

Innovative low-density blocks from amaranth pith for the thermal insulation of buildings

Philippe Evon, Guyonne de Langalerie, Laurent Labonne, Othmane Merah, Thierry Talou, Stéphane Ballas, Thierry Véronèse

► To cite this version:

Philippe Evon, Guyonne de Langalerie, Laurent Labonne, Othmane Merah, Thierry Talou, et al.. Innovative low-density blocks from amaranth pith for the thermal insulation of buildings. 15th International Conference on Renewable Resources & Biorefineries (RRB15), Jun 2019, Toulouse, France. pp.0, 2019. hal-02640870

HAL Id: hal-02640870 https://hal.science/hal-02640870

Submitted on 28 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/25895

To cite this version:

Evon, Philippe¹⁰ and de Langalerie, Guyonne and Labonne, Laurent¹⁰ and Merah, Othmane¹⁰ and Talou, Thierry¹⁰ and Ballas, Stéphane and Véronèse, Thierry *Innovative low-density blocks from amaranth pith for the thermal insulation of buildings.* (2019) In: 15th International Conference on Renewable Resources & Biorefineries (RRB15), 3 June 2019 - 5 June 2019 (Toulouse, France). (Unpublished).

Any correspondence concerning this service should be sent to the repository administrator: <u>tech-oatao@listes-diff.inp-toulouse.fr</u>

Innovative low-density blocks from amaranth pith for the thermal insulation of buildings <u>Philippe Evon</u>¹, G. de Langalerie^{1,2}, L. Labonne¹, O. Merah¹, T. Talou¹, S. Ballas², T. Véronèse² ¹ Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, ENSIACET, INRA, INPT, Toulouse, France ² Ovalie Innovation, Auch, France <u>Philippe.Evon@ensiacet.fr</u>

Amaranth is an annual herb native to temperate and tropical regions. Cultivated by Native Americans for the nutritional properties of its seeds, the latter are very digestible and also an interesting source of starch and proteins. For the future, amaranth appears as a promising raw material for the biorefinery of whole plants, all parts of the plant being potentially usable for different food and non-food applications.

This study especially aims to investigate the possible uses of pith from stems for material applications. For that, plants from the *Amaranthus cruentus* variety were cultivated in 2018 near Auch (Gers, France). Stems were manually harvested at plant maturity. Representing up to 90% w/w of the aerial part of amaranth plant, stems were then dried in a ventilated oven to facilitate their conservation. They are composed of a bark on their periphery and a pith fraction in their middle. The structure of stems was studied from ten samples, and the pith fraction was estimated manually to 27% w/w. Due to the difference in density between bark and pith fractions, a fractionation process associating grinding and blowing steps made possible the continuous separation between bark and pith.

As for sunflower and corn, amaranth pith particles have an alveolar (*i.e.* a microporous) structure similar to that of expanded polystyrene, and they reveal a very low bulk density (*e.g.* 48-52 kg/m³ for 4-16 mm particle size, and 58-61 kg/m³ for 1.25-2.50 mm particle size), making them a promising raw material for the thermal insulation of buildings. Cohesive and low-density insulation blocks were successfully obtained from amaranth pith, primarily mixed with a starch-based binder, through compression moulding at ambient temperature. Different operating conditions were tested, especially including (i) the size distribution of amaranth pith particles, (ii) the binder content, and (iii) the filling level of the mould. All produced samples were then characterized in terms of (i) density, (ii) bending and compression properties, and (iii) thermal insulation properties (measured through the hot wire method). All insulation blocks revealed low density, ranging from 90 to 140 kg/m³. Such innovative materials could be sustainable and viable options for the thermal insulation of buildings.

INNOVATIVE LOW-DENSITY BLOCKS FROM AMARANTH PITH FOR THE THERMAL INSULATION OF BUILDINGS Ph. Evon¹, G. de Langalerie^{1,2}, L. Labonne¹, O. Merah¹, T. Talou¹,

S. Ballas², T. Véronèse²

¹ Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, ENSIACET, INRA, INPT, Toulouse, France ² Ovalie Innovation, Auch, France

E-mail (corresponding author) : Philippe.Evon@ensiacet.fr (Ph. Evon)

Introduction

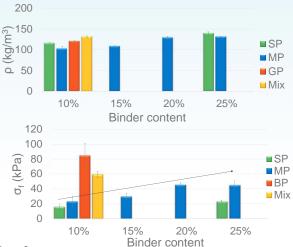
- Amaranthus cruentus, an annual herb from temperate and tropical regions.
- Seeds are cultivated by Native Americans for their nutritional properties.

Stems are composed of 2 parts : bark in periphery and pith in the middle.
 Alveolar structure of the pith similar to expanded polystyrene (EPS).

< 1 mm

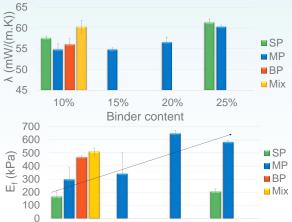
Aims of the study :

1 To optimize a fractionation process for the **separation of bark and pith.**


(2) To develop a process for producing thermal **insulation blocks from pith**.

A Separation of bark and pith from the amaranth stem by a grinding, sieving and blowing (for pith purification) process.

Results and discussion



Conclusion

- > Optimization of the separation process between bark and pith.
- ▶ Production of low density (102-142 kg/m³) pith blocks bounded by starch.
- Mechanical properties raise with particle size and binder ratio.
- Conversely, thermal insolation ability of blocks is reduced.

FNSIACE

Optimal block (MG10) : light and insulating while preserving good machinability and mechanical properties.

10% 15% 20% 25% Binder content

	ρ (kg/m³)	λ (mW/m.K)	σ _f (kPa)	E _f (kPa)
Amaranth pith	102.4 ± 5.9	54.8 ± 1.5	21.0 ± 6.7	299.0 ± 88.5
Sunflower pith [1]	32.0 ±1.92	35.3 ± 1.6	49.6 ± 6.0	422.0 ± 93.9
Corn pith [2]	75.4 ± 2.2	44.4 ± 0.5	29.1 ± 7.7	< 200
EPS	17.6 ± 0.4	28.0 ± 0.0	97.0 ± 4.3	2478.3 ± 82.2

 EPS
 17.6 \pm 0.4
 28.0 \pm 0.0
 97.0 \pm 4.3
 2478.3 \pm 82.2

 [1] M. Abdellahi, Contribution to the elaboration and characterization of a 100% bio-based thermal insulating panel, using sunflower pith for building applications. (2016)

 [2] A. Ben Rhouma, Development and characterization of bio-based composite materials for building industry with low environment impact and com stem based. (2017)