derive meaningful terms. Constraint based techniques can be also employed in order to analyse the internal structure of an entity like the domain, range as well as the cardinality of the attributes.

Structure level matchers can use external knowledge while taking profit of the relationships between the entities (classes, instances and properties). Researchers have been employing several techniques such as graph-based and instance based. The graph based techniques compute structural similarities between neighbouring entities based on their position in the ontology. Following this intuition, Similarity Flooding (SF) [START_REF] Melnik | Similarity flooding: A versatile graph matching algorithm and its application to schema matching[END_REF] is a well-known structural matcher inspired by the idea of structural similarity propagation. This technique propagates the structural similarity score among the ontology candidate mappings. In another research work, [START_REF] Cruz | Structural alignment methods with applications to geospatial ontologies[END_REF] proposed two structural matchers: Descendants Similarity Inheritance (DSI) and Siblings Similarity Contribution (SSC). For a given set of ini-tial mappings discovered by an element level matcher, the main idea of DSI and SSC is to refine the initial element level mappings with weighted scores according to the descendants and the siblings. DSI slightly outperform the Similarity Flooding method. However, even after applying these structural matchers, the value of F-measure still not good enough in terms of effectiveness. We argue that this inefficiency is caused by the bad quality of the initial alignments resulted our first matcher. In this research work, differentiated from the state of the art, we do not measure any structural similarity score. Therefore, we are guided by the initial similarity score in order to derive new structural mappings while taking the relationships between the entities as a discriminating feature. These initial mappings are the input of the structural level matcher in order to deduce a new set of mappings. Ontology Matching Systems. We review some of the top relevant and mature matching systems, which had a significant success during the last years of the OAEI campaign. Our results will be compared with these matching systems on section 4.

Agreement Maker Light (AML) [START_REF] Faria | The agreementmakerlight ontology matching system[END_REF] is an automated large-scale ontology matching system focusing on the biomedical ontologies matching. AML translates the entities of the input ontologies into the same language. Then, AML employs several matchers such as a lexical matcher, an external background knowledge matcher, a structural matcher and an instance matcher. AML follows a sequential composition. The first matcher implemented by AML is the Lexicon Matcher, which searches for exact matching between the entities names of the two input ontologies. AML employs also a mediating matcher, which take profit of some external knowledge sources in order to enrich the input ontologies by new textual content. In the OAEI 2016 compaign, AML used the following external knowledge resources: Uber Anatomy Ontology (Uberon) [START_REF] Mungall | Uberon, an integrative multispecies anatomy ontology[END_REF], the Human Disease Ontology (DOID) [START_REF] Schriml | Disease ontology: a backbone for disease semantic integration[END_REF], the Medical Subject Headings (MeSH) [START_REF] Nelson | Relationships in medical subject headings (mesh)[END_REF] and Wordnet [START_REF] Miller | Wordnet: a lexical database for english[END_REF]. AML derives its structural matcher from the DSI algorithm.

LogMap (Jiménez-Ruiz and Grau, 2011) is an ontology matching system focusing on both the element level and the structural level matching of large biomedical ontologies. The architecture of LogMap is divided into two main stages: the computation of candidate mappings and their assessment. In the first stage, LogMap extracts a set of initial candidate mappings using a lexical comparison method. These candidate mappings are extracted from the inverted index of each input ontology. An inverted index contains the labels and the URIs of each ontology. In the second stage, LogMap tries to remove the set of incorrect candidate mappings by applying lexical, structural and reasoning techniques.

XMap [START_REF] Djeddi | A novel approach using context-based measure matching large scale ontologies[END_REF] deals especially with the problem of scalability. XMap follows a sequential composition of three layers: terminological Layer, structural layer and alignment layer. In the terminological layer, XMap employs a translation matcher in case of multilingual ontologies. Also, XMap uses a string matcher, which computes the similarity between the textual descriptions of two entities by applying some semantic measures. Xmap employs two background knowledge sources wordnet [START_REF] Miller | Wordnet: a lexical database for english[END_REF] and UMLS [START_REF] Bodenreider | The unified medical language system (umls): integrating biomedical terminology[END_REF]). During the structural layer, XMap computes the similarity between two entities by taking into account the internal structure of a concept. Finally, in the alignment Layer, the set similarity scores resulted by the string matcher, the linguistic matcher and the structural-based matcher are aggregated using mathematical methods.

CroMatcher [START_REF] Gulić | Cromatcher: An ontology matching system based on automated weighted aggregation and iterative final alignment[END_REF] is an ontology machting system concentrating on the aggregation of different matchers using a weighted factor. Cro-Matcher divides its matchers into two main sets: string based and structure based. The string based matchers determines the mappings between two entities relying on several techniques such as syntactic similarity measure, instance matching and property matching. CroMatcher performs the structural matching using four distinct matchers: Super Entity matcher, sub entity matcher, domain matcher and range matcher. The matching system aggregates the results of the string matchers and the structural matchers by automatically giving a weight for each single matcher. The two obtained matrices of the string based matcher and structural based matcher are also combined using an automated weighting factor in order to obtain the final set of alignments.

THE POMAP ONTOLOGY MATCHING SYSTEM

POMap Matching System Overview

The workflow of POMap is depicted in Figure 1. This workflow contains several steps beginning by the OWL ontologies loading until the RDF output alignment evaluation. The architecture of POMap contains three main components: The ontology loading, the ontology matching and the output alignment evalua-tion. We will describe in the following sub-sections the set of activities performed by each component.

Figure 1: The architecture of POMap.

Ontology Loading Component

We parse a given set of two input ontologies using OWL API in order to populate our lexical and structural data structure. The lexical data structure is a multimap that contains the triplet: a set of classes, their names as well as the type of each names. A name has one of these types: URIs, labels or synonym properties. In terms of the structural data structure, we store all the relationships between classes. A pre-processing techniques are mandatory to acquire a cleaner data-set. Since several similarity measures take into consideration the letter case as a parameter influencing the similarity score, we set in lowercase all the input ontology names. Next, we discard all stopwords as well as the non-alphanumeric characters. We also replace every underscore to a space character. Finally, we perform an English stemming process as the one proposed by Porter [START_REF] Porter | Snowball: A language for stemming algorithms[END_REF].

Element Level Matcher

In order to discover mappings, ontology matching systems employ one or more similarity measures without any reference to the defined thresholds. Therefore, we tested the different similarity measures in order to define the optimal measure and threshold after performing the pre-processing steps. After the pre-processing steps, the input ontologies are quite ready to be processed by our element level matcher. This matcher is responsible for computing the similarity score between all the class names of the first and the second ontology. To perform that, we follow an all-against-all strategy, which stands for measuring the similarity score between all the the possible combinations of the entities of the two ontologies. Then, we choose the maximum similarity score for every pair of resulted candidate mappings. We argue that comparing all the names of the two input ontologies is more efficient than comparing only the labels. For instance, our element level matcher achieved an F-Measure of 0.830 using only the labels on the anatomy OAEI dataset. However, using all the names associated with the Anatomy entities, we succeeded to accomplish an F-Measure of 0.862. Therefore, we are able to better capture the syntactic mappings between two ontologies and achieve better results. We employed similarity measures in order to compare pairwise names. The efficiency of a syntactic matcher is determined by the trade-off between its resulted F-measure value and its runtime. For example, a non-efficient syntactic matcher can produce a high F-measure in a very long time. The variety of syntactic similarity measures arises the difficulty of choosing the optimal one associated with its threshold. The optimal choice of the similarity measure and threshold will immediately improve the alignment results especially in terms of F-measure. Some researchers [START_REF] Duan | One size does not fit all: Customizing ontology alignment using user feedback[END_REF]) [START_REF] Cheatham | String similarity metrics for ontology alignment[END_REF]) [START_REF] Ngo | Opening the black box of ontology matching[END_REF]) [START_REF] Sun | A comparative evaluation of string similarity metrics for ontology alignment[END_REF] analysed the performance of similarity measures while dealing with the ontology matching process. However, none of them analysed the performance of these measures after performing the pre-processing based on all the names of an ontology class. Moreover, almost of researchers did not included ISUB [START_REF] Stoilos | A string metric for ontology alignment[END_REF] in their comparison. Consequently, we will reveal the best similarity measure in terms of F-measure, threshold and runtime. In order to select the optimal F-Measure, we apply a trimming process using a different threshold value for each syntactic similarity measure. As shown in figure 2, for every experiment, the element level matcher has as an input a single measure associated with a threshold value. The output of the testing process are the set of evaluation criteria: the recall, the precision and the F-Measure. During our series of tests, we vary the threshold value from the range of 0.1 to 1 with an interval of 0.01. Then, we compute the F-measure for each threshold interval. The employed tracks in our testing process are: the Anatomy track and the Large Biomedical track. For the later, we evaluated the available similarity measures used by our element level matcher through the three small fragments: FMA-NCI , SNOMED-FMA and SNOMED-NCI. Figure 3 draws the variation of F-Measure while adopting different thresholds in the Anatomy track of OAEI. Figure 4, Figure 5, Figure 6 and Figure 7 show the value of the optimal F-measure and threshold obtained by each similarity measure for each OAEI track. The other tested state of the art syntactic similarity measures are available at: https://goo.gl/1kUgkH. On all the three tasks, ISUB with a threshold of 0.9 outperform the other similarity measures. We conclude that ISUB 0.9 is the best measure for ontologies syntactic matching associated with the pre-processing steps. To optimise the execution time we took profit of the multi core architecture of the processor. Therefore, we adopted an intra-matching parallelism methodology. Thus, the element level matcher is divided into the number of available CPU cores and executed in parallel. For a given two input ontologies, the algorithm of the element level matcher loops classes names of the source and target indexes and derives for each class index the set of corresponding names. These names are compared to each other using a syntactic similarity measure (ISUB). Only the pair of names having a threshold above the 0.9 are added to the set of mappings. Since we are pursuing an alignment multiplicity of 1:1, we followed the element level matcher by a cleaning process of the resulted candidate mappings. Therefore, we keep only the maximum similarity score that a single class can have. If two mappings have the same similarity score we select randomly one of them.

Structural Level Matching

For a given set of alignments, which are discovered by the element level matcher, we can enrich these mappings by a set of new ones by applying the structural matching. Our structural level matcher is composed of two structural sub-matchers: siblings and subclasses. During the first sub-matcher, we follow the intuition that states: if two classes are similar, then their siblings should be somehow similar [START_REF] Shvaiko | Ontology matching: state of the art and future challenges[END_REF]. In the second sub-matcher, we remove the common words between the super class and its subclasses. Moreover, this matcher admit the idea that: if two classes are similar, then their subclasses should be also similar. In that way, the structural matching improves the initial matching results of the element level matcher.

Structural Matcher based on Siblings

This structural matcher detects new mapping based on the siblings of the already discovered alignments by the element level matcher. These mappings have a similarity score between ISUB 0.9 and ISUB 0.8. We argue that if two entities are matching, then their siblings will probably match. Therefore, we decrease the threshold from 0.9 to 0.8. For a given ontology O and an entity e O , the j th sibling of an entity e is denoted as Sibj O e , where ∑ Sibj O e ∈ [0,m] and m is the k and e O l . Next, like the element level matcher, we pursue an alignment multiplicity of 1:1. The input of the sibling matching algorithm is the discovered mappings by the syntactic matcher as well as the two input ontologies. The output of this matcher is the new set of structural mappings, which are added to the initial mappings discovered by the element level matcher. Since we used a threshold of 0.8 ISUB for the structural matcher, we removed all the mappings, which are already discovered by the syntactic matcher.

Structural Matcher based on Subclasses

For the subclasses structural matcher, we are following the intuition that if two classes are similar, then their sub classes are similar [START_REF] Shvaiko | Ontology matching: state of the art and future challenges[END_REF]. Given an ontology O and an entity e of O, k and e O l , it will be complex to perform the mapping process between the descendant, especially when they have close similarity scores. Therefore, it is necessary to find some other discriminating features [START_REF] Shvaiko | Ontology matching: state of the art and future challenges[END_REF]. To illustrate, we consider an example of mapping resulted from the element level matcher: a i = ( e O k , e O l , s), with s > threshold and the name of e O k = e O l = "heart ventrice". For simplicity, as shown in the figure 8, each entity of this mapping has only two subclasses: As a result, we can match the descendants of e k O ( Sub1 O ek , Sub2 O ek ) and the descendants of e O l (Sub1 O el , Sub2 O el ) by computing the similarity score between them (all-against-all strategy). Since we are following a 1:1 multiplicity, then we keep only the maximum score for each class of the candidate structural mappings, which has a similarity score above the threshold (Monge Elkan 0.85). Unlike ISUB, Monge Elkan [START_REF] Monge | The field matching problem: Algorithms and applications[END_REF] is able to capture the mappings between two textual sequences, which are containing numerical values. Furthermore, Monge Elkan is not recommended for large matching tasks, as a result we are using it only for the structural matching process. The new discovered mappings are added to the list of initial alignments which are identified by the element level matcher. The mappings data structure contains the list of the already discovered mappings from the two input ontologies. We notice that we pursued a cleaning process of the discovered mappings by the structural matcher in order to discard the list of mappings already found by the element level matcher as well as structural matcher based on siblings.

• Sub1 O ek ,

EXPERIMENTS AND DISCUSSIONS 4.1 Experimental Setup

We developed the POMap system using JAVA and Eclipse as the integrated development environment. We choose to perform the experiment process analysis through two biomedical tracks of the OAEI benchmark as well as the conference track in order to show the efficiency of POMap in various matching tasks while dealing with OWL ontologies. We employed for our series of tests a hardware configuration of: 15Gb of RAM coupled with an Intel Core i5-4570 CPU @3.40 Ghz x 4. This configuration is similar to the one used by the OAEI benchmark. We compare the performance of POMap with the results of ontology matching system enrolled in the OAEI 2016 campaign obtained using the Anatomy, Conference as well as the LargeBio track.

Experimental Results

Anatomy. The anatomy track is a matching task between the Adult Mouse Anatomy (2744 classes) and the NCI Thesaurus (3304 classes) describing the human anatomy. In terms of F-Measure, POMap is ranked in the fourth position among 14 matching systems while producing a competitive runtime of 43 seconds. We achieved an F-Measure of 0.893 without using any external knowledge source unlike the other top performing matching systems (AML, LogMap and XMap). Table 1 illustrates the positioning of POMap (grey color) compared to the participated matching systems of OAEI 2016.

Conference. This track consists of matching seven ontologies describing the conference organisation domain. Dealing with the conference dataset, we succeeded to achieve an F-Measure of 64%, which is an average score compared to the other matching systems. Since this dataset includes the matching of 2 represents the obtained results for the FMA-NCI small fragment. We succeed to achieve an F-measure of 90%. Table 3 illustrates the results of POMap for the FMA-SNOMED small fragment in which we obtained an F-measure of 84% better than two matures matching systems. We draws in the table 4 the results of POMap in the SNOMED-NCI small fragment task in which we achieved an F-measure of 73%. All the resulted alignments by our system can be downloaded at https://goo.gl/gRYtQj. After performing the experimental process, we can notice that some matching systems (AML, LogMap, XMAP and Cromatcher) are performing better than POMap. We argue that these systems are outperforming POMap because of their implementation of a variety of matchers. However, POMap implements only three matchers: one syntactic matcher and two structural matchers. For instance, XMap employs different matchers such as a translation matcher and a semantic matcher, which uses external background knowledge sources. However, POMap do not perform any semantic matching process. Compared to the runtime of other matching systems, we mention that our element level matcher is the responsible of an exponential growth of the execution time. However, even with these drawbacks, we are able to accomplish acceptable results due to the efficiency of our syntactic matcher resulted by a study of the different similarity measures. Compared to the top perform- ing systems of OAEI 2016, which are proposing several matchers, POMap produces competitive results using efficient matchers without relying on any external knowledge resources. In order to have a better insight of the efficiency of the structural matching step, the following table 5 draws the results before and after performing the structural matching process. The grey color highlights the use of the structural matching.

CONCLUSION

In this paper, we described POMap a novel matching system dedicated for the ontologies matching process.

POMap is employing syntactic techniques in order to accomplish the element and structural level matching. After performing a series of experiments, we provided the top performing similarity measures and thresholds that can be employed by an element level matcher in the case of pre-processed ontologies. We have proposed two structural matchers, which perform the syntactic treatment over the siblings as well as the sub classes. These two structural matchers explore the initial mappings resulted by the element level matcher in order to improve the matching system results. As a future work, we plan to adapt our matching system in order to achieve a better run time over the larger datasets of the OAEI campaign. While dealing with other ontology matching fields rather than the biomedical domain, other syntactic similarity measure can outperform the ones that we recommended. Thus, we will concentrate on automating the process of finding the best similarity measure and threshold depending on the ontology matching context. Therefore, we target the prediction of the optimal similarity measure associated with its threshold by extracting various features related to an ontology matching task.
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 2 Figure 2: The input/output schema of the element level testing process.
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 3 Figure 3: The variation of F-Measure over the Anatomy track while adapting different similarity measure and thresholds.
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 4 Figure 4: Top F-Measure in Anatomy task.
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 5 Figure 5: Top F-Measure in FMA-NCI small fragment.
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 6 Figure 6: Top F-Measure in FMA-SNOMED small fragment.
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 7 Figure 7: Top F-Measure in SNOMED-NCI small fragment. number of siblings. We consider a single mapping resulted by the element level matcher as: a i = (e O k ,e O L ,s) with Sib1 O ek is the only sibling of e O l . If the similarity score between the two siblings is high (still below the syntactic threshold), then we consider that the two siblings will certainly match. However, if the two entities e O K and e O L have many siblings, then we should compare all the siblings of e O k with the siblings of e O l . Therefore, we perform an all-against-all comparison between all the siblings of e Ok and e O l . Next, like the element level matcher, we pursue an alignment multiplicity of 1:1. The input of the sibling matching algorithm is the discovered mappings by the syntactic matcher as well as the two input ontologies. The output of this matcher is the new set of structural mappings, which are added to the initial mappings discovered by the element level matcher. Since we used a threshold of 0.8 ISUB for the structural matcher, we removed all the mappings, which are already discovered by the syntactic matcher.

  Figure 8: Structural matching based on subclasses illustrating example.

  the j th descendant of e O is denoted as Subj O e , where ∑ Sub O e ∈ [0,n] and n is the number of descendants. To illustrate, if a single mapping is denoted as a i = ( e O

	k , el is k and Subj O ek is the descendent of e O L , s), Subj O e O the descendent of e O l . Therefore, Subj O el and Subj O ek are probably similar. However, if there are many sub-classes of e O

Table 1 :

 1 POMap results in the anatomy track compared to the OAEI 2016 systems.

	System AML CroMatcher XMap POMap LogMapBio FCAMAP LogMap LYAM Lilly LogMapLite LPHOM ALIN DkpAomLite DkpAom	F-Measure Precision Recall Runtime .943 .95 .936 47 .925 .949 .902 573 .896 .929 .865 45 .893 .931 .859 43 .892 .888 .896 11 .882 .932 .837 117 .88 .918 .846 24 .869 .863 .876 799 .83 .97 .794 272 .828 .962 .728 20 .718 .709 .727 1601 .501 .996 .335 306 .238 .99 .135 372 .238 .99 .135 379
	properties, we plan to add the data property and ob-ject property matchers in our next version of POMap. Large Biomedical Ontologies. The large Biomedical Ontologies track aim to find the alignments between three large ontologies: The Foundational Model of Anatomy (FMA), SNOMED Clinical Terms and the National Cancer Institute Thesaurus (NCI). Table

Table 2 :

 2 POMap results in the FMA-NCI small fragment compared to the OAEI 2016 matching systems .

	System XMAP FCA MAP AML LogMap LogMapBio POMap LogMapLite LYAM Lilly ALIN DkpAom-Lite DkpAom	F-Measure Precision Recall Runtime .937 .977 .901 17 .935 .954 .917 236 .931 .963 .902 35 .924 .949 .901 10 .923 .935 .910 1712 .900 .953 .852 241 .887 .967 .819 1 .796 .721 .889 1043 .657 .603 .721 699 .625 .995 .455 5811 .615 .652 .577 1698 .616 .652 .577 1547

Table 3 :

 3 POMap results in the FMA-SNOMED small fragment compared to the OAEI 2016 matching systems.

	System F-Measure Precision Recall Runtime XMAP .912 .989 .846 54 FCAMAP .865 .936 .803 1865 POMap .846 .928 .776 1223 AML .825 .953 .727 98 LogMapBio .801 .944 .696 1180 LOGMAP .799 .948 .690 60 LogMap .343 .968 .209 2

Table 4 :

 4 POMap results in the SNOMED-NCI small fragment compared to the OAEI 2016 matching systems .

	System AML LogMap LogMapBio POMap XMap LOGMAPLite	F-Measure Precision Recall Runtime .797 .904 .713 537 .771 .922 .663 117 .770 .896 .675 3757 .736 .813 .674 6920 .697 .911 .564 .697 .693 .892 .567 693

Table 5 :

 5 POMap results before and after (grey color) using the structural matching.

	Track Anatomy Anatomy FMA-NCI (small) FMA-NCI (small) FMA-SNOMED (small) FMA-SNOMED (small) SNOMED-NCI (small) SNOMED-NCI (small)	F-Measure Precision Recall .862 .942 .795 .893 .931 .859 .897 .957 .844 .900 .953 .852 .836 .940 .752 .836 .928 .776 .736 .832 .651 .736 .813 .674