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Optimal Design of Piezoelectric Transformers:
A Rational Approach Based on an Analytical

Model and a Deterministic Global
Optimization

Francois Pigache, Frédéric Messine, and Bertrand Nogarede

Abstract—This paper deals with a deterministic and ra-
tional way to design piezoelectric transformers in radial
mode. The proposed approach is based on the study of
the inverse problem of design and on its reformulation
as a mixed constrained global optimization problem. The
methodology relies on the association of the analytical mod-
els for describing the corresponding optimization problem
and on an exact global optimization software, named IBBA
and developed by the second author to solve it. Numer-
ical experiments are presented and compared in order to
validate the proposed approach.

I. Introduction

Since the first demonstrator of piezoelectric transformer
made by Rosen in 1956 [1], the improvement of ce-

ramics properties and various available shapes have ex-
tended the applications of these devices. Its low bulk, 
high efficiency and power density, high degree of insula-
tion, and nonmagnetic properties fulfill the actual needs of 
the miniaturized devices. Tube photomultipliers supplies, 
backlight of LCD screens, cold cathode lamps, AC/DC 
or DC/DC converters, galvanic insulation for sensors, and 
gate drivers are some examples of the broad range of ap-
plications which need specific requirements.

The applications require different conditions of operat-
ing frequency, voltage ratio, acceptable temperature rise, 
etc. All of these properties are strongly dependent on the 
dimensioning, the shape, the mechanical, and the electri-
cal properties. For example, by considering only a radial 
mode transformer, the design parameters are the radius, 
the thickness, and the number of layers of primary and sec-
ondary sides. The ceramics available on the market offer 
many combinations of mechanical and electrical proper-
ties which influence the global stiffness, electromechanical 
coupling, and the dielectric and mechanical losses. More-
over, the performances of piezoelectric transformers are 
strongly affected by the supply voltage, the operating fre-
quency, and the load. Therefore, a precise dimensioning
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of the transformer must be chosen in accordance with the
expected conditions.

As a result, compromises must be done by the choice
of these different parameters in order to obtain the best
performances according to the main criteria. This problem
becomes quickly complex if some constraints are not fixed
empirically and, in particular, when a multi-objective opti-
mization is expected (minimal primary capacitance with a
maximal efficiency, compactness, etc.). Moreover, this op-
timization problem groups continuous and discrete vari-
ables, corresponding to the geometrical parameters and
the ceramic type.

This paper deals with a rational methodology to design
radial mode transformers, dimensioned for an electronic
ballast application. Our first wish is to stay free from ar-
bitrary constraints which are not directly imposed by the
schedule of conditions. Then, in addition to the constraints
of the application, technical limitations of manufacturers
will be taken into account in the design elaboration. The
results obtained are discussed and compared with another
design method deduced for the same type of applications
in order to emphasize the advantage of our rational ap-
proach.

Nowadays, the design of an electromechanical actuator
is understood and expressed as an inverse problem: From
the characteristic values fixed by a schedule of conditions,
obtain the structure, the composition, and the dimensions
of the actuator.

This inverse problem of design is formulated as a mixed
constrained global optimization problem:

⎧⎪⎪⎨
⎪⎪⎩

min
x∈Rnr ,z∈Nne,

σ∈
∏

nc

i=1
Ki,b∈Bnb

f(x, z, σ, b)

gi(x, z, σ, b) ≤ 0 ∀i ∈ {1, . . . , ng}
hj(x, z, σ, b) = 0 ∀j ∈ {1, . . . , nh},

(1)

where f is a real function, Ki represents an enumerated
set of categorical variables (the type of piezoceramic in the
present study), B = {0, 1} the boolean set, and N and R

the integer and real sets, respectively.
In [2], we solve exactly this problem by associating an-

alytical models of electrical machines with a deterministic
global optimization code, named IBBA for interval branch
and bound algorithm which has been developed by the
second author [3].



Fig. 1. Architecture and parameters of radial mode transformers.

In this paper, IBBA is used for solving the inverse prob-
lem of design of a radial mode transformer. In Section II,
the analytical model of a transformer is detailed. IBBA
is then recalled in Section III and applied to solve prob-
lems with categorical variables. Some numerical tests are
presented in Section IV in order to validate our approach.
These results are compared with those presented in [4].

II. Analytical Model

A. Radial Mode Transformer

All piezoelectric transformers (PT) are based on a dou-
ble electromechanical conversion using the direct and in-
verse effect properties of the piezoceramics. This dou-
ble electromechanical coupling comes from the mechanical
association of two piezoelectric elements which compose
the primary and secondary sectors. These lead-zirconate-
titanate (PZT) elements are able to work according to
three elementary coupling modes: longitudinal, transver-
sal, and shear.

The radial mode transformer is made from two ring-
shape ceramics polarized in the thickness direction, and
the mechanical stress is generated along the radius. This
transformer is classically used for high-power applications
(some ten watts) with relatively low voltage gain. The pro-
vided power density is approximately three times higher
than for a Rosen-type transformer with the same volume
[5]. The ratio between the number of primary and sec-
ondary layers is an easy way to choose the ideal voltage
gain N.

Fig. 1 shows the principle of electromechanical coupling
and the different geometrical variables; r the radius, and
t1 n1 and t2 n2, respectively, the thickness and the number
of primary and secondary layers. The optimal design prob-
lem relies on the interpretation of the PT by an electrical
equivalent circuit.

B. Analytical Model of the Transformer

The characterization and simulation of piezoelectric
transformers is currently based on the electrical equiva-
lent model describing the dielectric and mechanical reso-
nance behaviors. Around one vibratory mode, this equiv-
alent scheme can be illustrated by using passive compo-
nents and an ideal transformer; refer to Fig. 2. The input

Fig. 2. Electrical equivalent circuit around one vibratory mode.

TABLE I
Equations of Equivalent Circuit.

Primary capacitance Cd1 = r2.n1.π.εT
33

t1

[
1 − d2

31
(1−σ)εT

33.SE
11

]
Secondary capacitance Cd2 =

r2.n2.π.εT
33

t2

[
1 − d2

31
(1−σ)εT

33.SE
11

]
quivalent inductance Lm =

ρ.SE
11

2
.(1−σ)2.(n1t1+n2t2)
16.π(n1d31)2

Equivalent capacitance Cm = 32.r2(d31.n1)2

π.SE
11.(n1t1+n2t2)(1−σ)

Equivalent impedance Rm =

√
2ρ.SE

11
3
.(1−σ)3

32.Qm.d2
31

.
(n1t1+n2t2)

n2
1.r

Prim. coupling factor ψ1 = 2
√

2π.r.n1
d31

SE
11(1−σ)

Sec. coupling factor ψ2 = 2
√

2π.r.n2
d31

SE
11(1−σ)

Ideal voltage gain N = ψ1
ψ2

= n1
n2

voltage V 1 is a sine wave in the vicinity of the resonance
frequency in order to avoid the excitation of spurious vi-
bratory modes.

All of these equivalent parameters can be expressed
from the geometrical, electrical, and mechanical properties
of the PT, obtained by the derivation of a physics-based
equivalent model or the Hamiltonian approach. The study
developed by Lin in [5] is relatively complex and will not
be detailed in this paper. The main equations are recalled
in the Table I.

Considering only one vibratory mode, the relations in
Table I are relatively simple and they are based on some
main piezoelectric parameters, collected in Table II.

Another assumption is considered about the mechan-
ical quality factor. Indeed, the transformer is composed
of two ceramics, electrodes, and sometimes an insulating
layer which can decrease the global mechanical quality fac-

TABLE II
Properties of Piezoelectric Ceramics.

Definition Unit

εT
33 Relative Permittivity F.m−1

SE
11 Elastic compliance m2.N

d31 Piezoelectric coefficient C.m−2 or m.V −1

ρ Density of materials kg.m−3

σ Poisson’s coefficient

tan(φ) Dielectric losses

Qm Mechanical Quality factor



Fig. 3. Input impedance and phase as functions of the operating
frequency.

Fig. 4. Typical characteristics as functions of the operating frequency.

tor. In our study, gluing and assembling are considered to
be perfect, and the Qm values are obtained from data of
the manufacturers.

The simulations of the equivalent circuit provide typi-
cal curves and illustrate the electrical behavior of the PT.
First, the input impedance is essential to dimension the
supply of the PT. Fig. 3 illustrates the input impedance
and the phase of the classical PT. The frequency zone
bounded by the resonance and the antiresonance frequen-
cies corresponds to the zone of interest, as confirmed by
Fig. 4. These two specific frequencies are defined later.

The resistive load and the operating frequency are im-
portant variables which strongly affect the performances
such as the efficiency and the voltage gain. It can be
noticed that the voltage gain and the output power are

Fig. 5. Typical characteristics as functions of the resistive load.

strongly increased for a specific operating frequency. Con-
sequently, the choice of this operating frequency will be
a criterion of optimization. Another essential characteris-
tic is the variation of the output power and the efficiency
depending on the resistive load. This load affects the res-
onance properties of the PT. Indeed, the resonance fre-
quency is minimal when the secondary is short-circuited,
and is slightly increased with the resistive load. As a con-
sequence, the schemes on Fig. 5 are given as functions of
the resistive load and by following the resonance point.

The maximal efficiency is reached at the point where
the output power is minimal. For an optimal functioning
of the PT, the dimensioning must make it possible to fit
the optimal value with the rated resistive load.

This optimal efficiency point is characterized by the
electrical quality factor expressed as follows [4]:

qi ≈ Rload.Cd2.2π.f ≈ 1. (2)

The optimal efficiency is reached when the secondary
capacitance is dimensioned in accordance with the rated
load and frequency. In order to obtain the optimal elec-
tromechanical conversion, this frequency will be chosen
close to the resonance fequency. From this first definition,
other functions are deduced. The equivalent serial capaci-
tance:

Ceq =
Cd2.N

2.Cm(1 + q2
i )

q2
i .Cm + N2.Cd2(1 + q2

i )
. (3)

The resonance frequency:

fr =
1

2π
√

Lm.Ceq

. (4)

The antiresonance frequency:

fa =
1

2π
√

Lm( Cd1.Ceq

Cd1+Ceq
)
. (5)

The equivalent circuit on Fig. 2 is a useful approach for
simulations of electrical behavior under some acceptable



assumptions. However, the technical limitations specific to
the PZT ceramics are not taken into account in this linear
model. These limitations, itemized below, will be included
in the algorithm as constraints:

• Dielectric strength: limitation of the applied voltage,
• Coercive field strength: critical voltage of depolariza-

tion,
• Delamination: critical maximal stress,
• Temperature rise: depolarization at the Curie point.
If multilayer ceramics are used for the primary and the

secondary sectors, a maximal thickness must be considered
in order to avoid the delamination of the ceramics. Fur-
thermore, the diameter of the transformer must be greater
than the global thickness (D > 5T ) to support the radial
coupling mode. All of these technical limitations will be
considered as constraints in the optimization algorithm,
and the model is developed keeping in mind these condi-
tions.

The input and output powers (respectively, Pin and
Pout) are calculated for the selected rated load. From these
values, the global temperature rise is obtained by the fol-
lowing equation:

∆Θ = Pin
1 − η/100
hconvA

, (6)

where η is the efficiency at the rated functioning point,
hconv the convection factor of ceramic (≈ 15◦C.W−1.m−2),
and A the total area. This maximal temperature rise is
an essential constraint for the dimensioning, to avoid the
critical point of depolarization. Moreover, it depends on
the input power and consequently on the input voltage
(120 V in the present case).

C. Most Important Criteria to be Optimized

From the previous characteristics of electromechanical
behaviors, the main criteria are deduced. First of all, the
rated resistive load is deduced according to the expected
application.

1. Maximal Efficiency: The essential criterion for any
application is to obtain the maximal efficiency for the op-
timal resistive load Ropt. This condition means to fix the
electrical quality factor near to the unit value, correspond-
ing to (2). To reach this value, the operating frequency and
the secondary dielectric capacitance are the fitting vari-
ables. After fixing the electrical quality factor, the max-
imal efficiency must be as great as possible; this optimal
point is calculated as below:

ηmax =

RoptR
2
d2N

2Rd1(R2
mN4X2R2

eq + (Req + N2Rm)2)/

((((1+R2
eqX

2)(Ropt +Rd2)2R2
mN4 +Req(2N2Rm +Req)

(Ropt + Rd2)2)(R2
eq + (Rd1 + 2Rm)N2Req +

RmN4(Rm + Rd1)(1 + R2
eqX

2)))),

with Req =
RoptRd2

Ropt + Rd2
and X = Cd2.2π.fr.

(7)

Contrary to the analytical hand-optimization approach,
the computational method allows taking into account the
dielectric losses by (7).

2. Electromechanical Coupling Factor: This parameter
strongly influences the power density of the transformer,
according to the following proportionality,

Power
Volume

∝ k2
eff.ε.fr, (8)

with ε the permittivity and fr the resonance frequency.
Furthermore, it also determines the operating frequency
range where the performances are optimal correspond-
ingly to:

keff =

√
(f2

a − f2
r )

f2
a

. (9)

Hence, to obtain the best efficiency on a widest range of
frequency variation, this parameter must be maximized.

3. Primary Dielectric Capacitance: Depending on the
converter topology selected to supply the PT, the primary
capacitance is an important element of the optimal de-
sign. Indeed, this capacitance induces high reactive current
which implies the oversizing of the inverter components
(increasing of commutation losses). As a consequence, for
a magnetic-less topology, the dielectric capacitance must
be minimized. In the case of a resonant inverter, an induc-
tance correctly dimensioned with the primary dielectric
capacitance is used in order to operate at the resonance or
antiresonance frequency of the PT. For this structure, the
input electrical quality factor also implies the minimiza-
tion of the capacitance.

4. Volume: The volume can also be a criterion of opti-
mization in order to obtain a compact solution for onboard
devices. However, the dielectric losses and the internal fric-
tion of the PT induce a temperature rise which becomes
critical near the Curie point. So, the minimization of the
global volume must take into account the technical limit
of temperature directly linked to the dissipation area.

The expected optimal design of the transformer some-
times needs to consider simultaneously several criteria. In
this case, the optimization problem becomes quickly com-
plex and an analytical method is inefficient if strong sim-
plifications are not done.

III. The Exact Global Optimization Method:

IBBA

Different methods have already been used to solve the
design problem of piezoelectric transformers, such as an
analytical approach [5], [6] or evolutionary strategy-based
algorithms [7]. The analytical approach is applicable if
some preliminary variables are fixed (fixed operating fre-
quency, type of ceramic, etc.) and the model is also simpli-
fied. Consequently, the arbitrary choice of these constant



parameters limits the possible configurations that can sat-
isfy the performances, especially when the consideration 
of several optimal criteria is required.

In comparison, the algorithmic method detailed below 
permits keeping a wide set of variables and thus extracting 
the exact optimal result among a broad range of interme-
diate solutions that satisfy the constraints. This method is 
based on a deterministic approach that permits reaching 
the global solution for continuous problems. It relies on an-
alytical equations, and interval arithmetic and bound and 
branch techniques. In addition to the optimal dimension-
ing, this approach permits integration of discrete variables 
and, in our application, allows selection of the suitable 
piezoelectric material type among a broad range of ceram-
ics. In this way, the properties announced by manufactur-
ers are collected and tested together, and the best category 
is kept for the optimal solution. This advantage is impor-
tant compared to the simple analytical method because 
this last solution is generally developed for a particular 
ceramic and, moreover, by neglecting the dielectric losses. 
As a result, the maximal efficiency is optimized only by re-
ducing the mechanical losses. These losses and the induced 
temperature rise are particularly nonnegligible when mul-
tilayered ceramics are used.

A. Interval Branch and Bound Algorithm and Extensions

The exact global optimization algorithm used for this
work was already developed for other applications [2] [8]–
[10]. This algorithm is an extension of an interval branch 
and bound algorithm named IBBA; see [11]–[13]. It is 
based on interval analysis which permits computation of 
bounds for a continuous function over a box (i.e., an inter-
val vector). In [2], this method has been extended to deal 
with mixed variables: real, integer, categorical, or logical. 
The detailed algorithm IBBA is given in [2], [3], and is 
briefly recalled here, supplemented with some particular 
extensions dedicated to this application.
Algorithm IBBA.

1. Set X := the initial domain in which the global minimum
is sought,
X ⊆ Rnr × Nne ×

∏nc

i=1 Ki × Bnb.

2. Set f̃ := +∞.
3. Set L := (+∞, X).
4. Extract from L the box for which the lowest lower bound

has been computed.
5. Bisect the considered box chosen by its midpoint, yield-

ing V1, V2.
6. For j:=1 to 2 do

(a) Compute vj := lower bound of f over Vj.
(b) Compute the lower and upper bounds for the in-

teresting constraints over Vj; deduction steps using
the constraints permit to reduce Vj, [3], [14]

(c) if f̃ ≥ vj and no constraint is unsatisfied then

• insert (vj , Vj) in L.

• set f̃ := min(f̃ , f(m)), where m is the midpoint
of Vj, if and
only if m satisfies all the constraints.

• if f̃ is changed then remove from L all (z, Z)
where z > f̃ .

7. if f̃ < min(z,Z)∈L z + εf and the largest box in L is
smaller than ε, then STOP.
Else GoTo Step 4.

Because the algorithm stops when the global minimum
is sufficiently accurate less than εf , and also when all of
the sub-boxes Z are sufficiently small, all of the global so-
lutions are given by the minimizers belonging to the union
of the remaining sub-boxes in L, and the minimal value is
given by the current minimum f̃ . Generally, only f̃ and its
corresponding solution are considered.

The algorithm works by the four distinct following
phases, which are completely detailed in the following sub-
sections:

1. Bisection Rules: This phase is important because it
determines the efficient way to decompose the initial prob-
lem into smaller ones. In our implementation, all of the
components of a box are represented by real-interval vec-
tors. Thus, attention must be paid when the components
represent integer, boolean, or categorical variables.

The classical principle of bisection (in the continuous
case) is to choose a coordinate direction parallel to which
Z has an edge of maximal length. Then, Z is bisected nor-
mal to this direction [13]. In our applications (the design
of electromechanical devices), a lot of variables are nonho-
mogeneous, coming from different physical characteristics
(number of primary and secondary layers, for example).
Hence, the accuracy given by the designer, and represented
in the algorithm by the variable ε, must be a real vector
representing the desired precision for the solution at the
end of the algorithm; εk is fixed to 0, if it represents a dis-
crete (integer, boolean, or categorical) component. There-
fore, the bisection rule is modified considering continuous
or discrete variables (εk = 0).

Let us denote by ωX
i , ωZ

i , ωΣ
i , and ωB

i the given weights
for the real variables xi, the integer variables zi, the cat-
egorical variable σi, and the boolean variables bi, respec-
tively.

First, the following real values are computed:

Ω =
{

ωX
i × Xi

εi
, ωZ

i × (|Zi| − 1), ωΣ
i

× (|Σi| − 1), ωB
i × (|Bi| − 1)

}
,

(10)

where the application |.| denotes the cardinal (i.e., the
number of elements) of the considered discrete sets.

The kth variable, which will be bisected, corresponds to
the largest real value of the set Ω. Then, it is bisected as
follows:

1. Z1 := Z and Z2 := Z
2. if (εk = 0) then (for discrete variables)

(a) (Z1)k :=
[
zL
k ,

[
zL

k
+zU

k
2

]
I

]
(b) (Z2)k :=

[[
zL

k
+zU

k
2

]
I

+ 1, zU
k

]
3. else Zk is divided by its midpoint, this directly pro-

duces Z1 and Z2,

where Zk = [zL
k , zU

k ], respectively (Z1)k and (Z2)k, denotes
the kth components of Z, respectively of Z1 and Z2. [x]I
represents the integer part of the considered real value x.



Remark I: It is more efficient to emphasize the bisection
for discrete variables because this involves a lot of impor-
tant modifications of the so-considered optimization prob-
lem (1). In the following numerical examples, the weights
for the discrete variable are fixed to 100.

2. Computation of the Bounds: The computation of the
bounds is the fundamental part of the algorithm, because
all of the techniques of exclusion depend on it.

An inclusion function is an interval function such
that it encloses the range of a considered function over
a box Y . For a considered function f , a correspond-
ing inclusion function is denoted by F ; hence, one has
[miny∈Y f(y), maxy∈Y f(y)] ⊆ F (Y ), and also, that for all
Z ⊆ Y, F (Z) ⊆ F (Y ), [15].

In the case when continuous functions are considered,
interval arithmetic can be directly used to construct inter-
val inclusion functions; please refer to [3], [11], [13], [15]
for more details on this subject. In our problem (1), mixed
function has to be considered, and then, new kinds of inclu-
sion functions must be introduced. For a mixed function
coming from problem (1), these inclusion functions were
introduced in [2] and [8].

The following paragraphs recall the techniques used in
[2] to construct inclusion functions for mixed functions of
type (1), by using interval analysis, for example, [15].

Let I be the set of real compact intervals [a, b], where
a, b are real (or floating point) numbers. The arithmetic
operations for intervals are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[a, b] + [c, d] = [a + c, b + d],
[a, b] − [c, d] = [a − d, b − c],

[a, b] × [c, d] = [min{a × c, a × d, b × c, b × d}
max{a × c, a × d, b × c, b × d}],

[a, b] ÷ [c, d] = [a, b] ×
[
1
d
,
1
c

]
if 0 �∈ [c, d].

(11)

The above definitions (11) show that subtraction and di-
vision in I are not the reverse operations of addition and
multiplication. Unfortunately, the interval arithmetic does
not conserve all of the properties of the standard one. The
division by an interval containing zero is undefined, and
then, an extended interval arithmetic has been developed;
refer to [13].

A fundamental theorem of interval analysis is that the
natural extension of an expression of f into intervals, con-
sisting of replacing each occurrence of a variable by its
corresponding interval (which encloses it), and then by
applying the above rules of interval arithmetic, is an in-
clusion function; special procedures for bounding trigono-
metric and transcendental functions allow the extension of
this procedure to a great number of analytical functions.
The proof of inclusion is given in [13].

The bounds evaluated in such a way (by the natural
extension of an expression of f) are not always accurate
in the sense where the bounds can become too large, and
several other techniques are often used; refer to [3], [13],
[15] for a thorough survey and discussion on this subject.

For our considered design problems, the natural extension
into interval has been sufficient.

Interval arithmetic is only defined for continuous real
functions, and then, inclusion functions must be extended
to deal with discrete variables.

For boolean and integer variables, one must just re-
lax the fact that these variables are discrete: the discrete
boolean sets {0, 1} become the continuous interval com-
pact sets [0, 1], and the discrete integer sets {0, . . . , n},
{1, . . . , n}, or more generally {zL, zL + 1, zL + 2, . . . , zU}
are relaxed by the following compact intervals: [0, n], [1, n],
and [zL, zU ]. Hence, a new inclusion function concerning
mixed variables—boolean, integer, and real—can then be
constructed.

For categorical variables, intermediate real univariate
functions must be introduced, such as ai : Kk −→ R. In
our practical cases, these real functions depend on only one
categorical variable, but this could be easily generalized
and extended. Therefore, in an expression of a considered
function f , one has:

f(x, z, σ, b) =
· · · ∗i ai(σk) ∗j · · · ∗k aj(σm) ∗l · · · ∗m al(σk) . . . ,

where ∗i denotes an operation, for example, +, −, ×, ÷;
hence, f produces a real result.

In IBBA, all categorical variables σk are denoted by
an integer number beginning at 1 to |Kk|. Each of these
numbers corresponds to a category previously defined.

In this study, a loop is done on each possible value of
the categorical variables. Therefore a constrained global
optimization problem with only real and integer variables
is solved iteratively. Each time the best value for the ob-
jective function is kept.

Therefore, bounds are computed using directly the in-
terval arithmetic tools by relaxing the boolean and integer
sets as explained above.

Remark 2: There exist four other different approaches
for solving this type of problem (1), detailed in [16]. They
are not used in this first study of design.

Remark 3: This is the first time that IBBA has been
used for solving an electromechanical design problem with
a categorical variable which owns a lot of possible distinct
values.

3. Exclusion Principle: The techniques of exclusion are
based on the fact that it is proved that the global optimum
cannot occur in a box. This leads to two main possibilities
by considering a sub-box denoted by X, Z, σ, B (where σ
is iteratively fixed to a value):

1. The solution already found, denoted by f̃ cannot
be improved in this box: FL(X,Z, σ,B) > f̃ ; i.e.,
the lower bound of f over the sub-box X, Z, σ, B is
greater than a solution already found; no point in the
box can improve the current solution f̃ .

2. It can be proved that a constraint could never be sat-
isfied in the sub-box X, Z, σ, B : GL

k (X, Z, σ, B) > 0
or 0 �∈ Hk(X, Z, σ, B).



In the present case, the computation of the bounds is exact 
and sure; no numerical error can produce wrong lower or 
upper bounds. Thus, the associated global optimization 
algorithm is exact and the global optimum is then perfectly 
enclosed with a given accuracy.

4. Improving of Bounds for ηmax: The expression of
ηmax (7) contains a lot of occurrences of some identical 
variables. Hence, interval analysis generally produces in 
such a case interval results that are too wide and with-
out interest even if the considered box is quite small. An 
idea that is used here with efficiency is to construct an 
underestimation and an overestimation function of ηmax
such that these two new functions own expressions that 
reduce the number of occurrences of the variables. There-
fore the use of interval analysis over these new expressions 
produces sometimes better bounds than those performed 
using directly the expression of ηmax.

For ηmax we construct the two following estimation 
functions:

ηover =
100Ropt

RmN2(1 + q2
i ) + Ropt

, (12)

with qi as the electrical quality factor explained in (2).
Eq. (12) corresponds to the efficiency without considering
the dielectric losses. Therefore, the result of ηover will be
always over the ηmax.

The under estimation is formulated from an unaccept-
able value of electrical quality factor qi = 2,

ηunder =
100Ropt

RmN2(1 + 22) + Ropt
. (13)

This reduction of bound values is computed as follows:

if ηU
max > ηU

over then ηU
max := ηU

over
if ηL

max < ηL
under then ηL

max := ηL
under

This principle of reduction of bounds can be applied to all
other functions. This is the first time that IBBA is used
with these reduction methods, and numerical results are
obtained faster than without it. The formulation of the
optimization problem and the results are detailed in the
next section.

IV. Results of Optimal Designs

A. Formulation of the Optimization Problem

In order to formulate the design problem, the first step
is to declare the different variables which are real, integer,
and of category:

• continuous variables:

– the radius r,
– primary and secondary layers thickness t1 and t2,
– resistive load Rload,

TABLE III
Bounded Values of the Variables.

Variables Values

Radius r [4.5e−3; 30e−3]

Layer thickness t1 [20e−6; 2e−3]

Layer thickness t2 [20e−6; 2e−3]

Layer number n1 [1; 50]

Layer number n2 [1; 50]

Resistive load Rload [500; 500]

Ceramics type cat [1; 13]

TABLE IV

Functions Constraints Functions Constraints

Maximal Maximal
hmax < 15 mm hmax < D

5height height

Resonance Coupling
80k < fr < 120k 0.38 < keff < 1

frequency factor

Antiresonance Maximal
fr < fa ∆Θ < 200◦C

frequency heating

Ideal voltage Layers
3 < N < 6 t1 = t2gain thickness

• integer variables:

– number of primary and secondary layers n1 and
n2,

• variable of category (integer):

– type of ceramic.

These variables are bounded by minimal and maximal val-
ues, defined by the schedule of conditions and the technical
limitations. The most important functions are bounded,
too, in accordance with the specifications. In the frame of
electronic ballast and specifications considered by [4], the
values are presented in Table III.

The IBBA will be performed with a selection of 13 types
of piezoelectric ceramic. This selection is composed of soft
and hard ceramics produced by two manufacturers (Fer-
roperm Piezoceramics A/S, Kristgaard, Denmark); and
APC International, Ltd., Mackeyville, PA.

Added to these bounded values of the variables, a set of
constraints are also defined in Table IV in order to obtain
an efficient behavior of the transformer.

In comparison with the classical analytical method
which is deduced with an imposed resonance frequency,
we suggest here a range of convenient frequency fr in ac-
cordance with the specifications of the applications (zero
voltage switching conditions). This newly defined bounded
function allows the addition of one degree of freedom in
the optimal design problem. The electric quality factor qi

is bounded, too, and the values are chosen to satisfy an
optimal efficiency for the rated resistive load.

We also fix a maximal height of the transformer to avoid
the delamination. Moreover, this maximal height is con-



TABLE V
Results for Single-Criterion Design.

Max Min
Unit Max η keff Cd1 Reference

r mm 13.07 11.9 11.8 10.5
t1, t2 mm 0.615 1.116 0.558 1.5
n1 3 3 3 4
n2 1 1 1 1

Ceramic type PZ24 PZ26 PZ24 ACP-841

fr kHz 83.4 81.37 92.42 98.3
N 3 3 3 4

Rd1 kΩ 103.6 50.46 104.3 45.4
Rd2 kΩ 310.8 151.4 312.8 181.6
Cd1 nF 9.2 12.9 8.25 10.2
Cd2 nF 3.07 4.3 2.75 2.54
ηmax % 98.8 98.7 98.7 96.5
keff 0.4 0.448 0.4 0.4
qi 0.804 1.1 0.8 0.786

∆Θ ◦C 163 183 199 900

strained by a ratio with the diameter of the transformer
to promote the radial vibratory mode. The temperature
rise at the functioning point must be under 200◦C to avoid
the Curie point. This critical thermal point is considered
equal for each type of ceramic. Finally, the thickness lay-
ers of the primary and secondary sectors are equal for the
simplification of manufacturing and computations.

B. Single Criterion and Multicriteria Optimizations

This optimization is performed in the frame of elec-
tronic ballast application and the results are compared
with the design obtained analytically by [4]. The optimal
resistive load, bounded values of frequency, and voltage
gain are in accordance with the requirements presented in
Table IV. The design optimization performed in this pa-
per is about three essential criteria. First, the algorithm
method is applied to each single criterion, i.e., the maximal
efficiency, the maximal electromechanical coupling factor,
and the minimal input capacitance. Then, an optimal de-
sign is carried out in order to satisfy the best compromise
between these criteria. Table V groups the obtained re-
sults. These designs are in accordance with the imposed
constraints (optimal load, satisfactory voltage gain, etc.).

Several comments are noteworthy from the results of
single criterion optimizations:

• The optimization algorithm has given some slightly
more efficient results than those in [4], depending on
the chosen criterion.

• Since the secondary capacitance must be in accor-
dance with the rated load (500 Ω), it is noticeable
that stacked ceramics are more suitable than multi-
layer ceramics for this type of application.

• For each optimal design, the efficiency is excellent
and, therefore, it does not represent a sufficient cri-
terion of optimization. Consequently, a real upgrad-
ing of transformer concerns the other parameters such

as frequency, volume, dielectric capacitance, coupling
factor, or temperature.

• The expected voltage ratio requires few layers. This
implies very high dielectric impedances and good ef-
ficiency. Consequently, primary and secondary dielec-
tric impedances may be neglected in the present study
so as to simplify the expression of efficiency. This is not
an appropriate simplification in the case of an archi-
tecture with many layers.

• Among the ceramic types considered (13 types), only
hard ceramics present satisfying performances (PZ26,
PZ24, and ACP-841).

• Among the widest possible combinations among the
parameters of Table III, the dimensions are slightly
similar for the different optimized designs. This means
that the system of equations is strongly constrained. In
the present case, resonance frequency, electrical qual-
ity factor, and thermal limitations impose strong con-
straints on the dimensions.

• About the temperature rise, the maximal value is
strongly reduced for the optimal solutions compared
to the results of [4]. This value is obtained for the
rated resistive load at the resonance frequency. This
particular operating point will not be reached since
the voltage ratio is higher than expected at this point.
However, it underlines a destructive functioning point
that must be avoided.

• The compactness is almost similar to the reference so-
lution in [4]; however, the temperature rise is less. Fur-
thermore, the reduction of total thickness permits re-
ducing the risk of delamination.

The performances of each design are satisfactory regard-
ing efficiency, coupling factor, and capacitance. A multi-
criteria optimization is investigated in order to verify if
another design gives a better compromise.

The multi-objective optimization is obtained with the
formulation of a new function deduced from the single-
criterion results. This “weight factor method” permits con-
sidering differently the weight of the criteria.

multi(X) = − ηmax(X)
max(ηmax)

− keff(X)
max(keff)

+
Cd1(X)

min(Cd1)
,
(14)

where max(ηmax), max(keff), and min(Cd1) are the three
results obtained during the single-criterion optimization
(refer to Table V). The minimization of this function (14)
gives a compromise between the criteria, depending on the
weights attributed to each criterion. Consequently, sev-
eral optimal results can also be obtained. However, in this
study the dimensions obtained are closer regardless of the
criterion considered. So, the multi-objective optimization
does not bring an important upgrade of performances.

For this reason, the dimensioning obtained for the max-
imization of coupling factor keff is selected to illustrate the
results of the proposed method compared with the refer-
ence solution. Thus, the theoretical performances (accord-
ing to the electrical equivalent circuit) are shown in the
following figures and discussed.



Fig. 6. Efficiency as a function of the resistive load.

Fig. 7. Efficiency as a function of the operating frequency.

Fig. 6 shows that the optimal solution gives a maxi-
mal efficiency slightly better than the reference in [4]. This
maximal efficiency is obtained for an optimal Rload near
the rated value (500 Ω), thanks to the electrical quality
factor qi ≈ 1. The evolution of efficiency at constant resis-
tive load function of the operating frequency is illustrated
in Fig. 7. This shows again a greater maximal efficiency,
but reached at a lower frequency for the optimal PT. This
characteristic still depends on the schedule of conditions
and permits limiting the losses in an eventual upstream
inverter. Furthermore, the efficiency is high on a widest
range of frequency compared with the PT designed in [4].

Verification that the voltage gain for the rated load
value is superior to the expected minimal value is shown
in Figs. 8 and 9; this voltage gain can be reached by an
appropriate operating frequency.

From these results, we can conclude that better control
of performances is attained by the proposed algorithmic
approach. The association of technical constraints makes

Fig. 8. Voltage gain as a function of the resistive load.

Fig. 9. Voltage gain as a function of the operating frequency.

it possible to determine the best design, avoiding the ex-
pensive phase of prototype making. Obviously, the results
obtained by this approach depend on the accuracy of the
analytical model and on the reliability of the piezoelectric
characterization data.

As for all manufactured products obtained by sintering,
this conception of ceramics implies an inevitable tolerance
of the dimensions. This technical requirement can also be
considered in the algorithm design problem: indeed, an ep-
silon value can be added to each inaccurate variable. Thus,
the final result of the algorithm method will be an inter-
val solution for each criterion, depending on the maximal
bounded tolerances.

V. Conclusion

All piezoelectric transformers require a precise design
so as to obtain the optimal performances for specific ap-
plications. The considered resonant structures are strongly
affected by the operating frequency and the load. There-



fore, this paper deals with the use of IBBA in order to
solve the design of PT by the formulation of an inverse
problem.

Contrary to a classical analytical optimization which
takes into account a single criterion and generally requires
a preselected starting point, the present method gives an
exact solution (if it exists) for design problems. The IBBA
includes a wide set of constraints such as the schedule of
conditions, the technical limits, and the realistic properties
of the available materials. The variables defined by interval
offer more degrees of freedom to satisfy the optimal design
without arbitrary constraints.

A typical application of electronic ballast has been cho-
sen in order to illustrate the proposed design method.
First, simulations provided from the electrical equivalent
circuit have given an overview of the behavior and have
also underlined the most important criteria of an optimal
functioning. Then, the IBBA has been briefly detailed, in-
cluding the formulation of the optimal design problem sup-
plemented with some extensions. As a first conclusion, it
was noticed that global performances of the chosen test
transformer are quite satisfactory compared to the design
results of [4]. However, by adding a set of bound param-
eters in accordance with the conditions, the performances
can be significantly improved by a rational choice of both
material and dimensions. The present method has shown
good accuracy for the chosen step-up transformer appli-
cation, and it can be adequately applied for specific ap-
plications (low-voltage, high frequency, PT matrix, etc.)
and other architectures of PT. This study is concentrated
on a particular vibratory mode but can be extended to
several architectures of transformers for a broad whole of
applications. Moreover, a great additional advantage of the
proposed design algorithm lies in the possibility of taking
into account the technological aspect by defining a preci-
sion for each geometrical parameter.
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