
HAL Id: hal-02640799
https://hal.science/hal-02640799

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The power of arc consistency for CSPs defined by
partially-ordered forbidden patterns

Martin Cooper, Stanislav Živný

To cite this version:
Martin Cooper, Stanislav Živný. The power of arc consistency for CSPs defined by partially-ordered
forbidden patterns. Logical Methods in Computer Science, 2017, 13 (4:26), pp.1-32. �10.23638/LMCS-
13(4:26)2017�. �hal-02640799�

https://hal.science/hal-02640799
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an publisher’s version published in: http://oatao.univ-toulouse.fr/ 2 2121

To cite this version:

Cooper, Martin C. and Zivny, Stanislav The power of arc consistency for CSPs
defined by partially-ordered forbidden patterns. (2017) Logical Methods in
Computer Science, 13 (4:26). 1-32. ISSN 1860-5974.

Official URL:

https://doi.org/10.23638/LMCS-13(4:26)2017

Open Archive Toulouse Archive Ouverte

Logical Methods in Computer Science
Vol. 13(4:26)2017, pp. 1–32
https://lmcs.episciences.org/

Submitted May 31, 2016
Published Dec. 27, 2017

THE POWER OF ARC CONSISTENCY FOR CSPS DEFINED BY

PARTIALLY-ORDERED FORBIDDEN PATTERNS

MARTIN C. COOPER1 AND STANISLAV ŽIVNÝ2

1IRIT, University of Toulouse III, France
e-mail address: cooper@irit.fr

2Dept. of Computer Science, University of Oxford, UK
e-mail address: standa.zivny@cs.ox.ac.uk

Abstract. Characterising tractable fragments of the constraint satisfaction problem
(CSP) is an important challenge in theoretical computer science and artificial intelligence.
Forbidding patterns (generic sub-instances) provides a means of defining CSP fragments
which are neither exclusively language-based nor exclusively structure-based. It is known
that the class of binary CSP instances in which the broken-triangle pattern (BTP) does not
occur, a class which includes all tree-structured instances, are decided by arc consistency
(AC), a ubiquitous reduction operation in constraint solvers. We provide a characterisation
of simple partially-ordered forbidden patterns which have this AC-solvability property. It
turns out that BTP is just one of five such AC-solvable patterns. The four other patterns
allow us to exhibit new tractable classes.

1. Introduction

The constraint satisfaction problem (CSP) provides a common framework for many theoretical
problems in computer science as well as for many real-life applications. A CSP instance
consists of a number of variables, a domain, and constraints imposed on the variables with the
goal to determine whether the instance is satisfiable, that is, whether there is an assignment
of domain values to all the variables in such a way that all the constraints are satisfied.

The general CSP is NP-complete and thus a major research direction is to identify
restrictions on the CSP that render the problem tractable, that is, solvable in polynomial
time.

Key words and phrases: arc consistency, constraint satisfaction problem, forbidden pattern, tractability.
An extended abstract of this article appeared in Proc. of LICS’16 [19].
1Supported by EPSRC grant EP/L021226/1.
2Supported by EPSRC grant EP/L021226/1 and a Royal Society University Research Fellowship. Part of

this work was done while the second author was visiting the Simons Institute for the Theory of Computing
at UC Berkeley. This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). The
paper reflects only the authors’ views and not the views of the ERC or the European Commission. The
European Union is not liable for any use that may be made of the information contained therein.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-13(4:26)2017
c© Cooper and Živný
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 COOPER AND ŽIVNÝ

A substantial body of work exists from the past two decades on applications of universal
algebra in the computational complexity of and the applicability of algorithmic paradigms
to CSPs. Moreover, a number of celebrated results have been obtained through this method;
see [2] for a recent survey. However, the algebraic approach to CSPs is only applicable to
language-based CSPs, that is, classes of CSPs defined by the set of allowed constraint relations
but with arbitrary interactions of the constraint scopes. For instance, the well-known 2-SAT
problem is a class of language-based CSPs on the Boolean domain {0, 1} with all constraint
relations being binary, that is, of arity at most two.

On the other side of the spectrum are structure-based CSPs, that is, classes of CSPs
defined by the allowed interactions of the constraint scopes but with arbitrary constraint
relations. Here the methods that have been successfully used to establish complete complexity
classifications come from graph theory [28, 33].

The complexity of CSPs that are neither language-based nor structure-based, and thus
are often called hybrid CSPs, is much less understood; see [9, 20] for recent surveys. One
approach to hybrid CSPs that has been rather successful studies the classes of CSPs defined
by forbidden patterns; that is, by forbidding certain generic subinstances. The focus of this
paper is on such CSPs. We remark that we deal with binary CSPs but, unlike in most
papers on (the algebraic approach to) language-based CSPs, the domain is not fixed and is
part of the input.

An example of a pattern is given in Figure 1(a) on page 5. This is the so-called broken
triangle pattern (BTP) [16] (a formal definition is given in Section 2). BTP is an example
of a tractable pattern, which means that the class of all binary CSP instances in which
BTP does not occur is solvable in polynomial time. The class of CSP instances defined by
forbidding BTP includes, for instance, all tree-structured binary CSPs [16]. There are several
generalisations of BTP, for instance, to quantified CSPs [26], to existential patterns [10], to
patterns on non-binary constraints [18], and other classes [34, 17].

The framework of forbidden patterns is general enough to capture language-based CSPs
in terms of their polymorphisms. If Γ is a finite set of (binary) constraint relations, then
CSP(Γ) is the set of instances whose constraint relations all belong to Γ. It is well known
that a necessary condition for CSP(Γ) to be tractable (assuming P 6= NP) is that Γ has a
non-trivial polymorphism [8]. For any given a polymorphism f , the framework of forbidden
patterns is general enough to capture the class of (binary) CSP instances CSP(Γf), where Γf

is the set of (binary) constraint relations closed under f , provided patterns can be enriched
by the function f (or an equivalent relation) on domain elements. For instance, the pattern
in Figure 1(b) on page 5 captures the notion of binary relations that are max-closed [30].

Surprisingly, there are essentially only two classes of algorithms (and their combinations)
known for establishing tractability of CSPs. These are, firstly, a generalisation of Gaussian
elimination [7, 22], whose applicability for language-based CSPs is known [29], and, secondly,
problems solvable by local consistency methods, which originated in artificial intelligence;
see references in [35]. The latter can be defined in many equivalent ways including pebble
games, Datalog, treewidth, and proof complexity [25]. Intuitively, a class of CSP instances is
solvable by k-consistency if unsatisfiable instances can always be refuted while only keeping
partial solutions of size k “in memory”. For instance, the 2-SAT problem is solvable by local
consistency methods.

For structure-based CSPs, the power of consistency methods is well understood: a
class of structures can be solved by k-consistency if and only if the treewidth (modulo
homomorphic equivalence) is at most k [1]. Consequently, consistency methods solve all

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 3

tractable cases of structurally-restricted bounded-arity CSPs [28]. For language-restricted
CSPs, the power of consistency methods has only recently been characterised [3, 6].

Contributions. Our ultimate goal is to understand the power of local consistency methods
for hybrid CSPs. On this quest, we focus in this article on the power of the first level of
local consistency, known as arc consistency (AC), for classes of binary hybrid CSPs defined
by forbidden (partially-ordered) patterns.

The class of CSPs defined by forbidding BTP from Figure 1(a) on page 5 is in fact
solvable by AC. But as it turns out, BTP is not the only pattern with this property.

As our main contribution, we give, in Theorem 5.5, a complete characterisation of
so-called simple partially-ordered forbidden patterns which have this AC-solvability property.
Here the partial orders are on variables and domain values. It turns out that BTP is just
one of five such AC-solvable patterns. The four other patterns allow us to exhibit new
tractable classes, one of which in particular we expect to lead to new applications since it
defines a strict generalisation of binary max-closed constraints which have already found
applications in computer vision [21] and temporal reasoning [23]. We also provide results on
the associated meta problem of deciding whether a CSP instance falls into one of these new
tractable classes.

Given that AC is the first level of local consistency methods1 and is implemented in
all constraint solvers, an understanding of the power of AC is paramount. We note that
focusing on classes of CSPs defined by forbidden patterns is very natural as AC cannot
introduce forbidden patterns because pattern occurrence is defined by the presence of some
compatibility and incompatibility pairs between values, and by definition, such pairs cannot
be added when values are removed. While simple patterns do not cover all partially-ordered
patterns it is a natural, interesting, and broad enough concept that covers BTP and four
other novel and non-trivial tractable classes. We expect our results and techniques to be
used in future work on the power of AC.

Related work. Computational complexity classifications have been obtained for binary
CSPs defined by forbidden negative patterns (i.e., only pairwise incompatible assignments
are specified) [13] and for binary CSPs defined by patterns on 2 constraints [15]. Moreover,
(generalisations of) forbidden patterns have been studied in the context of variable and value
elimination rules [10]. Finally, the idea of forbidding patterns as topological minors has
recently been investigated [11].

[31, 36] recently considered the possible extensions of the algebraic approach from the
language to the hybrid setting.

The power of the valued version of AC [14] has recently been characterised [32]. Moreover,
the valued version of AC is known to solve all tractable finite-valued language-based CSPs [37].

1In some AI literature AC is the second level, the first being node consistency [35]. AC is also the first
level for relational width [5].

4 COOPER AND ŽIVNÝ

2. Preliminaries

2.1. CSPs and patterns. A pattern can be seen as a generalisation of the concept of a
binary CSP instance that leaves the consistency of some assignments to pairs of variables
undefined.

Definition 1 . A pattern is a four-tuple 〈X,D,A, cpt〉 where:

• X is a finite set of variables;
• D is a finite set of values;
• A ⊆ X ×D is the set of possible variable-value assignments called points; the domain of
x ∈ X is its non-empty set D(x) of possible values: D(x) = {a ∈ D | 〈x, a〉 ∈ A};
• cpt is a partial compatibility function from the set of unordered pairs of points

{{〈x, a〉, 〈y, b〉} | x 6= y}
to {TRUE, FALSE}. If cpt(〈x, a〉, 〈y, b〉) = TRUE (resp., FALSE) we say that 〈x, a〉 and 〈y, b〉
are compatible (resp., incompatible). For simplicity, we write cpt(p, q) for cpt({p, q}).

We will use a simple figurative drawing for patterns. Each variable will be drawn as an
oval containing dots for each of its possible points. Pairs in the domain of the function cpt
will be represented by lines between points: solid lines (called positive) for compatibility
and dashed lines (called negative) for incompatibility.

Example 1 . The pattern in Figure 13 on page 16 is called LX. It consists of three variables,
five points, six positive edges, and two negative edges.

We refine patterns to give a definition of a CSP instance.

Definition 2 . A binary CSP instance P is a pattern 〈X,D,A, cpt〉 where cpt is a total
function, i.e. the domain of cpt is precisely {{〈x, a〉, 〈y, b〉} | x 6= y, a ∈ D(x), b ∈ D(y)}.
• The relation Rx,y ⊆ D(x)×D(y) on 〈x, y〉 is {〈a, b〉 | cpt(〈x, a〉, 〈y, b〉) = TRUE}.
• A partial solution to P on Y ⊆ X is a mapping s : Y → D where, for all x 6= y ∈ Y we

have 〈s(x), s(y)〉 ∈ Rx,y.
• A solution to P is a partial solution on X.

For notational simplicity we have assumed that there is exactly one binary constraint
between each pair of variables. In particular, this means that the absence of a constraint
between variables x, y is modelled by a complete relation Rx,y = D(x)×D(y) allowing every
possible pair of assignments to x and y. We say that there is a non-trivial constraint on
variables x, y if Rx,y 6= D(x)×D(y). We also use the simpler notation Rij for Rxi,xj .

The main focus of this paper is on ordered patterns, which additionally allow for variable
and value orders.

Definition 3 . An ordered pattern is a six-tuple 〈X,D,A, cpt, <X , <D〉 where:

• 〈X,D,A, cpt〉 is a pattern;
• <X is a (possibly partial) strict order on X; and
• <D is a (possibly partial) strict order on D.

A pattern 〈X,D,A, cpt〉 can be seen as an ordered pattern with empty variable and
value orders, i.e. 〈X,D,A, cpt, ∅, ∅〉.

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 5

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

x

y

z

x, y < z

γ

δ

(a)

�
�

�
•

•
�
�

�
•

•XXXXXXXX��
���

���

x y

α > β
γ > δ

α

β

γ

δ

(b)

Figure 1: Two AC-solvable patterns: (a) BTP (b) MC.

Throughout the paper when we say “pattern” we implicitly mean “ordered pattern”
and use the word “unordered” to emphasize, if needed, that the pattern in question is not
ordered.

We do not consider patterns with structure (such as equality or order) between elements
in the domains of distinct variables.

Definition 4 . A pattern P = 〈X,D,A, cpt, <X , <D〉 is called basic if (1) D(x) and D(y)
do not intersect for distinct x, y ∈ X, and (2) <D only contains pairs of elements 〈a, b〉 from
the domain of the same variable, i.e., a, b ∈ D(x) for some x ∈ X.

Example 2 . The pattern shown in Figure 1(a) is known as the broken triangle pattern
(BTP) [16]. BTP consists of three variables, four points, three positive edges, two negative
edges, <X= {x < z, y < z}, and <D= ∅. Given a basic pattern, we can refer to a point
〈x, a〉 in the pattern as simply a when the variable is clear from the context or a figure. For
instance, the point 〈z, γ〉 in Figure 1(a) can be referred to as γ.

Example 3 . The pattern in Figure 1(b) is the (binary) max-closed pattern (MC). The
pattern MC consists of two variables, four points, two positive edges, one negative edge,
<X= ∅, and <D= {β < α, δ < γ}. MC (Figure 1(b)) together with the extra structure α > γ
is an example of a pattern that is not basic.

For some of the proofs we will require patterns with additional structure, namely, the
ability to enforce certain points to be distinct.

Definition 5 . A pattern with a disequality structure is a seven-tuple 〈X,D,A, cpt, <X , <D

, 6=D〉 where:

• 〈X,D,A, cpt, <X , <D〉 is a pattern; and
• 6=D⊆ D ×D is a set of pairs of domain values that are distinct.

An example of such a pattern is given in Figure 21(b) on page 24.

2.2. Pattern occurrence. Some points in a pattern are indistinguishable with respect to
the rest of the pattern.

Definition 6 . Two points a, b ∈ D(x) are mergeable in a pattern 〈X,D,A, cpt, <X , <D〉
if there is no point p ∈ A for which cpt(〈x, a〉, p), cpt(〈x, b〉, p) are both defined and
cpt(〈x, a〉, p) 6= cpt(〈x, b〉, p).

Definition 7 . A pattern is called unmergeable if it does not contain any mergeable points.

6 COOPER AND ŽIVNÝ

Example 4 . The points γ and δ in BTP (Figure 1(a) on page 5) are not mergeable since
they have different compatibility with, for instance, the point in variable x. The pattern LX
(Figure 13 on page 16) is unmergeable.

Some points in a pattern (known as dangling points) are redundant in arc-consistent
CSP instances and hence can be removed.

Definition 8 . Let P = 〈X,D,A, cpt, <X , <D〉 be a pattern. A point p ∈ A is called
dangling if it is not ordered by <D and if there is at most one point q ∈ A for which cpt(p, q)
is defined, and furthermore (if defined) cpt(p, q) = TRUE.

Example 5 . The point β in the pattern MC (Figure 1(b) on page 5) is not dangling since
it is ordered.

In order to use (the absence of) patterns for AC-solvability we need to define what we
mean when we say that a pattern occurs in a CSP instance. We define the slightly more
general notion of occurrence of a pattern in another pattern, thus extending the definitions
for unordered patterns [15]. Recall that a CSP instance corresponds to the special case of a
pattern whose compatibility function is total. Essentially pattern P occurs in pattern Q if P
is homomorphic to a subpattern of Q via an injective renaming of variables and a (possibly
non-injective) renaming of points [13]. We first make the observation that dangling points
in a pattern provide no useful information since we assume that all CSP instances are arc
consistent, which explains why dangling points can be eliminated from patterns.

Definition 9 . A pattern is simple if it is (i) basic, (ii) has no mergeable points, and (iii)
has no dangling points.

From a given pattern it is possible to create an infinite number of equivalent patterns
by adding dangling points or by duplicating points. By restricting our attention to simple
patterns we avoid having to consider such patterns. We also discount non-basic patterns
and mergeable patterns partly because of the sheer number of cases to consider and partly
because most of these patterns are not very natural.

Definition 10 . Let P ′ = 〈X ′, D′, A′, cpt′, <X′ , <D′〉 and P = 〈X,D,A, cpt, <X , <D〉 be
two patterns. A homomorphism from P ′ to P is a mapping f : A′ → A which satisfies:

• If cpt′(p, q) is defined, then cpt(f(p), f(q)) = cpt′(p, q).
• The mapping fvar : X ′ → X, given by fvar(x

′) = x if ∃a′, a such that f(〈x′, a′〉) = 〈x, a〉,
is well-defined and injective.
• If x′ <X′ y

′ then fvar(x
′) <X fvar(y

′).
• If a′, b′ ∈ D′(x′), a′ <D′ b

′, f(〈x′, a′〉) = 〈x, a〉 and f(〈x′, b′〉) = 〈x, b〉 then a <D b.

A consistent linear extension of a pattern P = 〈X,D,A, cpt, <X , <D〉 is a pattern P t

obtained from P by first identifying any number of pairs of points p, q which are both
mergeable and incomparable (according to the transitive closure of <D) and then extending
the orders on the variables and the domain values to total orders.

Definition 11 . Let P ′ = 〈X ′, D′, A′, cpt′, <X′ , <D′〉 and P = 〈X,D,A, cpt, <X , <D〉 be
two patterns. P ′ occurs in P if for all consistent linear extensions P t of P , there is a
homomorphism from P ′ to P t. We use the notation CSPSP(P) to represent the set of binary
CSP instances in which the pattern P does not occur.

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 7

�
�

�
•

�

�

�

•
•

•
���

���
��

β > γ > δ

β

γ

δ

P

�
�

�
•

�

�

�

•
•

•
���

���
��

β′, γ′ > δ′

β′

γ′

δ′

Q

Figure 2: Two patterns: Q occurs in P , but P does not occur in Q.

�
�

�
•

�
�

�
•

•
γ > δ

γ

δ

(a)

�
�

�
•

�
�

�
•

•

x

z

γ > δ
x < z

γ

δ

(b)

Figure 3: Two subpatterns of EMC: (a) V> (b) V>
<

Thus, I ∈ CSPSP(P) (the set of instances in which pattern P does not occur as a
subpattern) if one can find a total ordering of the variable-set and the domain of I so that
the pattern P is not homomorphic to I equipped with these orders.

The definition of occurrence extends in a natural way to patterns with a disequality
structure.

Remark 2.1. We can add a 6= b to a pattern, without changing its semantics, when
b <D a or 〈x, a〉 and 〈x, b〉 are joined by negative and positive edges to some point 〈y, c〉.
Furthermore, all domain values a, b in an instance are distinct so there is an implicit a 6= b.

Example 6 . To illustrate the notion of consistent linear extension used in the definition
of occurrence, consider the two patterns P,Q shown in Figure 2. For P to occur in Q we
would require that there is a homomorphism from P to Q after any number of mergings in
the domain of Q and any extension of the domain ordering of Q to a total ordering: this
effectively corresponds to the three cases β′ < γ′, β′ = γ′ and β′ > γ′. Since there is not a
homomorphism from P to the version of Q in which β′ and γ′ have been merged, we can
deduce that P does not occur in Q. On the other hand, Q occurs in P and, indeed, Q occurs
in the pattern V > shown in Figure 3(a) since β′ and γ′ can both map to γ.

As another example, the pattern MC (Figure 1(b) on page 5) occurs in pattern EMC
(Figure 5 on page 10) but not in patterns BTP (Figure 1(a) on page 5) or BTX (Figure 9
on page 14).

The main positive result in this paper is that CSPSP(EMC) is solved by arc consistency.
In the following example we give generic examples of instances in CSPSP(EMC).

Example 7 . CSPSP(MC) is exactly the set of binary CSP instances in which all constraints
are max-closed [30]. Examples of such constraints are binary constraints of the form y ≥ F (x)
for any function F or constraints of the form x ≥ G(y) for any function G.

CSPSP(EMC) includes all instances in CSPSP(MC) but also other instances. For
example, if I ∈ CSPSP(MC), then we can create an instance I ′ ∈ CSPSP(EMC) which
extends I by adding some constraints which are not max-closed: in fact for each variable y of

8 COOPER AND ŽIVNÝ

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

x

y

z

x, y < z
γ > δ

γ

δ

(a)

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

x

y

z

x < y < z

γ

δ

(b)

Figure 4: Two equivalent versions of the broken triangle property: forbidding the pattern
(a) BTPdo or forbidding the pattern (b) BTPvo defines the same class of instances.

I we can add new variables z1
y , . . . , z

r
y in I ′ with arbitrary constraints on (y, ziy) (i = 1, . . . , r)

provided that each ziy (i = 1, . . . , r) is placed after y in the variable ordering of I ′ and each

ziy is constrained by no other variable.
As another example of an instance I ′′ in CSPSP(EMC), again let I ∈ CSPSP(MC) and

let J ∈ CSPSP(V>) where V> is the pattern shown in Figure 3(a). Constraints in J are of
the form x ≤ F (y) where F is an antitone function, i.e. y1 < y2 ⇒ F (y1) ≥ F (y2). We
combine I and J to create the instance I ′′. We first order the variables of I, J so that all
the variables of I lie before all the variables of J . To complete the description of I ′′, we
add constraints between variables in I and variables in J so that the pattern V >

< (shown in
Figure 3(b)) does not occur with x mapping to a variable of I and z mapping to a variable
of J . Such constraints are of the form z ≤ G(x) where G is any function. The resulting
instance I ′′ belongs to CSPSP(EMC).

For a pattern P , we denote by unordered(P) the underlying unordered pattern, that is,

unordered(〈X,D,A, cpt, <X , <D〉) = 〈X,D,A, cpt〉.
For instance, the pattern unordered(BTP) is the pattern from Figure 1(a) on page 5 without
the structure x, y < z.

The occurrence relation between patterns is transitive.

Lemma 2.2. If P occurs in Q and Q occurs in R, then P occurs in R.

Proof. Suppose that P occurs in Q and Q occurs in R. Since Q occurs in R, for all consistent
linear extensions Rc of R, there exists a homomorphism h : Q→ Rc. We will first construct
a consistent linear extension Qc of Q based on Rc and h. The set of variables of Rc is totally
ordered (by definition of a consistent linear extension). Since, by Definition 10, the mapping
hvar induced by h on the variables of Q to the variables of Rc is injective, there exists a
total ordering <XQc of the variables XQ of Q corresponding to the total ordering <XRc in
Rc of the variables hvar(XQ) (i.e. x <XQc y if and only if hvar(x) <XRc hvar(y)).

Now, consider any variable x in the pattern Q and any pair of points a, b in the domain
DQ(x) of x in Q. First, consider the case when a, b are non-mergeable. By Definition 6
and Definition 10, the points h(〈x, a〉), h(〈x, b〉) are also non-mergeable. For each such pair
a, b, define a <DQc b if and only if a′ <DRc b

′ where h(〈x, a〉) = 〈x′, a′〉, h(〈x, b〉) = 〈x′, b′〉
and <DRc is the order on the domain values of Rc. This order is defined for each pair of
non-mergeable values a, b since Rc is a consistent linear extension. Secondly, consider the
case when a, b are mergeable. If h(〈x, a〉) = h(〈x, b〉) or if h(〈x, a〉), h(〈x, b〉) are merged in

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 9

the consistent linear extension Rc, then we merge a, b in Qc; otherwise we define a <DQc b if

and only if a′ <DRc b
′ where h(〈x, a〉) = 〈x′, a′〉, h(〈x, b〉) = 〈x′, b′〉.

Let Qc be identical to the pattern Q but with the variable and domain orders <XQc

and <DQc as defined above. By construction, Qc is a consistent linear extension of Q and

there exists a homomorphism h′ : Qc → Rc. Since P occurs in Q, we know that there exists
a homomorphism g : P → Qc. The composition of g and h′ is then a homomorphism from P
to Rc. Since Rc was an arbitrary linear extension of R, by Definition 11, P occurs in R.

In the following two simple lemmas, which follow from the definitions, P , Q, and R are
patterns and I is an instance.

Lemma 2.3. If P occurs in Q and P does not occur in I, then Q does not occur in I, i.e.
CSPSP (P) ⊆ CSPSP (Q).

Lemma 2.4. For any pattern P , unordered(P) occurs in P .

2.3. AC solvability. Arc consistency (AC) is a fundamental concept for CSPs.

Definition 12 . Let I = 〈X,D,A, cpt〉 be a CSP instance. A point 〈x, a〉 ∈ A is called arc
consistent if, for all variables y 6= x in X there is some point 〈y, b〉 ∈ A compatible with
〈x, a〉.

The CSP instance 〈X,D,A, cpt〉 is called arc consistent if A 6= ∅ and every point in A
is arc consistent.

Points that are not arc-consistent cannot be part of a solution so can safely be removed.
There are optimal O(cd2) algorithms for establishing arc consistency which repeatedly remove
such points [4], where c is the number of non-trivial constraints and d the maximum domain
size. Algorithms establishing arc consistency are implemented in all constraint solvers.

AC is a decision procedure for a class of CSP instances if for every instance from the
class, after establishing arc consistency, non-empty domains for all variables guarantee the
existence of a solution to the instance. (Note that a solution can then be found without
backtrack by maintaining AC during search).

Definition 13 . A pattern P is called AC-solvable if AC is a decision procedure for
CSPSP (P).

The following lemma is a straightforward consequence of the definitions.

Lemma 2.5. A pattern P is not AC-solvable if and only if there is an instance I ∈ CSPSP (P)
that is arc consistent and has no solution.

The following lemma follows directly from Lemmas 2.3 and 2.5.

Lemma 2.6. If P occurs in Q and P is not AC-solvable, then Q is not AC-solvable.

As our main result we will, in Theorem 5.5, characterise all simple patterns that are
AC-solvable.

10 COOPER AND ŽIVNÝ

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

x

y z

y < z
α > β
γ > δ

α

β

γ

δ

ε

Figure 5: The ordered pattern EMC (Extended Max-Closed)

2.4. Pattern symmetry and equivalence. For an ordered pattern P , we denote by
invDom(P), invVar(P) the patterns obtained from P by inversing the domain order or the
variable order, respectively.

Lemma 2.7. If P is not AC-solvable, then neither is any of invDom(P), invVar(P) or
invDom(invVar(P)).

Proof. For an arc-consistent instance the property of having a solution is independent of
any variable or domain orderings. The claims follow from inversing the respective orders in
the instance I of Lemma 2.5 proving that P is not AC-solvable.

Some patterns define the same classes of CSP instances.

Definition 14 . Patterns P and P ′ are equivalent if

CSPSP (P) = CSPSP (P ′).

Lemma 2.8. If P occurs in P ′ and P ′ occurs in P , then P, P ′ are equivalent.

Example 8 . Let LX< be the pattern obtained from LX (Figure 13 on page 16) by adding
the partial variable order y < z. Due to the symmetry of LX, observe that LX and LX< are
equivalent.

Example 9 . The two patterns shown in Figure 4 on page 8 are also equivalent: (a) BTPdo

with structure x, y < z and c < d, and (b) BTPvo with variable order x < y < z. We will
call these the variable-ordered and domain-ordered versions of BTP, respectively, when it is
necessary to make the distinction between the two. BTP (Figure 1(a) on page 5) will refer
to the same pattern with the only structure x, y < z which again, by symmetry, is equivalent
to both BTPdo and BTPvo.

3. New tractable classes solved by arc consistency

Our search for a characterisation of all simple patterns decided by arc consistency surprisingly
uncovered four new tractable patterns, which we describe in this section. The first pattern
we study is shown in Figure 5. It is a proper generalisation of the MC pattern (Figure 1(b)
on page 5) since it has an extra variable and three extra edges.

Theorem 3.1. AC is a decision procedure for CSPSP (EMC) where EMC is the pattern
shown in Figure 5.

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 11

Proof. Since establishing arc consistency only eliminates domain elements, and hence cannot
introduce the pattern, it suffices to show that every arc-consistent instance I = 〈X,D,A, cpt〉
∈ CSPSP (EMC) has a solution. We give a constructive proof. For a given domain ordering,
let x1 < . . . < xn be an ordering of X such that EMC does not occur in I. Define an
assignment 〈a1, . . . , an〉 to the variables 〈x1, . . . , xn〉 recursively as follows: a1 = max(D(x1))
and, for i > 1,

ai = min{aji | 1 ≤ j < i}, where aji = max{a ∈ D(xi) | (aj , a) ∈ Rji} (3.1)

In other words, given an assignment 〈a1, . . . , ai−1〉 to variables 〈x1, . . . , xi−1〉, for 1 ≤ j < i,

aji is the maximum value in D(xi) compatible with aj . Then ai is the minimum of these

values a1
i , . . . , a

i−1
i . We prove by strong induction on n the following claim.

C(n): 〈a1, . . . , an〉 defined by Equation (3.1) is a solution to arc-consistent instances I ∈
CSPSP (EMC) of size n.

The claim trivially holds for n = 1 since a1 ∈ D(x1). It remains to show that if the claim
holds for instances of size less than n then it holds for instances of size n.

We suppose that C(1) ∧ . . . ∧ C(n− 1) holds and we will show that this implies C(n),
i.e. that 〈a1, . . . , an〉 is a solution to instance I ∈ CSPSP (EMC) of size n. Suppose, for a
contradiction, that (aj , ak) /∈ Rjk for some 1 ≤ j < k ≤ n. If there is more than one such
pair (j, k), then choose k to be minimal and then for this value of k choose j to be minimal.

For i > 1, we denote by pred(i) a value of j < i such that ai = aji . Arc consistency

guarantees that aji exists and hence that ai and pred(i) are well defined. Let m0 = k and
mr = pred(mr−1) for r ≥ 1 if mr−1 > 1. Let t be such that mt = 1. By definition of pred,
we have

1 = mt < mt−1 < . . . < m1 < m0 = k

which implies that this series is finite and hence that t is well-defined. We will show that
for r = 1, . . . , t, ∃br ∈ D(xmr) such that br > amr , which for r = t will provides us with the
contradiction we are looking for since amt = a1 = max(D(x1)).

We distinguish two cases: (1) j > m1, and (2) j < m1. Since (aj , ak) /∈ Rjk and
(am1 , ak) ∈ Rjk we know that j 6= m1.

Case (1) j > m1: Define b0 = ajk. By definition of ak, we know that ak ≤ ajk. Since

(aj , ak) /∈ Rjk and (aj , a
j
k) ∈ Rjk, we have b0 = ajk > ak.

By our choice of j to be minimal, and since j > m1 we know that (amr , ak) ∈ Rmrk

for r = 1, . . . , t. Indeed, by minimality of k, we already had (amr , ams) ∈ Rmrms for
1 ≤ s ≤ r ≤ t. Thus, since k = m0, we have

(amr , ams) ∈ Rmrms for 0 ≤ s ≤ r ≤ t. (3.2)

By arc consistency, ∃b1 ∈ D(xm1) such that (b1, b0) ∈ Rm1k. We have (am1 , aj) ∈ Rm1j

by minimality of k and since m1, j < k. Since m1 = pred(k) and hence ak = am1
k , we have

(am1 , ak) ∈ Rm1k and (am1 , b0) /∈ Rm1k by the maximality of am1
k in Equation (3.1) and

since b0 > ak = am1
k . We thus have the situation illustrated in Figure 6 for h = 1. Since the

pattern EMC does not occur in I, we must have b1 > am1 .
For 1 ≤ r ≤ t, let Hr be the following hypothesis.

Hr: ∃s(r) ∈ {0, . . . , r − 1}, ∃p(r) < k, ∃br ∈ D(xmr), with br > amr , such that we have the
situation shown in Figure 7.

12 COOPER AND ŽIVNÝ

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

xj

xmh xk

xmh
< xk

b0 > ak

amh

bh

b0

ak

aj

Figure 6: To avoid the pattern EMC, we must have bh > amh
.

�
�

�
•

•

�
�

�
•

�
�

�
•

•

Z
Z
Z
Z�
�
�
�
�

xp(r)

xmr
xms(r)

xmr < xms(r)

br > amr

bs(r) > ams(r)

br

amr

bs(r)

ams(r)

ap(r)

Figure 7: The situation corresponding to hypothesis Hr.

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

xms(q)

xmr+1 xmq

xmr+1 < xmq

bq > amq

amr+1

br+1

bq

amq

bs(q)

Figure 8: To avoid the pattern EMC, we must have br+1 > amr+1 .

We have just shown that H1 holds (with s(1) = 0 and p(1) = j). We now show, for 1 ≤ r < t,
that (H1 ∧ . . . ∧Hr)⇒ Hr+1.

We know that (amr+1 , amr) ∈ Rmr+1mr and (amr+1 , br) /∈ Rmr+1mr , since mr+1 =

pred(mr) and by maximality of amr = a
mr+1
mr in Equation (3.1). Let q ∈ {0, . . . , r} be

minimal such that (amr+1 , bq) /∈ Rmr+1mq . We distinguish two cases: (a) q = 0, and (b)
q > 0.

If q = 0, then we have (amr+1 , ak) ∈ Rmr+1k (from Equation (3.2), since k = m0),
(amr+1 , b0) /∈ Rmr+1k (since q = 0), (amr+1 , aj) ∈ Rmr+1j (by minimality of k, since mr+1, j <
k). By arc consistency, ∃br+1 ∈ D(xmr+1) such that (br+1, b0) ∈ Rmr+1k. We then have the
situation illustrated in Figure 6 for h = r + 1. As above, from the absence of pattern EMC,
we can deduce that br+1 > amr+1 . We thus have Hr+1 (with s(r + 1) = 0 and p(r + 1) = j).

If q > 0, then H1 ∧ . . . ∧Hr implies that Hq holds. By minimality of q, we know that
(amr+1 , bs(q)) ∈ Rmr+1ms(q)

since s(q) < q. We know that (amr+1 , amq) ∈ Rmr+1mq from

Equation (3.2), and that (amr+1 , bq) /∈ Rmr+1mq by definition of q. We know that (bq, bs(q)) ∈
Rmqms(q)

and (amq , bs(q)) /∈ Rmqms(q)
from Hq. By arc consistency, ∃br+1 ∈ D(xmr+1) such

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 13

that (br+1, bq) ∈ Rmr+1mq . We then have the situation illustrated in Figure 8. As above,
from the absence of pattern EMC, we can deduce that br+1 > amr+1 . We thus have Hr+1

(with s(r + 1) = q and p(r + 1) = s(q)).

Case (2) j < m1: Consider the subproblem I ′ of I on variables {x1, x2, . . . , xm1−1} ∪ {xk}.
Since xm1 does not belong to the set of variables of I ′, this instance has size strictly less
than n, and hence has a solution by our inductive hypothesis C(1) ∧ . . . ∧ C(n − 1) (i.e.
that a solution is given by Equation (3.1 for arc-consistent instances in CSPSP (EMC)
of size less than n). The values of ai may differ between I and I ′. However, we can see
from its definition given in Equation (3.1), that the value of ai depends uniquely on the
subproblem on previous variables {x1, . . . , xi−1}. Showing the dependence on the instance

by a superscript, we thus have aI
′

i = aIi (i = 1, . . . ,m1 − 1) although aI
′

k may (and, in fact,

does) differ from aIk. By our inductive hypothesis C(1)∧ . . .∧C(n−1), 〈a1, . . . , am1−1, a
I′
k 〉 is

a solution to I ′. Setting b0 = aI
′

k , it follows that (ai, b0) ∈ Rik for 1 ≤ i < m1. In particular,

since j < m1, we have (aj , b0) ∈ Rjk. Now aIk ≤ aI
′

k = b0, since I ′ is a subinstance of I (and

so, from Equation (3.1), aIk is the minimum of a superset over which aI
′

k is a minimum).

Thus ak = aIk < b0, since (aj , b0) ∈ Rjk and (aj , ak) /∈ Rjk.
By arc consistency, ∃b1 ∈ D(xm1) such that (b1, b0) ∈ Rm1k. As in case (1), we have

the situation illustrated in Figure 6 on page 12 for h = 1. Since the pattern EMC does not
occur in I, we must have b1 > am1 .

Consider the hypothesis Hr stated in case (1) and illustrated in Figure 7 on page 12. We
have just shown that H1 holds (with s(1) = 0 and p(1) = j). We now show, for 1 ≤ r < t,
that (H1 ∧ . . . ∧Hr)⇒ Hr+1.

As in case (1), we know that (amr+1 , amr) ∈ Rmr+1mr and (amr+1 , br) /∈ Rmr+1mr . Let
q ∈ {0, . . . , r} be minimal such that (amr+1 , bq) /∈ Rmr+1mq . We have seen above that
(amr+1 , b0) ∈ Rmr+1k (since xmr+1 , xm0 are assigned, respectively, the values amr+1 , b0 in a
solution to I ′). Therefore, we can deduce that q > 0. Therefore H1∧ . . .∧Hr implies that Hq

holds. By minimality of k, and since mq < m0 = k, we know that (amr+1 , amq) ∈ Rmr+1mq .
As in case (1), by minimality of q, we know that (amr+1 , bs(q)) ∈ Rmr+1ms(q)

. By arc

consistency, ∃br+1 ∈ D(xmr+1) such that (br+1, bq) ∈ Rmr+1mq . We thus have the situation
illustrated in Figure 8 on page 12. Again, from the absence of pattern EMC, we can deduce
that br+1 > amr+1 . We thus again have Hr+1 with s(r + 1) = q and p(r + 1) = s(q).

Thus, by induction on r, we have shown in both cases that Ht holds. But recall that
mt = 1 and that a1 was chosen to be the maximal element of D(x1) and hence @bt ∈ D(x1)
such that bt > a1. This contradiction shows that 〈a1, . . . , an〉 is a solution, as claimed.

The next two patterns we study in this section, shown in Figure 9 and Figure 10, are
similar to EMC but the three patterns are incomparable (in the sense that none occurs in
another) due to the different orders on the three variables.

Theorem 3.2. AC is a decision procedure for CSPSP (BTX) where BTX is the pattern
shown in Figure 9.

Proof. Since establishing arc consistency only eliminates domain elements, and hence
cannot introduce the pattern, we only need to show that every arc-consistent instance
I = 〈X,D,A, cpt〉 ∈ CSPSP (BTX) has a solution. For a given domain ordering, let
x1 < . . . < xn be an ordering of X such that BTX does not occur in I. In fact we will show
a stronger result by proving that the hypothesis Hn, below, holds for all n ≥ 1.

14 COOPER AND ŽIVNÝ

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

x

y z

y < x, z
α > β

α

β

γ

δ

ε

Figure 9: The ordered pattern BTX.

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

x

y z

x < z
α > β

α

β

γ

δ

ε

Figure 10: The ordered pattern BTI.

Hn: for all arc-consistent instances I = 〈X,D,A, cpt〉 from CSPSP (BTX) with |X| = n, if
a = max(D(x1)), then I has a solution s with s(x1) = a.

Trivially, H1 holds. Suppose that Hn−1 holds where n > 1. We will show that this implies
Hn, which will complete the proof by induction. Let D′(xi) = {b ∈ D(xi) | (a, b) ∈ R1i}
(i = 2, . . . , n). Denote by I ′ the subproblem of I on variables 2, . . . , n and domains D′(xi)
(i = 2, . . . , n). To complete the inductive proof, it is sufficient to show that I ′ is arc consistent:
since I ′ ∈ CSPSP (BTX) and has n− 1 variables, by Hn−1, if I ′ is arc consistent it has a
solution which can clearly be extended to a solution to I by adding the assignment (x1, a).

To show arc consistency of I ′, consider any variable xi with i > 1 and any b ∈ D′(Xi).
(We know by arc consistency of I that D′(xi) is non-empty; i.e. (a, b) ∈ R1i.) Now let xj
be any other variable with j > 1. To complete the proof, it suffices to show that b has a
support in D′(xj).

By arc consistency of I, we can deduce the existence of c ∈ D(xj) such that (b, c) ∈ Rij ,
and then a′ ∈ D(x1) such that (a′, c) ∈ R1j , as well as d ∈ D(xj) such that (a, d) ∈ R1j (i.e.
d ∈ D′(xj)). If b has no support in D′(xj), then we must have c /∈ D′(xj) (i.e. (a, c) /∈ R1j)
and (b, d) /∈ Rij . Since a is the maximum element of D(x1), we know that a′ ≤ a. Indeed,
since (a, c) /∈ R1j and (a′, c) ∈ R1j , we have that a′ < a. But then the pattern BTX occurs
in I, as shown in Figure 11. This contradiction shows that b does have a support in D′(xj)
and hence that I ′ is arc consistent, as required.

Theorem 3.3. AC is a decision procedure for CSPSP (BTI) where BTI is the pattern shown
in Figure 10.

Proof. Since establishing arc consistency only eliminates domain elements, and hence
cannot introduce the pattern, we only need to show that every arc-consistent instance
I = 〈X,D,A, cpt〉 ∈ CSPSP (BTI) has a solution. Let x1 < . . . < xn be an ordering of

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 15

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

xi

x1 xj

x1 < xi, xj
a > a′

a

a′

c

d

b

Figure 11: An occurrence of the pattern BTX.

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

xj

xr xi

xj < xi
s(xr) > c

s(xr)

c

b

a

s(xj)

(a)

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

xr

xj xi

xr < xi
s(xj) > d

s(xj)

d

a

b

s(xr)

(b)

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��\
\
\
\
\�
�
�
�
�

xk

xi xj

xk < xj
a > b

a

b

s(xj)

d

s(xk)

(c)

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��\
\
\
\
\�
�
�
�
�

xt

xi xr

xt < xr
b > a

b

a

s(xr)

c

s(xt)

(d)

Figure 12: Occurrences of the pattern BTI.

X such that BTI does not occur in I. In fact, we will show a stronger result by proving
that, for all arc-consistent instances I = 〈X,D,A, cpt〉 ∈ CSPSP (BTI), I has a solution s
defined recursively by: s(xi) is the maximum value in D(xi) compatible with all previous
assignments s(x1), . . . , s(xi−1).

Let Ti denote the set of values inD(xi) compatible with the assignments s(x1), . . . , s(xi−1)
(defined recursively as above). If each Ti (i = 1, . . . , n) is non-empty, then s(x1), . . . , s(xn)
is a solution to I. Let Ii denote the subinstance of I on the first i variables x1, . . . , xi.
T1 = D(x1) and is non-empty since I is arc consistent, and hence s(x1) = max(T1) is a
solution to I1. Suppose that s(x1), . . . , s(xi−1), as defined above, is a solution to Ii−1. We
will show that s(xi) exists and hence that s(x1), . . . , s(xi) is a solution to Ii, which by a
simple induction will complete the proof. Suppose for a contradiction that s(xi) does not
exist, i.e. that Ti = ∅.

For all u, let Rji(u) denote the subset of D(xi) which is compatible with the assignment

of u to xj , i.e. Rji(u) = {v ∈ D(xi) | (u, v) ∈ Rji}. For j ∈ {1, . . . , i − 1}, let T j
i be the

intersection of the sets Rhi(s(xh)) (h = 1, . . . , j). By our hypothesis that Ti = ∅, we know
that T i−1

i = Ti = ∅. By arc consistency, T 1
i 6= ∅. Let j ∈ {2, . . . , i− 1} be minimal such that

16 COOPER AND ŽIVNÝ

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

x

y z

α

β

γ

δ

ε

Figure 13: The pattern LX.

T j
i = ∅. Thus

Rji(s(xj)) ∩ T j−1
i = ∅ (3.3)

By arc consistency, ∃b ∈ D(xi) such that (s(xj), b) ∈ Rji (i.e. b ∈ Rji(s(xj))). By Equation

(3.3) and definition of T j−1
i , there is some r < j such that (s(xr), b) /∈ Rri. Choose r to

be minimal. Consider a ∈ T j−1
i (which is non-empty since j was chosen to be minimal).

Then (s(xr), a) ∈ Rri, by definition of T j−1
i , since r ≤ j − 1. But (s(xj), a) /∈ Rji by (3.3).

By arc consistency, ∃c ∈ Dr such that (c, b) ∈ Rri and ∃d ∈ D(xj) such that (d, a) ∈ Rji.
By our inductive hypothesis that s(x1), . . . , s(xi−1) is a solution to Ii−1, we know that
(s(xr), s(xj)) ∈ Rrj since r, j < i. Because of their different compatibilities with, respectively,
b and a, we know that c 6= s(xr) and d 6= s(xj). If c < s(xr), then, since r < i, the
pattern BTI occurs in I, as shown in Figure 12(a) on page 15; so we can deduce that
c > s(xr). Similarly, if d < s(xj), then, since j < i, the pattern BTI occurs in I, as shown
in Figure 12(b) on page 15; so we can deduce that d > s(xj).

But, by definition of s, s(xr) is the maximal element of Tr. So, since c > s(xr), there must
be some t < r such that (s(xt), c) /∈ Rtr. By minimality of r, we know that (s(xt), b) ∈ Rti.
Similarly, there must be some k < j such that (s(xk), d) /∈ Rkj since d > s(xj) and s(xj)

is the maximal element of Tj . Since a ∈ T j−1
i and k < j, we know that (s(xk), a) ∈ Rki.

By our inductive hypothesis that s(x1), . . . , s(xi−1) is a solution to Ii−1, we know that
(s(xk), s(xj)) ∈ Rkj and (s(xt), s(xr)) ∈ Rtr since k, j, t, r < i. We know that a 6= b because
they have different compatibilities with s(xj). If a > b, then, since k < j, the pattern BTI
occurs in I, as shown in Figure 12(c) on page 15. And, if b > a, then the pattern BTI occurs
in I, as shown in Figure 12(d) on page 15. This contradiction shows that Ti 6= ∅ (for each
i = 1, . . . , n) and hence that I has a solution s.

We conclude this section with a pattern which is essentially different from the patterns
EMC, BTX, and BTI, since it includes two negative edges that meet but has no domain or
variable order. The tractability of this pattern was previously unknown [24].

Theorem 3.4. AC is a decision procedure for CSPSP (LX) where LX is the pattern shown
in Figure 13.

Proof. Since establishing arc consistency only eliminates domain elements, and hence can-
not introduce the pattern, we only need to show that every arc-consistent instance I ∈
CSPSP (LX) has a solution. In fact we will show a stronger result by proving that the
hypothesis Hn, below, holds for all n ≥ 1.

Hn: for all arc-consistent instances I = 〈X,D,A, cpt〉 ∈ CSPSP (LX) with |X| = n, ∀xi ∈ X,
∀a ∈ D(xi), I has a solution s such that s(xi) = a.

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 17

Trivially, H1 holds. Suppose that Hn−1 holds where n > 1. We will show that this implies
Hn, which will complete the proof by induction.

Consider an arc-consistent instance I = 〈X,D,A, cpt〉 from CSPSP (LX) with X =
{x1, . . . , xn} and let a ∈ D(xi) where 1 ≤ i ≤ n. Let In−1 denote the subproblem of I
on variables X \ {xi}. For any solution s of In−1, we denote by CV (〈xi, a〉, s) the set of
variables in X \ {xi} on which s is compatible with the unary assignment 〈xi, a〉, i.e.

CV (〈xi, a〉, s) = {xj ∈ X \ {xi} | (a, s(xj)) ∈ Rij}
Consider two distinct solutions s, s′ to In−1. If we have xj ∈ CV (〈xi, a〉, s) \ CV (〈xi, a〉, s′)
and xk ∈ CV (〈xi, a〉, s′) \CV (〈xi, a〉, s), then the pattern LX occurs in I under the mapping
x 7→ xi, y 7→ xj , z 7→ xk, α 7→ s(xj), β 7→ s′(xj), γ 7→ s′(xk), δ 7→ s(xk), ε 7→ a (see Figure 13
on page 16). Since LX does not occur in I, we can deduce that the sets CV (〈xi, a〉, s), as s
varies over all solutions to In−1, form a nested family of sets. Let sa be a solution to In−1

such that CV (〈xi, a〉, sa) is maximal for inclusion.
Consider any xj ∈ X \ {xi}. By arc consistency, ∃b ∈ D(xj) such that (a, b) ∈ Rij . By

our inductive hypothesis Hn−1, there is a solution s to In−1 such that s(xj) = b. Since
(a, s(xj)) = (a, b) ∈ Rij , we have xj ∈ CV (〈xi, a〉, s). By maximality of sa, this implies
xj ∈ CV (〈xi, a〉, sa), i.e. (a, sa(xj)) ∈ Rij . Since this is true for any xj ∈ X \ {xi}, we can
deduce that sa can be extended to a solution to I (which assigns a to xi) by simply adding
the assignment 〈xi, a〉 to sa.

The proof of Theorem 3.4 shows that to find a solution to arc-consistent instances in
CSPSP (LX), it suffices to maintain arc consistency during search (a standard algorithm
in CSP solvers) making arbitrary choices of values to assign to each variable: search will
always be backtrack-free.

4. Recognition problem for unknown orders

One possible way of applying our new tractable classes is the automatic recognition by a
general-purpose CSP solver that an instance (or a sub-instance encountered during search
after instantiation of a subset of variables) belongs to one of our tractable classes. In this
section we study the complexity of this recognition problem.

For an unordered pattern P of size k, checking for (the non-occurrence of) P in a CSP
instance I is solvable in time O(|I|k) by simple exhaustive search. Consequently, checking
for (the non-occurrence of) unordered patterns of constant size is solvable in polynomial
time. However, the situation is less obvious for ordered patterns since we have to test all
possible orderings of I.

The following result was shown in [16].

Theorem 4.1. Given a binary CSP instance I with a fixed total order on the domain, there
is a polynomial-time algorithm to find a total variable ordering such that BTP does not occur
in I (or to determine that no such ordering exists).

We show that the same result holds for the other three ordered patterns studied in this
paper, namely BTI, BTX, and EMC.

Theorem 4.2. Given a binary CSP instance I with a fixed total order on the domain and a
pattern P ∈ {BTI, BTX, EMC}, there is a polynomial-time algorithm to find a total variable
ordering such that P does not occur in I (or to determine that no such ordering exists).

18 COOPER AND ŽIVNÝ

Proof. We give a proof only for BTX as the same idea works for the other two patterns as
well. Given a binary CSP instance I with n variables x1, . . . , xn, we define an associated
CSP instance ΠI that has a solution precisely when there exists a suitable variable ordering
for I. To construct ΠI , let O1, . . . , On be variables taking values in {1, . . . , n} representing
positions in the ordering. We impose the ternary constraint Oi > min(Oj , Ok) for all triples
of variables xi, xj , xk in I such that the BTX pattern occurs for some α, β ∈ D(xi) with
α > β, ε ∈ D(xj), and γ, δ ∈ D(xk) when the variables are ordered xi < xj , xk. The instance
ΠI has a solution precisely if there is an ordering of the variables x1, . . . , xn of I for which
BTX does not occur. Note that if the solution obtained represents a partial order (i.e.
if Oi and Oj are assigned the same value for some i 6= j), then it can be extended to a
total order which still satisfies all the constraints by arbitrarily choosing the order of those
Oi’s that are assigned the same value. This reduction is polynomial in the size of I. We
now show that all constraints in ΠI are ternary min-closed and thus ΠI can be solved in
polynomial time [30]. Let 〈p1, q1, r1〉 and 〈p2, q2, r2〉 satisfy any constraint in ΠI . Then
p1 > min(q1, r1) and p2 > min(q2, r2), and thus min(p1, p2) > min(min(q1, r1),min(q2, r2))
= min(min(q1, q2),min(r1, r2)). Consequently, 〈min(p1, p2), min(q1, q2), min(r1, r2)〉 also
satisfies the constraint. We can deduce that all constraints in ΠI are min-closed.

Using the same technique, we can also show the following.

Theorem 4.3. Given a binary CSP instance I with a fixed total variable order and a pattern
P ∈ {BTI, BTX}, there is a polynomial-time algorithm to find a total domain ordering such
that P does not occur in I (or determine that no such ordering exists).

It is known that determining a domain order for which MC does not occur is NP-hard [27].
Not surprisingly, for EMC when the domain order is not known, detection becomes NP-hard.
For the case of BTX and BTI, if neither the domain nor variable order is known, finding
orders for which the pattern does not occur is again NP-hard.

Theorem 4.4. For the pattern EMC, even for a fixed total variable order of an arc-consistent
binary CSP instance I, it is NP-hard to find a total domain ordering of I such that the
pattern does not occur in I. For patterns BTX and BTI, it is NP-hard to find total variable
and domain orderings of an arc-consistent binary CSP instance I such that the pattern does
not occur in I.

Proof. To show this, we exhibit a polynomial reduction from 3SAT. Given an n-variable
instance I3SAT of 3SAT with m clauses, we create a basic domain B of size 2n with a value
ai for each variable Xi in I3SAT and another an+i for its negation Xi. We construct a binary
CSP instance ICSP , such that the domain of each variable contains B, and such that there
exists an appropriate order of B if and only if I3SAT has a solution. For each total ordering
> of B there is a corresponding assignment to the variables of I3SAT given by Xi = true if
and only if ai > ai+n. To complete the reduction we have to show how to impose a clause,
e.g. (ai > ai+n) ∨ (aj > aj+n) ∨ (ak > ak+n). The basic construction of ICSP is composed
of the following elements: N = 6m variables linked by the equality constraints xi = xi+1

(i = 1, . . . , N − 1).
Consider first the case of EMC. We assume the variable order given by xi < xj iff i < j.

To impose a clause we construct a gadget on three variables xp, xq, xr of ICSP which are not
linked by any other constraints in our construction (in particular, not consecutive variables
linked by equality constraints). To be specific, for the ith clause, we choose p = 2i − 1,
q = 4i− 1 and r = 6i− 1. We add four extra values amax, b, c, d (of which b, c, d depend on

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 19

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

xq+1

xp xq

xp < xq

ai+n

ai

c

b

c

Figure 14: To avoid the pattern EMC, we must have (ai > ai+n) or (b > c).

the clause) to the basic domain B of each of these three variables xp, xq, xr. The domain size
of each variable xi in ICSP is thus 2n+ 4. The value amax is compatible with all values in
the domains of the other variables. This ensures arc consistency for all domain values, and
if amax > a for all domain values a 6= amax, then the pattern cannot occur on amax. We now
specify the constraints between the variables xp, xq, xr. We place negative edges between all
pairs of values other than amax except for three positive edges in each constraint. In the
constraint between xp and xq we add the three positive edges: (ai, b), (ai, c), (ai+n, b). If
ai+n > ai in D(xp) and c > b in D(xq), then the pattern EMC occurs in ICSP as shown in
Figure 14. The third variable of the pattern is xq+1 which is linked by an equality constraint
to xq and by a trivial constraint to xp. Thus, to avoid the pattern occurring in ICSP the
domain order must respect

(ai > ai+n) ∨ (b > c)

By adding similar constraints between xp, xr and xq, xr, we can also impose

(aj > aj+n) ∨ (c > d) and

(ak > ak+n) ∨ (d > b)

By imposing these three inequalities, we impose (ai > ai+n) ∨ (aj > aj+n) ∨ (ak > ak+n)
(since we cannot simultaneously have b > c > d > b) which corresponds to the clause
Xi ∨Xj ∨Xk in I3SAT . By inversing the roles of ai and ai+n we can clearly impose clauses
involving negative literals. This completes the reduction from I3SAT to the problem of
finding a domain ordering of a binary CSP instance so that EMC does not occur. Since this
reduction is clearly polynomial, we can conclude that the problem of testing the existence of
a domain order so that EMC does not occur is NP-hard.

Now consider the case of the pattern BTX. We use a similar construction to the case
of EMC, above. Again, to simulate a clause Xi ∨ Xj ∨ Xk in I3SAT we need to impose
(ai > ai+n) ∨ (aj > aj+n) ∨ (ak > ak+n). This can be achieved by imposing:

(ai > ai+n) ∨ (xp > xq),

(aj > aj+n) ∨ (xq > xr) and

(ak > ak+n) ∨ (xr > xp)

For example, to impose (ai > ai+n) ∨ (xp > xq) we place the same gadget as above
(i.e. positive edges (ai, b), (ai, c), (ai+n, b)) on each of the three pairs of variables (xp, xq),
(xp+1, xq) and (xq+1, xp). To avoid BTX on variables xp, xq, xq+1, on variables xp+1, xq, xq+1

20 COOPER AND ŽIVNÝ

and on variables xq+1, xp, xp+1, we must have

(ai > ai+n) ∨ (xp > xq) ∨ (xp > xq+1),

(ai > ai+n) ∨ (xp+1 > xq) ∨ (xp+1 > xq+1) and

(ai > ai+n) ∨ (xq+1 > xp) ∨ (xq+1 > xp+1)

Since there is a total strict ordering on the variables, this is logically equivalent to imposing
(ai > ai+n) ∨ (xp > xq), as required (provided none of the variables xp, xp+1, xq, xq+1 are
used in other gadgets), given our freedom to choose the positions of xp+1 and xq+1 in the
order.

Finally, we consider the pattern BTI. But this is an easier case than BTX. We just need
to place the gadget on (xp, xq) to impose (ai > ai+n) ∨ (xp > xq) to avoid the pattern BTI.

Thus, EMC is NP-hard to detect when the domain order of the instance is not fixed,
and BTX, BTI are NP-hard to detect when neither the domain order nor the variable order
of the instance is fixed.

The results from this section are summarised in Table 1. We use the star to denote
uninteresting cases. Note that since LX is an unordered pattern the questions of determining
variable and/or domain orders are not interesting. Similarly, since pattern BTP only orders
variables the question of determining a domain order is not interesting. An important point
is that for a fixed domain order (which is a natural assumption for numerical domain values,
for example) we can effectively exhaust over all variable orders in polynomial time for all
variable-ordered patterns studied in this paper (BTP, BTI, BTX, EMC).

BTP BTI BTX EMC LX
domain order given P [Thm 4.1] P [Thm 4.2] P [Thm 4.2] P [Thm 4.2] *
variable order given * P [Thm 4.3] P [Thm 4.3] NP-h [Thm 4.4] *
neither order given P [Thm 4.1] NP-h [Thm 4.4] NP-h [Thm4.4] NP-h [Thm 4.4] *

Table 1: Summary of the complexity (P or NP-hard) of the recognition problem for each
of our patterns for the cases in which the domain order is given (but the variable
order has to be determined), the variable order is given (but the domain order has
to be determined), or neither order is given.

5. Characterisation of patterns solved by AC

5.1. Instances not solved by arc consistency. We first give a set of instances, each of
which is arc consistent and has no solution. If for any of these instances I, we have I ∈
CSPSP (P), then this constitutes a proof, by Lemma 2.5, that pattern P is not solved by arc
consistency. For simplicity of presentation, in each of the following instances, we suppose
the variable order given by xi < xj if i < j.

• IK4 (shown in Figure 15) is composed of four variables with domains D(xi) = {1, 2, 3} (i =
1, 2, 3, 4), and the following constraints: (xi = 1)∨(xj = 3) ((i, j) = (1, 2), (2, 3), (3, 4), (4, 1))
and (xi = 2) ∨ (xj = 2) ((i, j) = (1, 3), (2, 4)).
• I4 (shown in Figure 16) is composed of four variables with domains D(x0) = {1, 2, 3},
D(xi) = {0, 1} (i = 1, 2, 3), and the following constraints: xi ∨ xj (1 ≤ i < j ≤ 3) and
(x0 = i) ∨ xi (i = 1, 2, 3).

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 21

�

�

�

�•

•

•
�

�

�

�•

•

•

�
�

�
�• • •

�
�

�
�• • •x1

x2

x3

x4

(((
((((

(((
((((

(((
(

hhhhhhhhhhhhhhhhhh

hhh
hhhh

hhh
hhhh

hhh
h

((((((((((((((((((

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EE E

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EE

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
���

���
���

���
�

�
�

�
�
�

�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A
A
A

S
S
S
S
S
S
S
S
S
S
S
S

@
@
@
@
@
@
@
@
@
@
@
@H
HH

H
HH

H
HH

H
HH

Z
Z

Z
Z
Z

Z
Z
Z
Z
Z
Z
Z

H
HHH

HHH
HHH

HH

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

@
@
@
@
@
@
@
@
@
@
@
@A
A
A
A
A
A
A
A
A
A
A
A

S
S
S
S
S
S
S
S
S
S
S
S

�
��
�
��
�
��
�
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

1 2 3

3 2 1

1

2

3

3

2

1

Figure 15: The instance IK4.

�

�

�

�•

•

•
�

�

�

�•
•

�
�

�
�• •

�
�

�
�• •x1

x3

x2

x0

hhhh
hhhh

hhhh
hhh

hh

(((((((((((((((((

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@@

J
J
J
J
J
J
J
JJ

S
S
S
S
S
S
S
S
S
S
SS

Q
Q
Q
Q
Q
Q
Q
QQ�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EHHHH

HHH
HHH

HH

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ

Q
Q
Q
Q
Q
Q
Q
QQ

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

1 0

1 0

1

2

3

0

1

Figure 16: The instance I4.

• ISAT
2∆ (shown in Figure 17(a)) is composed of five Boolean variables and the following

constraints: x1 ∨ x2, x3 ∨ x4, x1 ∨ x5, x2 ∨ x5, x3 ∨ x5, x4 ∨ x5.
• I5 (shown in Figure 18) is composed of five variables with domains D(wi) = {0, 1}

(i = 1, 2, 3), D(xi) = {1, 2, 3}, and the constraints: wi ∨ (x1 = i) (i = 1, 2, 3) and
wi ∨ (x2 = i) (i = 1, 2, 3). In this instance the variable order is w1 < w2 < w3 < x1 < x2.

22 COOPER AND ŽIVNÝ

�
�

�
�•

•

�
�

�
�•

•

�
�

�
�•

•

�
�

�
�•

•

�
�

�
�•

•

�
�
�
�
��

�
��
�
��

HH
HHH

HHH
HHH

HH
HHH

HHH
HHH

XXXXXXXXXXX

A
A
A
A
A
A
A
A
A
AA

A
A
A
A
A
A
A
A
A
AA

J
J
J
J
J
J
J
J

��
���

���
���

�
�
�
�
�
�
�
�
�
��

�
��
�
��
�
��
��

J
J
J
J
J
J
J
J

@
@
@
@
@@

HH
HHHH

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

1

0

1

0

1

0

1

0

1

0

x1

x2

x3

x4

x5

(a)

�
�

�
�•

•

�
�

�
�•

•

�
�

�
�•

•XXXXXXXXXXX���
��
���

���J
J
J
J
J
J
J
J

HH
HHHH��

��
��

x2

x1 x3

1

0

1

0

1

0

(b)

Figure 17: The instances (a) ISAT
2∆ and (b) I2COL

3 .

�

�

�

�•
•

•

�
�

�
�•

•

�
�

�
�•

•

�
�

�
�•

•

�

�

�

�•
•

•

3

2

1

3

2

1

1

0

1

0

1

0

x1 x2

w1

w2

w3

��
��
�
��
�
��

���
���

���
�

H
HHHH

HHH
HH

\
\
\
\
\
\
\
\
\
\
\
\

��
�
��
�
��
��

XXXXXXXXXX

@
@
@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�
��

HHH
HHH

HHHH

Z
Z
Z
Z
Z
Z
Z
Z
ZZ

H
HH

H
HH

HH
HH

XX
XXX

XXX
XX

����������

�
�

�
�
�

�
�

�
�
�

Z
Z

Z
Z
Z

Z
Z
Z

ZZ

����������

�
�

�
�
�

�
�

�
��

@
@

@
@
@

@
@
@

@
@

XXX
XXX

XXX
X

���
���

����

�
�

�
�
�

�
�
�

��

Figure 18: The instance I5 (with variable order w1 < w2 < w3 < x1 < x2).

• ISAT
6 (shown in Figure 19) is composed of six Boolean variables and the following con-

straints: x1 ∨ x2, x1 ∨ x3, x2 ∨ x3, x3 ∨ x4, x4 ∨ x5, x4 ∨ x6, x5 ∨ x6.

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 23

�
�

�
�•

•

�
�

�
�•

•

�
�

�
�•

•
�
�

�
�•

•

�
�

�
�•

•

�
�

�
�•

•XXXXXXXXXXX��
���

���
���J

J
J
J
J
J
J
J

HH
HHHH

@
@
@
@
@@

�
�
�
�
��

�
��
�
��

 J

J
J
J
J
J
J
J

@
@
@
@
@@

HH
HHHH�

��
�
��

�
�
�
�
��

XXXXXXXXXXX��
���

���
���XXXXXXXXXXX��

���
���

���

x2

x1 x3

x5

x4 x6

1

0

1

0

1

0

1

0

1

0

1

0

Figure 19: The instance ISAT
6 .

�

�

�

�•

•

�

�

�

�•

•
�

�

�

�•

•

�

�

�

�•

•1

0

1

0

1

0

1

0

x1

x2 x3

x4

hhhhhhhhhhhhhhhhhh

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

C
C
C
C
C
C
C
C
C
C
C
C

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

A
A
A
A
A
A

B
B
B
B
B
B
B
B
BB

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

!!
!!
!!
!!
!!

!!
!!
!

XXXXXXXXXXXX"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 20: The instance ISAT
K4 .

• ISAT
K4 (shown in Figure 20) is composed of four Boolean variables and the following

constraints: x1 ∨ x2, x3 ∨ x4 and xi ∨ xj (for (i, j) = (1, 3), (1, 4), (2, 3), (2, 4)).
• I2COL

3 (shown in Figure 17(b)) is composed of three Boolean variables and the three
inequality constraints: xi 6= xj (1 ≤ i < j ≤ 3).

In figures representing CSP instances, similarly to patterns, ovals represent variables,
the set of points inside an oval the elements of the variable’s domain, a dashed (respectively,
solid) line joining two points represents the incompatibility (respectively, compatibility) of
the two points. In order not to clutter up figures representing instances, trivial constraints
containing only positive edges (i.e. corresponding to complete relations) are not shown.
Figure 21(a) is a pattern which does not occur in the instance IK4 (Figure 15 on page 21).
Similarly, Figure 21(b) is a pattern which does not occur in the instance I4 (Figure 16 on
page 21), and the pattern in Figure 21(c) does not occur in instance ISAT

2∆ . Figure 21(d), (e)
and (f) are three patterns which do not occur in the instance I5 (Figure 18 on page 22). The
pattern (known as T1) shown in Figure 21(d) is, in fact, a tractable pattern [15], but the fact
that it does not occur in I5 (an arc-consistent instance which has no solution) shows that
arc consistency is not a decision procedure for CSPSP (T1). This instance was constructed
using certain known properties of the pattern T1 [24].

24 COOPER AND ŽIVNÝ

�
�

�
•
•

�
�

�
•

�
�

�
•
•XXXXXXXX���

���
��

Z
Z
ZZ�

�
��

(a)

�
�

�
•
•

�
�

�
•
•

�
�

�
•
•

���
���

��

�
�
�
�

@
@
@
@

a

b

c

d

e

f c 6= d
(b)

�
�

�
•
•

�
�

�
•

�
�

�
•a

b

i k

j

a > b
i, j<k

(c)

�
�

�
• �

�
�
•
•

�
�

�
•\

\
\
\\�
�
�
��

(d)

�
�

�
• �

�
�
•

�
�

�
•

j

k

j < k
(e)

�
�

�
• �

�
�
•
•

�
�

�
•

i

j

ke

f e 6=f
i<j<k

(f)

�
�

�
•
•

�
�

�
•
•a

b

a 6= b
(g)

�
�

�
•
•

�
�

�
•

�
�

�
•a

b

a > b
(h)

�
�

�
• �

�
�
•

�
�

�
•
• c

d

c > d
(i)�

�
�
•
•

�
�

�
•

�
�

�
•a

b

i

j

k

a > b
i, j < k

(j)

�
�

�
•
•

�
�

�
•

�
�

�
•
•a

b

c

d
k

j

a > b
c > d
j < k(k)

�
�

�
• �

�
�
•

�
�

�
•
• c

d
i

j

c > d
i < j

(l)

�
�

�
•
•

�
�

�
•
•

�
�

�
•
•a

b

e

f
a > b
e > f

(m)

�
�

�
• �

�
�
•

�
�

�
•
•

@
@
@
@

�
�
��

c

d

c 6= d
(n)

�
�

�
•
•

�
�

�
•
•a

b

c

d

a > b
c > d

(o)

�
�

�
• �

�
�
•

�
�

�
•

@
@
@
@

�
�
�
�

(p)

�
�

�
• �

�
�
•

�
�

�
•

@
@
@
@

(q)

�
�

�
•
•

�
�

�
•
•a

b

c

d

a 6= b
c 6= d

(r)�
�

�
•
•

�
�

�
•

��
���

���a

b
a 6= b

(s)

Figure 21: Patterns which do not occur in (a) IK4; (b) I4; (c) ISAT
2∆ ; (d),(e),(f) I5; (g),(h),(i)

ISAT
6 ; (j),(k),(l),(m) ISAT

K4 ; (n),(o),(p),(q),(r),(s) I2COL
3 .

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 25

It can easily be verified that the three patterns Figure 21(g), (h), (i) do not occur in
ISAT

6 . Similarly, the four patterns in Figure 21(j),(k),(l),(m) do not occur in the instance
ISAT
K4 (Figure 20 on page 23).

The instance I2COL
3 is the problem of colouring a complete graph on three vertices with

only two colours. It is arc consistent but clearly has no solution. It is easy to verify that
none of the six patterns in Figure 21(n),(o),(p),(q),(r),(s) occur in I2COL

3 . Furthermore,
trivially, no pattern on four or more variables occurs in I2COL

3 and no pattern with three or
more distinct values in the same domain occurs in I2COL

3 .
By Lemma 2.5, we know that if there is one of the instances IK4, I4, ISAT

2∆ , I5, ISAT
6 ,

ISAT
K4 , I2COL

3 , such that pattern P does not occur in this instance then P is not AC-solvable.
Let P be any of the patterns shown in Figure 21. By Lemma 2.6, any pattern Q in which P
occurs is not AC-solvable.

By the pattern in Figure 21(g), a simple AC-solvable pattern cannot contain two negative
edges between the same pair of variables. Since instance I2COL

3 contains only three variables
and instance I5 contains no triple of variables which have a negative edge between each
pair of variables, an AC-solvable pattern can contain at most three variables and at most
two negative edges. Thus to identify simple AC-solvable patterns we only need to consider
patterns on at most three variables, at most two points per variable and with none, one or
two negative edges. Furthermore, in the case of two negative edges these negative edges
cannot be between the same pair of variables.

5.2. Characterising AC-solvable unordered patterns. In this subsection, we consider
only patterns P that have no associated structure (i.e. with <X = <D = ∅). We prove the
following characterisation of unstructured AC-solvable patterns.

Theorem 5.1. If P is a simple unordered pattern, then P is AC-solvable if and only if P
occurs in the pattern LX (Figure 13 on page 16) or in the pattern unordered(BTP).

Proof. By the discussion in Section 5.1, we only need to consider patterns P with at most
three variables, at most two points per variable and at most two negative edges (with these
edges not being between the same pair of variables). We consider separately the cases of a
pattern with 0, 1 or 2 negative edges.

The only simple unordered pattern with no negative edges is the triangle of positive
edges shown in Figure 21(p) on page 24 and this pattern is not AC-solvable since it does
not occur in I2COL

3 .
Let P be a simple pattern with one negative edge (a, c) (between variables y and z)

and at most two points per variable. If the domain of y (respectively, z) contains another
point b (respectively, d), then for a, b (respectively, c, d) to be non-mergeable, there must
be a positive edge (b, c) (respectively, (a, d)). Furthermore, for b (respectively, d) not to be
a dangling point, it must belong to another positive edge. Any two distinct points in the
domain of a third variable x would be mergeable, so we can assume that P has at most one
point in the domain of x. Since this point is not a dangling point, it must be connected by
positive edges to at least two points. By a simple exhaustive search we can easily deduce
that either P is (a subpattern of) a triangle on three variables composed of one negative
edge and two positive edges (in which case P occurs in the pattern LX shown in Figure 13
on page 16), or one of the patterns shown in Figure 21(a), Figure 21(p) or Figure 21(s) on
page 24 occurs in P , in which case, by Lemma 2.6, P is not AC-solvable.

26 COOPER AND ŽIVNÝ

Let P be a simple pattern containing exactly two negative edges (a, b) (between variables
x, y) and (a, c) (between variables x, z) that meet at the point a of variable x. Suppose first
that x has no other point. If P does not occur in LX, then P must have a positive edge
between variables y and z which is either (b, c) or (d, e) where d 6= b and e 6= c. In the latter
case, to avoid points b, d (respectively, c, e) being mergeable, P must have the positive edge
(a, d) (respectively, (a, e)). We can deduce that, if P does not occur in LX, then one of the
patterns Figure 21(p) or Figure 21(q) on page 24 occurs in P . Suppose now that P has
two points a, f in the domain of variable x. For a, f not to be mergeable, P must have
either the positive edge (b, f) or the positive edge (c, f). If it has both, then the pattern
Figure 21(d) on page 24 occurs in P . If P has just one, which without loss of generality
we can suppose is the positive edge (b, f), then for f not to be a dangling point, f must
belong to another positive edge (d, f) (where d 6= b) or (e, f) (where e 6= c). In the latter
case, for c, f not to be mergeable, P must also have the positive edge (a, e). In both cases,
the pattern Figure 21(s) on page 24 occurs in P . Thus, if P does not occur in LX, then, by
Lemma 2.6, P is not AC-solvable.

Finally, let P be a simple pattern containing exactly two negative edges (a, b) (between
variables x, y) and (c, d) (between variables x, z) with two distinct points a 6= c in the domain
of variable x. To avoid a, c being mergeable, P must have a positive edge (b, c) or (a, d).
Without loss of generality, suppose P has the positive edge (b, c). If P does not occur in
unordered(BTP), then at least one of the variables y, z must have two distinct points. If y
has a point e 6= b, then for b, e not to be mergeable, P must have the positive edge (a, e).
Similarly, if z has a point f 6= d, then P must have the positive edge (c, f). But then, to
avoid dangling points, we have to add other positive edges to P and we find that one of the
patterns Figure 21(a), Figure 21(n), Figure 21(p) or Figure 21(s) on page 24 occurs in P ,
and so, by Lemma 2.6, P is not AC-solvable. By Lemma 2.4, if P occurs in unordered(BTP),
then P occurs in BTP, and thus is AC-solvable [16].

5.3. Characterising AC-solvable variable-ordered patterns. In this subsection we
consider simple patterns P which have no domain order, (i.e. <D= ∅), but do have a partial
order on the variables. We first require the following lemma.

Lemma 5.2. If P< is a pattern whose only structure is a partial order on its variables and
P− = unordered(P<), then

(1) P< is simple if and only if P− is simple.
(2) P< is AC-solvable only if P− is AC-solvable.

Proof. The property of being simple is (Definition 9) independent of any variable order,
hence P< is simple if and only if P− is simple. By Lemma 2.4, P− occurs in P<. The fact
that P< is AC-solvable only if P− is AC-solvable then follows from Lemma 2.6.

Recall pattern LX< from Example 8 that is obtained from the pattern LX (Figure 13
on page 16) by adding the partial variable order y < z. Recall (from from Example 8) that
the patterns LX and LX< are, in fact, equivalent.

Lemma 5.2 allows us to give the following characterisation of variable-ordered AC-solvable
patterns.

Theorem 5.3. If P is a simple pattern whose only structure is a partial order on its
variables, then P is AC-solvable if and only if P occurs in the pattern LX< (Example 8),
the pattern BTPvo (Figure 4 on page 8) or the pattern invVar(BTPvo).

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 27

Proof. By Lemma 5.2 and Theorem 5.1, we only need to consider patterns P− occurring
in LX or unordered(BTP) to which we add a partial order on the variables to produce a
pattern P .

We first consider the case of a pattern P in which there are two negative edges that
meet. By Lemma 5.2 and Theorem 5.1, for P to be AC-solvable, P− must occur in LX.
By Theorem 3.4 and Example 8, we have that LX< is AC-solvable. Let L be the pattern
composed of three variables x, y, z and two negative edges which meet at a point 〈x, ε〉 (i.e. L
is the pattern LX without its positive edges). Then Figure 21(e) on page 24 and Lemma 2.7
tell us that placing any order between x and y or between x and z turns L into a pattern
which is not AC-solvable. It follows from Lemma 2.6 that an ordered pattern P containing
two negative edges that meet is AC-solvable if and only if P occurs in LX<.

Now consider simple patterns P which contain two negative edges that do not meet. By
Lemma 5.2 and Theorem 5.1, for P to be AC-solvable, P− must occur in unordered(BTP).
Adding almost any partial variable order to unordered(BTP) produces a pattern which
occurs in BTPvo (Figure 4(b) on page 8) or invVar(BTPvo). The only order for which this
is not the case, is the total order x < z < y (or its inverse), where the variables x, y, z are
as shown in Figure 4(b) on page 8. Let P be any simple pattern on three variables x, y, z,
containing two negative edges (between x, z and y, z) that do not meet and with the variable
order x < z < y. Then the pattern shown in Figure 21(f) on page 24 occurs in P and hence,
by Lemma 2.6, P is not AC-solvable.

If P is any simple pattern such that P− occurs in LX or unordered(BTP) and contains
at most one negative edge, then P occurs in the three-variable triangle pattern composed of
one negative and two positive edges; it is then easy to check that, whatever the ordering of
is variables, P occurs in BTPvo or invVar(BTPvo).

5.4. Characterising AC-solvable domain-ordered patterns. In this subsection we
consider simple patterns P with a partial order on domains but no ordering on the variables.

Let EMC− be the no-variable-order version of the pattern EMC depicted in Figure 5 on
page 10. We prove the following characterisation of domain-ordered AC-solvable patterns.

Theorem 5.4. If P is a simple pattern whose only structure is a partial order on its domains,
then P is AC-solvable if and only if P occurs in the pattern LX (Figure 13 on page 16), or
the pattern EMC−, or the pattern invDom(EMC−).

Proof. As in the proofs of Theorem 5.1 and 5.3, we only need to consider patterns on at
most three variables, with at most two points per variable and with either no negative
edges, one negative edge, two negative edges that meet or two negative edges that do not
meet. However, we have more cases to consider than in Theorem 5.1 since patterns may
now contain points, such as β in the pattern EMC shown in Figure 5 on page 10, which
would be a dangling point without the domain order α > β.

The only pattern with no negative edges and no mergeable points is the triangle of
positive edges shown in Figure 21(p) on page 24 which is not AC-solvable.

Let P be a simple pattern with one negative edge, at most two points per variable and
just two variables. If neither of the patterns shown in Figure 21(o) on page 24 and Figure 21(r)
on page 24 occur in P , then P occurs in the pattern EMC− or in invDom(EMC−).

Let P be a simple pattern on three variables x, y, z, with one negative edge (a, c)
(between variables y and z) and at most two points per variable. If the domain of y

28 COOPER AND ŽIVNÝ

(respectively, z) contains another point b (respectively, d), then for a, b (respectively, c, d) to
be non-mergeable, there must be a positive edge (b, c) (respectively, (a, d)). Any two distinct
points in the domain of variable x would be mergeable, so we can assume that P has exactly
one point in the domain of x. Since this point e is not a dangling point, it must be connected
by positive edges to at least two points. If none of the patterns in Figure 21(a), Figure 21(p)
and Figure 21(s) on page 24 occurs in P , then e must belong to the two positive edges (a, e)
and (c, e), and no others. If neither of the patterns in Figure 21(o) or Figure 21(r) on page 24
occurs in P , then we can deduce that P occurs in the pattern EMC− or in invDom(EMC−).

Let P be a simple pattern on three variables with at most two points per variable and
with two negative edges that meet. If P has two points a, b in the domain of the same
variable together with an ordering a < b, then one of the patterns in Figure 21(h) and
Figure 21(i) on page 24 (or their domain-inversed version) occurs in P , and hence P cannot
be AC-solvable. This leaves only the case of unordered patterns P . By the proof (and in
particular the part that deals with patterns containing exactly two negative edges that meet)
of Theorem 5.1, we can deduce that if P is AC-solvable then it occurs in the pattern LX.

Let P be a simple pattern on three variables x, y, z with at most two points per variable
and with two negative edges (a, c) (between variables x and y) and (d, f) (between variables
y and z) that do not meet (i.e. c 6= d). If P contains only these four points a, c, d, f , then it
necessarily occurs in EMC−. If P contains exactly five points, then without loss of generality,
we can assume that there is a point b 6= a in the domain of x. Since a, b are not mergeable,
there must be a positive edge (b, c) in P . If P has a positive edge (b, f), then the pattern
in Figure 21(n) on page 24 occurs in P ; if P has a positive edge (b, d) then the pattern in
Figure 21(s) on page 24 occurs in P . Now, if the pattern in Figure 21(o) on page 24 does
not occur in P , then whatever ordering is placed on a, b and c, d, P occurs in the pattern
EMC− or in invDom(EMC−). If P contains exactly six points, then there must be points
b 6= a in the domain of x and e 6= f in the domain of z. Since both a, b and e, f , are not
mergeable, there must be positive edges (b, c) and (e, d). If P has a positive edge (b, e), then
the pattern in Figure 21(b) on page 24 occurs in P ; if P has a positive edge (b, f) or (a, e),
then the pattern in Figure 21(n) on page 24 occurs in P ; if P has a positive edge (b, d) or
(e, c), then the pattern in Figure 21(s) on page 24 occurs in P . But then in all other cases
one of b and e is a dangling point unless P has an order on both a, b and e, f . But this then
implies that at least one of the patterns in Figure 21(m) and Figure 21(o) on page 24 occur
in P . In all these cases, by Lemma 2.6, P is not AC-solvable.

5.5. Characterising AC-solvable ordered patterns. In this subsection we consider the
most general case of simple patterns P which have a partial domain order and a partial
variable order. We prove the following characterisation of AC-solvable patterns with partial
orders on domains and variables.

Theorem 5.5. If P is a simple pattern with a partial order on its domains and/or variables,
then P is AC-solvable if and only if P occurs in one of the patterns LX<, EMC (Figure 5
on page 10), BTPvo, BTPdo (Figure 4 on page 8), BTX (Figure 9 on page 14) or BTI
(Figure 10 on page 14) (or versions of these patterns with inversed domain-order and/or
variable-order).

Proof. Let P− be the same pattern as P but without the partial order on its variables. If P
is AC-solvable, then, by Lemma 2.4, P− occurs in P , and hence, by Lemmas 2.3 and 2.5,

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 29

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

j

i

k

c > d
a c

d

(a)

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX��
���

���\
\
\
\
\�
�
�
�
�

j

i k

a > b
c > d

a

b

c

d

(b)

Figure 22: One-negative-edge patterns occurring in EMC−.

�
�

�
•

�
�

�
•

�
�

�
•

•XXXXXXXX
\
\
\
\
\�
�
�
�
�

j

i

k

c > d
a c

d

(a)

�
�

�
•

•

�
�

�
•

�
�

�
•

•XXXXXXXX���
���

��
\
\
\
\
\�
�
�
�
�

j

i k

a > b
c > d

a

b

c

d

(b)

Figure 23: Two-negative-edge patterns occurring in EMC.

P− is also AC-solvable. Thus, by Theorem 5.4, P− must occur in either LX, EMC− or
invDom(EMC−). We consider the four cases: no negative edges, one negative edge, two
negative edges that meet, two negative edges that do not meet in P . We have already seen
in the proofs of Theorems 5.1 and 5.4 that there are no simple AC-solvable patterns with
only positive edges, so there remain three cases to consider.

Let P be a simple pattern with exactly one negative edge. If P− (which also has one
negative edge) occurs in LX and is simple (and hence has no dangling points) then it must
occur in a triangle T consisting of one negative and two positive edges. This triangle pattern
T occurs in BTP or in invVar(BTP) whatever ordering we place on its three variables and
hence the same is true of P . If P− (which has one negative edge and is unmergeable) occurs
in EMC− but not in the triangle T , then P− occurs in one of the two patterns shown in
Figure 22 on page 29 (or the domain-inversed versions of these patterns) and includes the
point d (in the case corresponding to Figure 22(a) on page 29) or the points b and d (in the
case corresponding to Figure 22(b)) on page 29. For d (respectively, b) not to be a dangling
point in P , we must have the order c > d (respectively a > b) in P . If P− occurs in the
pattern in Figure 22(a) on page 29 and P has the variable order i, j < k (or i < k or j < k),
then P occurs in BTPdo. If P− occurs in the pattern in Figure 22(a) on page 29 and P
has the variable order i < j, then P occurs in invVar(BTI). If P− occurs in the pattern in
Figure 22(a) on page 29 and P includes the variable order i < j, k and domain order c > d,
then the pattern in Figure 21(j) on page 24 occurs in invVar(P). If P− occurs in the pattern
in Figure 22(a) on page 29 and P includes the variable order i, k < j and domain order
c > d, then the pattern in Figure 21(c) on page 24 occurs in P . This covers all variable
orderings of P (after taking into account the variable-inversed versions of each case) when
P− occurs in the pattern in Figure 22(a) on page 29. Now consider the case in which P−

occurs in the pattern in Figure 22(b) on page 29. If P includes the variable order j < k (or

30 COOPER AND ŽIVNÝ

j < i) together with the domain order a > b and c > d, then the pattern in Figure 21(k)
on page 24 occurs in P . If P has the variable order i < k then P occurs in EMC. Thus all
one-negative-edge AC-solvable patterns occur in BTP, BTI or EMC (or their domain and/or
variable-inversed versions).

Let P be a simple pattern with two negative edges that meet at a point. P− necessarily
occurs in the pattern LX. Let j be the variable of P where the two negative edges meet, and
let i, k be the other two variables. If P includes the variable order j < k (or, by symmetry,
the order j < i), then the pattern in Figure 21(e) on page 24 occurs in P and hence P is
not AC-solvable. If P has the variable order i < k, then P occurs in the pattern LX< (the
version of LX shown in Figure 13 on page 16 together with the variable order y < z). By
symmetry, we have covered all possible cases.

Finally, let P be a simple pattern with two negative edges that do not meet at a point.
P− necessarily occurs in the pattern EMC. We distinguish two distinct cases: (1) P− occurs
in the pattern in Figure 23(a) on page 29 or (2) P− occurs in the pattern in Figure 23(b)
on page 29 and includes the point b together with the order a > b (otherwise b would be a
dangling point). We first consider case (1). If P includes the order c > d and i < j, then
the (inversed domain-order version of the) pattern in Figure 21(l) on page 24 occurs in P
and hence P is not AC-solvable. If P includes the order i < k < j, then the pattern in
Figure 21(f) on page 24 occurs in P . If P has the variable order i < j < k and no domain
order, then P occurs in BTPvo. If P has the variable order i, j < k and the domain order
c > d, then P occurs in BTPdo. All other patterns which fall in case (1) are covered by
symmetry. Now we consider the case (2). First suppose that P includes the domain order
c > d (as well as a > b). If P includes the variable order i < j, then the (domain-inversed
version of the) pattern in Figure 21(l) on page 24 occurs in P . If P includes the variable
order j < k, then the pattern in Figure 21(k) on page 24 occurs in P . If P has the variable
order i < k, then P occurs in EMC. Now, suppose that P does not include the domain order
c > d. If P includes the variable order i, j < k, then the pattern in Figure 21(j) on page 24
occurs in P . If P includes the variable order i, k < j, then the pattern in Figure 21(c) on
page 24 occurs in P . If P has the variable order i < j, k (or i < j or i < k) then P occurs
in BTX. If P has the variable order j < k then P occurs in BTI. By symmetry we have
covered all possible variable orderings of P in case (2).

6. Conclusion

We have identified 4 new tractable classes of binary CSPs. Moreover, we have given a
characterisation of all simple partially-ordered patterns decided by AC. We finish with open
problems.

For future work, we plan to study the wider class of unmergeable ordered patterns in
which two points a, b may be non-mergeable simply because there is an order a < b on them.
In the present paper, a, b are mergeable unless they have different compatibilities with a
third point c.

Is there a way of giving a unified description of EMC, BTX and BTI, since to find a
solution after establishing arc consistency we use basically the same algorithm? Any such
generalisation will not be a simple forbidden pattern by Theorem 5.5, but there is possibly
some other way of combining these patterns.

THE POWER OF AC FOR PARTIALLY-ORDERED FORBIDDEN PATTERNS 31

Are there interesting generalisations of these patterns to constraints of arbitrary arity,
valued constraints, infinite domains or QCSP? BTP has been generalised to constraints of
arbitrary arity [18] as well as to QCSPs [26]. Max-closed constraints have been generalised
to VCSPs [12]. Infinite domains is an interesting avenue of future research because simple
temporal constraints are binary max-closed [23].

In this paper, we only focused on classes of CSP instances with totally ordered domains
(but defined by partially-ordered patterns). However, the framework of forbidden patterns
captures language-based CSPs with partially-ordered domains, such as CSPs with a semi-
lattice polymorphism. In the future, we plan to investigate classes of CSP instances with
partially-ordered domains.

Acknowledgement. We would like to thank the reviewers of both the extended abstract
of this paper [19] and this full version for their very detailed comments and pertinent
suggestions.

References

[1] Albert Atserias, Andrei A. Bulatov, and Vı́ctor Dalmau. On the Power of k-Consistency. In Proceedings
of the 34th International Colloquium on Automata, Languages and Programming (ICALP’07), volume
4596 of Lecture Notes in Computer Science, pages 279–290. Springer, 2007.

[2] Libor Barto. Constraint satisfaction problem and universal algebra. ACM SIGLOG News, 1(2):14–24,
2014.

[3] Libor Barto and Marcin Kozik. Constraint Satisfaction Problems Solvable by Local Consistency Methods.
Journal of the ACM, 61(1), 2014. Article No. 3.

[4] Christian Bessière, Jean-Charles Régin, Roland H. C. Yap, and Yuanlin Zhang. An optimal coarse-grained
arc consistency algorithm. Artif. Intell., 165(2):165–185, 2005.

[5] Andrei Bulatov. Combinatorial problems raised from 2-semilattices. Journal of Algebra, 298:321–339,
2006.

[6] Andrei Bulatov. Bounded relational width. Unpublished manuscript, 2009.
[7] Andrei Bulatov and Vı́ctor Dalmau. A simple algorithm for Mal’tsev constraints. SIAM Journal on

Computing, 36(1):16–27, 2006.
[8] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the Complexity of Constraints using

Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
[9] Clément Carbonnel and Martin C. Cooper. Tractability in constraint satisfaction problems: a survey.

Constraints, 21(2):115–144, 2016.
[10] David A. Cohen, Martin C. Cooper, Guillaume Escamocher, and Stanislav Živný. Variable and value

elimination in binary constraint satisfaction via forbidden patterns. Journal of Computer and System
Sciences, 81(7):1127–1143, 2015.

[11] David A. Cohen, Martin C. Cooper, Peter Jeavons, and Stanislav Živný. Tractable classes of binary
CSPs defined by excluded topological minors. In Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI’15), pages 1945–1951. AAAI Press, 2015.

[12] David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The Complexity of Soft
Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

[13] Martin C. Cooper, David A. Cohen, Páid́ı Creed, Dániel Marx, and András Z. Salamon. The tractability
of CSP classes defined by forbidden patterns. Journal of Artificial Intelligence Research, 45:47–78, 2012.

[14] Martin C. Cooper, Simon de Givry, Mart́ı Sánchez, Thomas Schiex, Matthias Zytnicki, and Tomáš
Werner. Soft arc consistency revisited. Artificial Intelligence, 174(7–8):449–478, 2010.

[15] Martin C. Cooper and Guillaume Escamocher. Characterising the complexity of constraint satisfaction
problems defined by 2-constraint forbidden patterns. Discrete Applied Mathematics, 184:89–113, 2015.

[16] Martin C. Cooper, Peter G. Jeavons, and András Z. Salamon. Generalizing constraint satisfaction on
trees: Hybrid tractability and variable elimination. Artificial Intelligence, 174(9–10):570–584, 2010.

[17] Martin C. Cooper, Philippe Jégou, and Cyril Terrioux. A Microstructure-Based Family of Tractable
Classes for CSPs. In Proceedings of the 21st International Conference on Principles and Practice of

32 COOPER AND ŽIVNÝ

Constraint Programming (CP’15), volume 9255 of Lecture Notes in Computer Science, pages 74–88.
Springer, 2015.

[18] Martin C. Cooper, Achref El Mouelhi, Cyril Terrioux, and Bruno Zanuttini. On broken triangles. In
Proceedings of the 20th International Conference on Principles and Practice of Constraint Programming
(CP’14), volume 8656 of Lecture Notes in Computer Science, pages 9–24. Springer, 2014.

[19] Martin C. Cooper and Stanislav Živný. The power of arc consistency for CSPs defined by partially-ordered
forbidden patterns. In Proceedings of the 31st Annual ACM/IEE Symposium on Logic in Computer
Science (LICS’16), pages 652–661, 2016.

[20] Martin C. Cooper and Stanislav Živný. Hybrid tractable classes of constraint problems. In Andrei
Krokhin and Stanislav Živný, editors, Complexity and approximability of Constraint Satisfaction Problems,
volume 7 of Dagstuhl Follow-Ups, pages 113–135. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.

[21] M.C. Cooper. Linear-time algorithms for testing the realisability of line drawings of curved objects.
Artificial Intelligence, 108:31–67, 1999.

[22] V́ıctor Dalmau. Generalized Majority-Minority Operations are Tractable. Logical Methods in Computer
Science, 2(4), 2006.

[23] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artif. Intell., 49:61–95, 1991.
[24] Guillaume Escamocher. Forbidden Patterns in Constraint Satisfaction Problems. PhD thesis, University

of Toulouse, 2014.
[25] Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP and

Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on Computing,
28(1):57–104, 1998.

[26] Jian Gao, Minghao Yin, and Junping Zhou. Hybrid tractable classes of binary quantified constraint
satisfaction problems. In Proceedings of AAAI’11. AAAI Press, 2011.

[27] Martin J. Green and David A. Cohen. Domain permutation reduction for constraint satisfaction problems.
Artificial Intelligence, 172(8-9):1094–1118, 2008.

[28] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the
other side. Journal of the ACM, 54(1):1–24, 2007.

[29] Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard. Tractability
and learnability arising from algebras with few subpowers. SIAM Journal on Computing, 39(7):3023–3037,
2010.

[30] Peter G. Jeavons and Martin C. Cooper. Tractable Constraints on Ordered Domains. Artificial Intelligence,
79(2):327–339, 1995.

[31] Vladimir Kolmogorov, Michal Roĺınek, and Rustem Takhanov. Effectiveness of structural restrictions for
hybrid csps. CoRR, abs/1504.07067, 2015.

[32] Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear programming for
general-valued CSPs. SIAM Journal on Computing, 44(1):1–36, 2015.

[33] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. Journal
of the ACM, 60(6), 2013. Article No. 42.

[34] Wady Naanaa. Unifying and extending hybrid tractable classes of CSPs. Journal of Experimental and
Theoretical Artificial Intelligence, 25(4):407–424, 2013.

[35] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. The Handbook of Constraint Programming.
Elsevier, 2006. Chapter 3 (by Christian Bessiere): Constraint Propagation.

[36] Rustem Takhanov. Hybrid (V)CSPs and algebraic reductions. CoRR, abs/1506.06540, 2015.
[37] Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. Journal of the ACM, 63(4),

2016. Article No. 37.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Contributions
	Related work

	2. Preliminaries
	2.1. CSPs and patterns
	2.2. Pattern occurrence
	2.3. AC solvability
	2.4. Pattern symmetry and equivalence

	3. New tractable classes solved by arc consistency
	4. Recognition problem for unknown orders
	5. Characterisation of patterns solved by AC
	5.1. Instances not solved by arc consistency
	5.2. Characterising AC-solvable unordered patterns
	5.3. Characterising AC-solvable variable-ordered patterns
	5.4. Characterising AC-solvable domain-ordered patterns
	5.5. Characterising AC-solvable ordered patterns

	6. Conclusion
	References

