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1.1 Related work

Typically, uncertainty in parameters (data) is modelled by specifying a set, denoted by U , of all possible realisations of the
parameters, called scenarios. There are two popular methods of defining the set of scenarios, namely the discrete and interval
uncertainty representations (see, e.g. Kouvelis and Yu 1997). In the discrete uncertainty representation, a scenario set U is
defined by explicitly listing all possible realisations of demands (demand scenarios). Hence, U is a finite set. In the interval
uncertainty representation, a closed interval is assigned to each demand, which means that its possible value will take some
value within the interval, but it is not possible to predict which one. Thus U is the Cartesian product of these intervals. In order
to choose a solution, one can adopt some well-known criteria used in robust optimisation. Among them there are the minmax
and minmax regret criteria, which assume that the decision-maker, who is risk-averse, seeks a solution minimising the cost
or opportunity loss under a worst scenario which may occur (see, e.g. Kouvelis and Yu 1997). The minmax criterion has been
applied to CLSP problem under the discrete uncertainty representation of demands in Kouvelis and Yu (1997). Unfortunately,
the problem turns out to be NP-hard even for two demand scenarios. It can be solved in pseudo-polynomial time, if the number
of scenarios is a constant. When the number of scenarios is part of the input, the problem becomes strongly NP-hard and no
solution algorithm is know. The situation is much better for the interval structure of demand uncertainty representation. In
Guillaume, Kobylański, and Zieliński (2012), it is shown that the minmax version of lot sizing problems with backorders can
be efficiently solved. Namely, the problem of computing a robust production plan with no capacity limits can be done in O(T )

time, where T is number of periods. For its capacitated version, an iterative algorithm based on Benders’ decomposition
(Geoffrion 1972) is provided, where in each iteration a worst-case scenario is computed (the adversarial problem is solved –
see, e.g. Bienstock and Özbay 2008; Nasrabadi and Orlin 2013) by a dynamic programming-based algorithm. Interestingly,
the complexity status of the latter problem is an open question. An effective variant of Benders’ decomposition was also
proposed in Bienstock and Özbay (2008) for computing optimal basestock policies in the minmax setting under uncertain
demand. The minmax regret version of two-stage uncapacitated lot sizing problems is studied in Zhang (2011), i.e. the
problem in which at the first stage a scheduling production is determined and at the second stage production and inventory
decisions are made, showing that it is solvable in O(T 6 log T ) time. The above-mentioned robust criteria are often regarded
as conservative criteria. However the minmax regret is generally believed as less conservative (see, e.g. Kouvelis and Yu
1997; Roy 2010). Some attempts to reduce the conservativeness of minmax (regret) approach were proposed in Jabbarzadeh,
Fahimnia, and Sheu (2017), Kouvelis, Kurawarwala, and Gutierrez (1992), Roy (2010). In Kouvelis, Kurawarwala, and
Gutierrez (1992), the authors proposed an alternative measure called p-robustness and applied it to a single and multiple
period layout of a manufacturing systems under demand uncertainty modelled by the discrete uncertainty representation.
The approach consists in seeking a solution that simultaneously minimises the total cost under the nominal scenario, i.e. a
scenario which is the most possible happens, and ensures that its relative deviation from optimality under each scenario does
not exceed a prescribed number p that represents the desired percentage deviation in the worst case. Since the constraint on
the relative deviation may restrict the set of feasible solutions and may have an effect on the solution quality (a solution can
be discarded if it violates the constraint under only one scenario) an improvement called elastic p-robustness was introduced
in Jabbarzadeh, Fahimnia, and Sheu (2017) with some applications to an integrated production-distribution planning model
under supply and demand uncertainties. The elastic p-robustness increases flexibility of the relative deviation constraint by
adding some variables reflecting the constraint violation whose values are penalised in the objective function. For yet another
measure of robustness under the discrete uncertainty representation, the so-called (b, w)-robustness, that does not focus only
on the worst case and is able to better capture the robustness, we refer the reader to Roy (2010).

Amore elaborate approach for dealing with demand uncertainty consists in collecting both intervals and plausible demand
values, and modelling uncertain demands by fuzzy intervals in the setting of possibility theory (see Dubois and Prade 1988).
The fuzzy intervals are regarded as possibility distributions, describing the sets of more or less plausible values of demands.
Consequently, we obtain a joint possibility distribution, induced by these fuzzy intervals, on the set of scenarios U . Clearly,
this approach is a generalisation of the interval uncertainty representation. In this context, the planning processes of MRPII
were adapted in Fargier and Thierry (2000), Mula, Poler, and Garcia-Sabater (2007), Tavakkoli-Moghaddam et al. (2007),
Guillaume, Kobylański, and Zieliński (2012) to take into account imprecision on demand quantities (MPS and MRP).
Moreover, some linear programming formulations of production planning problems such as: economic order quantity (Kao
and Hsu 2002), multi-period planning (Fargier and Thierry 2000; Grabot et al. 2005; Mula, Poler, and Garcia-Sabater 2007;
Tavakkoli-Moghaddam et al. 2007; Lan, Liu, and Sun 2009; Mula, Peidro, and Poler 2010; Guillaume, Thierry, and Grabot
2011), and the problem of supply chain planning (production distribution, centralised supply chain) (Petrovic, Roy, and
Petrovic 1999; Wang and Shu 2005; Peidro et al. 2009b, 2010) were extended to the case of uncertainty in the demand
modelled by fuzzy intervals. There are two popular approaches for coping with fuzzy parameters. In the first approach,
a defuzzification is first performed and then deterministic optimisation methods are used (see Peidro et al. 2009b, 2010).
The second one is possibilistic programming in which a solution optimises a criterion based on possibility measures (see



Tavakkoli-Moghaddam et al. 2007; Mula, Peidro, and Poler 2010; Guillaume, Kobylański, and Zieliński 2012). Interestingly,
it is shown in Guillaume, Kobylański, and Zieliński (2012) that there exists a link between the interval uncertainty with the
minmax criterion and the fuzzy uncertainty representation with the possibility-based criteria. It turns out that choosing a
plan in fuzzy-valued lot sizing problems with backorders is not harder than their interval-valued counterparts, since they are
reduced to examining a small number of interval problems with the minmax criterion.

If some additional information about uncertain parameters is provided, then less conservative criteria can be used to
choose a solution that enable to model various preferences with respect to a risk. For instance, information about importance
of each scenario. In this case, such importance may be expressed by assigning some weights to scenarios in U and one can
apply the Ordered Weighted Averaging aggregation operator (OWA for short) proposed by Yager (1988) that utilises this
information while computing a solution. It is worth pointing out that the OWA criterion generalises the classical criteria such
as the maximum, minimum, average and Hurwicz. If probability distributions of parameters or a probability distribution in
U are available, then the value at risk and the conditional value at risk criteria are worthy of consideration (see Pflug 2000;
Rockafellar and Uryasev 2000). In contrast to the minmax and minmax regret criteria, which consider all scenarios, the above
risk criteria take into account a subset of scenarios aggregated with respect to a certain confidence level. In consequence they
are less conservative (seeAlem and Morabito 2013 for an application of the risk criteria in production planning under stochastic
demands and setup times). A criterion that exploits information about both importance and probability of occurrence of each
scenario is the Weighted Ordered Weighted Averaging aggregation operator proposed in Torra (1997) (see also Ogryczak and
Śliwiński 2009). It is a generalization of the expected value and OWA.

Another way of hedging against uncertainty of parameters that does not fall into the aforementioned frameworks of
uncertainty handling was given in Bertsimas and Sim (2004). It models uncertain parameters as symmetric random variables,
with unknown distributions, centred at their nominal values. The main advantage of this framework is its computational
tractability and probabilistic guaranties for constraint violation. Moreover, it flexibly controls the level of conservativeness
of a resulting solution by assigning to each constraint a parameter, the so-called budget of uncertainty that is an upper
bound on the total (scaled) variability of parameters in the constraint from their nominal values. The budgets of uncertainty
allow the decision-maker to take his/her attitude towards a risk into account. It is worth pointing out that the approach is
a generalisation of a conservative framework earlier proposed in Soyster (1973) which assumes that all parameters may
realise at their worst-case values – (the case holds for large values of the budgets of uncertainty). The first direct application
of the above-mentioned method to solve lot sizing problems with backorders under uncertain demand with nondecreasing
uncertainty budgets in periods was given in Bertsimas and Thiele (2006). Along the same line as the previous application,
the method was adapted to periodic inventory control and production planning with uncertain product returns and demand
in Wei, Li, and Cai (2011), to lot sizing combined with cutting stock problems under uncertain cost and demand in Alem and
Morabito (2012) and to planning in agriculture and processing industry in Bohle, Maturana, and Vera (2010), Alvarez and
Vera (2014), Roccoa and Morabito (2016). It was also used in Bienstock and Özbay (2008) to obtain a good approximation
of optimal basestock policies under uncertain demand in the minmax setting. Furthermore, the above ideas are introduced
in a continuous time fluid model for dynamic pricing and inventory control with demand uncertainty by Adida and Perakis
(2006).

1.2 Our results

In this paper, we focus on the tactical level by examining the MPS and MRP planning processes. Namely, we deal with
the CLSP (for the MPS process) and MLCLSP (for the MRP process), both with backordering, with uncertain cumulative
demand under the interval uncertainty representation of scenario set U with the minmax criterion for choosing a robust
production plan (see, e.g. Zangwill 1969; Pochet and Wolsey 2006; Mula, Poler, and Garcia-Sabater 2007; Albrecht 2010
for models for their deterministic counterparts). Moreover, we assume that deterministic counterparts of the problems under
consideration are polynomially solvable and we would like to preserve their computational tractability. Therefore we do not
study production processes, for instance, with set-up costs/times, which become NP-hard problems even for many special
cases (see, e.g. Florian, Lenstra, and Rinnooy Kan 1980; Chen and Thizy 1990) and with other production parameters under
uncertainty, since it may lead to computationally harder problems.

To the best of our knowledge, such a model of uncertainty in cumulative demand has not been investigated in the literature
on production planning so far. We distinguish two interval representations of set U of cumulative demand scenarios, namely
for the MPS problems and for MRP ones. They are more realistic than the model of uncertainty in demand in periods (see
Section 3 for a detailed explanation). Moreover, we show that they lead to the polynomial solvability of the planning problems
under consideration in the minmax setting in contrast to the same problems with uncertainty in demand in periods for which
there are few polynomial methods.Accordingly, in Section 4.1, we show that computing a worst-case scenario (the adversarial
problem) can be done in O(T ) time for the MPS under L4L and POQ rules – note that its computational complexity in the



case of uncertainty in demand in periods is still an open problem (see Guillaume, Kobylański, and Zieliński (2012) and also
other hard adversarial problems Bienstock and Özbay (2008)). We provide a linear programme for the MPS under L4L and
a strongly polynomial combinatorial algorithm for the MPS under POQ for determining an optimal robust production plan.
Interestingly, under uncertainty on demand in periods there is only one iterative algorithm given in Guillaume, Kobylański,
and Zieliński (2012) based on Benders’ decomposition. A situation is much more involved under the cumulative demand
uncertainty for the MRP problems. In Section 4.2 we prove, by characterising optimal scenarios, that computing a worst-case
scenario (the adversarial problem) can be done in O(P · T 3) time, where P is the number of products. This allows us
to propose a linear programming model for determining an optimal robust production plan. In Section 5, we provide and
experimental evaluation of the proposed methods, which show, among others, that the decrease in profit of optimal robust
production plans is consistently linear when uncertainty increases.

2. Deterministic MPS/MRP problems

In this section, we recall the deterministic counterparts of the MPS and MRP problems (see, e.g. Albrecht 2010; Pochet and
Wolsey 2006). We provide slightly modified linear programmes and some compact formulations for them that allow us to
propose and analyse, in Section 4, methods and linear programming models for these problems under uncertainty.

2.1 Single-item model (MPS) – Lot for Lot rule (L4L)

We now discuss a single-item problem under capacity and cumulative capacity constraints. Given T periods, for period
t ∈ [T ] ([T ] denotes the set {1, . . . , T }), let dt ≥ 0 be the demand in period t , let xt ≥ 0 be the production amount in period
t . Set Dt = ∑t

i=1 di and Xt = ∑t
i=1 xi , Dt and Xt stand for the cumulative demand up to period t and the cumulative

production up to period t , respectively. Obviously, Xt−1 ≤ Xt and Dt−1 ≤ Dt , t = 2, . . . , T . The production xt in each
period t ∈ [T ] can be under two kinds of limits: capacity limits lt and ut such that lt ≤ xt ≤ ut and cumulative capacity limits
Lt and Ut on the cumulative production up to period t such that Lt ≤ ∑t

i=1 xi ≤ Ut . Thus the set of feasible production
amounts X ⊆ R

T+ can be defined as follows:

X = {x = (x1, . . . , xT ) : lt ≤ xt ≤ ut , Lt ≤
t∑

i=1

xi ≤ Ut , t ∈ [T ]}. (1)

Moreover, at this (tactical) level of planning for MPS, we assume that production, inventory and backordering cost coefficients
and the selling price coefficient do not depend on the period t .These cost and selling price coefficients are denoted, respectively,
by cI , cB and bP . We do not consider in the production process setup times and costs. Thus the problem, here studied, is a
version of the capacitated single-item lot sizing model with backordering (see, e.g. Pochet and Wolsey 2006) and it can be
formulated as a linear programming model as follows – the decision variables and parameters in model (2)–(7) are defined
in Table 1:

min
T∑

t=1

(cI It + cB Bt − bP st ) (2)

s.t. Bt − It = Dt −
t∑

i=1

xi t ∈ [T ] (3)

t∑
i=1

si = Dt − Bt t ∈ [T ] (4)

lt ≤ xt ≤ ut t ∈ [T ] (5)

Lt ≤
t∑

i=1

xi ≤ Ut t ∈ [T ] (6)

Bt , It , st , xt ≥ 0 t ∈ [T ] (7)

Since we have only one product and production cost coefficients are constant over the planning horizon, they can be
ignored in the formulation (2)–(7). Constraints (3) are the flow constraints of production with backordering and (4) specify the
potential sales of the product in the planning horizon. It is easily seen that (4) can be also rewritten as:

∑t
i=1 si = ∑t

i=1 xi − It .
Constraints (5) are the capacity limits in each period and (6) are the limits on the cumulative production up to period t . We



 Table 1. The parameters and decision variables in model (2)–(7).

Definition

Set of indices
[T ] Set of periods in the planning horizon {1, . . . , T }
Parameters
T Number of periods
cI Inventory cost of one unit of the product
cB Backorder cost for one unit of the product
bP Selling price of one unit of the product
dt External demand in period t ∈ [T ], cumulative demand Dt = ∑t

i=1 di
lt Lower bound on the production in period t ∈ [T ]
ut Upper bound on the production in period t ∈ [T ]
Lt Lower bound on the cumulative production in period t ∈ [T ]
Ut Upper bound on the cumulative production in period t ∈ [T ]
Decision variables
xt Production amount of the product in period t ∈ [T ]
It Inventory level of the product at the end of period t ∈ [T ]
Bt Backordering level of the product at the end of period t ∈ [T ]
st Sales of the product at the end of period t ∈ [T ]

have assumed that an initial inventory and an initial backorder are equal to zero. This assumption is not particularly restrictive.
An easy computation shows that (2)–(7) may be written in an equivalent compact form. Indeed, define C and P to be the
nonnegative real functions that represent either the cost of storing inventory from period t to period t + 1 or the cost of
backordering the product amount from period t + 1 to period t , and the benefit from selling the product in the planning
horizon, respectively. The functions have the forms: C(Xt , Dt ) = max{cI (Xt − Dt ), cB(Dt − Xt )} (see (2) and (3)) and
P(XT , DT ) = bP min{XT , DT } (see (2), (3) and (4)). We can now write (2)–(7) in the following equivalent form:

MPS- L4L: min
x∈X

F(x) = min
x∈X

T∑
t=1

C(Xt , Dt ) − P(XT , DT ) (8)

Therefore, our production planning consists in finding a feasible production plan x ∈ X, subject to the conditions of satisfying
each demand, which minimises the total cost of storage and backordering minus the benefit from selling the product. The
compact form (8) allows us to formulate (2)–(7) as the following linear programme which will be exploited in Section 4:

min
T∑

t=1

πt (9)

s.t. πt ≥ cI

(
t∑

i=1

xi − Dt

)
t = 1, . . . , T − 1 (10)

πt ≥ cB

(
Dt −

t∑
i=1

xi

)
t = 1, . . . , T − 1 (11)

πT ≥ cI

(
T∑

i=1

xi − DT

)
− bPDT (12)

πT ≥ cB

(
DT −

T∑
i=1

xi

)
− bP

T∑
i=1

xi (13)

πt unrestricted t ∈ [T ] (14)

xxx ∈ X (15)

where the optimal values of πt , t = 1, . . . , T − 1, are such that πt = C(Xt , Dt ), πT = C(XT , DT ) − P(XT , DT ) and the
value of

∑T
t=1 πt equals F(x) for an optimal robust production plan xx .



2.2 Single-item model (MPS) – periodic order quantity rule (POQ)

We now turn to a single-item problem under periodic capacity constraints in which ut = ∞ if t is the production period;
and ut = 0 otherwise. Obviously, it is a special case of the single product problem with the Lot-For-Lot rule (see problem
(8)). Furthermore, we are given a periodicity � being a positive integer such that: 1 < � < T and xt ≥ 0 if t mod � = 1;
xt = 0 otherwise (if t mod � �= 1) for t ∈ [T ]. We assume without loss of generality that (T − 1) mod � = 0. Now, the set of
feasible production amounts X ⊆ R

T+ can be defined as follows:

X = {x = (x1, . . . , xT ) : xt ≥ 0 for t mod � = 1, xt = 0 for t mod � �= 1, t ∈ [T ]}. (16)

The optimisation problem consists in finding a feasible production plan x ∈ X, subject to the conditions of satisfying each
demand, which minimises the total cost of storage and backordering, that is:

MPS- POQ: min
xx∈X

F(xx) = min
x∈X

T∑
t=1

C(Xt , Dt ). (17)

Clearly, problem (17) is a version of the uncapacitated single-item lot sizing model with backordering (see, e.g. Zangwill
1969) with the periodic order quantity policy. Thus, it can be formulated as follows:

min
T∑

t=1

(cI It + cB Bt ) (18)

s.t. Bt − It = Dt −
t∑

i=1

xi t ∈ [T ] (19)

xt = 0 t mod � �= 1, t ∈ [T ] (20)

Bt , It , xt ≥ 0 t ∈ [T ] (21)

Taking into account the periodicity in the problem MPS- POQ and its network nature, one can adapt the results of Ahuja,
Magnanti, and Orlin (1993, Chapter 19.9) for problem (18)–(21) and obtain the following proposition:

Proposition 1 The problem (18)–(21) can be solved in O(T ).

Proof. See Appendix 1.

2.3 Multi-Item, multi-level model (MRP)

We focus on the most involved problem. We are given T periods, P products and R resources. For period t ∈ [T ] and product
p ∈ [P] let dt,p be the external demand for product p in period t , dt,p ≥ 0, let xt,p be the production amount of product
p in period t , xt,p ≥ 0. Set Dt,p = ∑t

i=1 di,p and Xt,p = ∑t
i=1 xi,p, Dt,p and Xt,p stand for the cumulative demand for

product p up to period t and the cumulative production of product p up to period t , respectively. Obviously, Xt−1,p ≤ Xt,p

and Dt−1,p ≤ Dt,p, t = 2, . . . , T . In this problem, making products requires resources. Let ap,r be the required amount of
resource r , r ∈ [R], to produce one unit of product p, p ∈ [P]. Hence the production of product p in period t , xt,p, will
satisfy two kinds of resource constraints: the capacity limits of each resource r in each period t , denoted by lt,r and ut,r ,
respectively, such that lt,r ≤ ∑P

p=1 ap,r xt,p ≤ ut,r and the cumulative capacity limits of each resource r in each period t ,

denoted by Lt,p and Ut,p, respectively, such that Lt,r ≤ ∑P
p=1 ap,r Xt,p ≤ Ut,r . Besides the external demand dt,p, a given

amount of product p ∈ [P] is required to make one unit of product p′ ∈ [P], denoted by bp,p′ (bp,p′ = 0 if p = p′), and so∑P
j=1 bp, j xt+Ld j , j is the internal demand for product p in period t , where Ld j is the lead-time of product j . Furthermore,

if one accepts backordering, this means that an external demand for product p in period t can be fulfilled in period t ′ such
that t ′ > t . Of course the backordering concerns only external demands. Therefore, the set of feasible production amounts
X ⊆ R

T ×P+ has the following form:

X = {xx = (xt,p) : lt,r ≤
P∑

j=1

a j,r xt, j ≤ ut,r , Lt,r ≤
P∑

j=1

a j,r

t∑
i=1

xi, j ≤ Ut,r ,

t∑
i=1

⎛
⎝xi,p −

P∑
j=1

bp, j xi+Ld j , j

⎞
⎠ ≥ 0, t ∈ [T ], r ∈ [R], p ∈ [P]}, (22)



Table 2. The parameters and decision variables in model (23)–(28).

Definition

Set of indices
[P] Set of products {1, . . . , P}
[R] Set of resources {1, . . . , R}
[T ] Set of periods in the planning horizon {1, . . . , T }
Parameters
P Number of products
R Number of resources
T Number of periods
ap,r Required quantity of resource r ∈ [R] to produce one unit of product p ∈ [P]
bi, j Amount of product i ∈ [P] required to produce one unit of product j ∈ [P]
bP

p Selling price of one unit of product p ∈ [P]
cP

p Production cost of one unit of product p ∈ [P]
cI

p Inventory cost of one unit of product p ∈ [P]
cB

p Backorder cost for one unit of product p ∈ [P]
dt,p External demand of product p ∈ [P] in period t ∈ [T ],

cumulative demand Dt,p = ∑t
i=1 di,p

lt,r Lower capacity limit of resource r ∈ [R] in period t ∈ [T ]
ut,r Upper capacity limit of resource r ∈ [R] in period t ∈ [T ]
Lt,r Lower cumulative capacity limit of resource r ∈ [R] in period t ∈ [T ]
Ut,r Upper cumulative capacity limit of resource r ∈ [R] in period t ∈ [T ]
Ldp Lead-time of product p ∈ [P]
Decision variables
xt,p Production amount of product p ∈ [P] in period t ∈ [T ]
It,p Inventory level of product p ∈ [P] at the end of period t ∈ [T ]
Bt,p Backordering level of product p ∈ [P] at the end of period t ∈ [T ]
st,p Sales of product p ∈ [P] at the end of period t ∈ [T ]

where
∑t

i=1(xi,p −∑P
j=1 bp, j xi+Ld j , j ) is the cumulative production of product p up to period t minus the internal demand

for product p.At the (tactical) level of planning, one assumes that the inventory, production and backordering cost coefficients
and selling prices only depend on product p and not on period t . We are now ready to give the linear programming model of
the problem under consideration, the decision variables and parameters are defined in Table 2 (we do not take into account
setup times and costs in the production process):

min
P∑

p=1

T∑
t=1

(cI
p It,p + cB

p Bt,p + cP
p xt,p − bP

p st,p) (23)

s.t. Bt,p − It,p = Dt,p −
t∑

i=1

⎛
⎝xi,p −

P∑
j=1

bp, j xi+Ld j , j

⎞
⎠ t ∈ [T ], p ∈ [P] (24)

t∑
i=1

si,p = Dt,p − Bt,p t ∈ [T ], p ∈ [P] (25)

lt,r ≤
P∑

j=1

a j,r xt, j ≤ ut,r t ∈ [T ], r ∈ [R] (26)

Lt,r ≤
P∑

j=1

a j,r

t∑
i=1

xi, j ≤ Ut,r t ∈ [T ], r ∈ [R] (27)

Bt,p, It,p, st,p, xt,p ≥ 0 t ∈ [T ], p ∈ [P] (28)

Note that the model (23)–(28) admits that each product can have external and internal demands simultaneously, thus
it is a generalisation of ones proposed in Albrecht (2010), Mula, Poler, and Garcia-Sabater (2007), Pochet and Wolsey





model, the practitioners are able to express different types of uncertainty on the demand effortlessly. Indeed, the uncertainty
can be constant all over a planning horizon, or can increase proportionally to the demand or can be due to shifts of a part
of the demand between two consecutive periods. The above three cases can be expressed as uncertainty on the cumulative
demand. In the first one, this uncertainty is expressed as an uncertainty of ±K on the cumulative demand. More formally,
�t = �t = K , where K is a constant. In the second case, �t = �t = αDn

t , where α ∈ [0, 1] is a prescribed uncertainty
parameter being the maximum percentage deviation of cumulative demands in periods from their nominal values. In the third
case �t = αdt , and �t = αdt+1, where α ∈ [0, 1], which is the maximum percentage deviation of the demand that can be
moved to its adjacent periods. For instance, α = 1 means that all the demand in a period can be moved to its adjacent periods
and α = 0.5 means that half of the demand in a period can be moved to its adjacent periods. Moreover, in contrast with the
period-specific uncertainty that cannot model uncertainty reductions in parts of a planning horizon, defining uncertainty on
the cumulative demand allows the decision-maker to capture a variation of uncertainty throughout a planning horizon.

3.1 Model of uncertainty for the MPS problems

For MPS- L4L, MPS- POQ problems studied in Sections 2.1 and 2.2, we adopt a model in which uncertainty in the cumulative
demand is small with respect to the minimum demand. In other words, a demand in a period can be equal to 0 only if the
previous cumulative demand is at its maximum value. In fact, at this level of planning, the lengths of time periods are big
enough (for example, one month) to have the minimum periodic demand greater than zero. Thus this assumption is realistic.
More formally, cumulative demand intervals are such that Dt−1 ≤ Dt for every t = 2, . . . , T . Hence the set of cumulative
demand scenarios U is the Cartesian product of the cumulative demands intervals, i.e.

U = [D1, D1] × · · · × [DT , DT ], where Dt−1 ≤ Dt . (30)

3.2 Model of uncertainty for the MRP problem

For the MRP problem, formulated in Section 2.3, one assumes that the length of periods is smaller than the length of periods
of the MPS problems, for instance, the length of a period for MPS is one month while the length of a period for MRP is one
week. Moreover, the demand has more versatility in the short range. For such a length of periods of MRP, it is possible that
the demand is delayed by a period, what is not possible for a longer length of period. For both reasons, it is hard to assume
that for MRP problem, uncertainty in the cumulative demand is small with respect to the minimum demand. Furthermore,
we extend now the previously described model of uncertainty for the single-item model to the one for the multi-item model.
Namely, for period t , t ∈ [T ], and product p, p ∈ [P], uncertainty in the external demand d̃t,p is described by uncertainty in
the cumulative demands modelled by intervals [Dt,p, Dt,p] assuming that the external demands are unrelated. We drop the
constraints on the cumulative demands in periods Dt−1,p ≤ Dt,p. Accordingly, the cumulative demand scenario S is a matrix
of the form S = (

D(S)t,p
)

t∈[T ],p∈[P], D(S)t,p ∈ [Dt,p; Dt,p], D(S)t−1,p ≤ D(S)t,p . Obviously, every scenario S induces
the matrix of external demands of each product p ∈ [P] in periods t ∈ [T ], i.e. d1,p = D(S)1,p, dt,p = D(S)t,p −D(S)t−1,p,
t = 2, . . . , T , and so the set of cumulative demand scenarios U ⊆ R

T ×P+ has the following form:

U = {S = (D(S)t,p) : D(S)t,p ∈ [Dt,p, Dt,p], , t ∈ [T ],
D(S)t−1,p ≤ D(S)t,p, t = 2, . . . , T, p ∈ [P]}. (31)

4. Robust MPS/MRP problems

Assuming that demand uncertainty is represented as in Section 3, we wish to find a robust production plan x ∈ X in MPS-

L4L, MPS- POQ, MRP problems with the best worst-case cost guarantee. In order to this, one of common robust criteria
called the minmax can be adopted (see, e.g. Kouvelis and Yu 1997). In other words, we seek a production plan that minimises
the maximum production plan cost F(x, S) over all the cumulative demand scenarios from a fixed set U (see (30), (31)).
This leads to the following general robust problem P:

ROB P: min
x∈X

A(xx) = min
x∈X

max
S∈U

F(x, S),

where P ∈ {MPS- L4L, MPS- POQ, MRP}, F(x, S) is the cost of production plan xx (see (8), (17), (29)) under scenario
S ∈ U , A(x) is the maximum cost of production plan x ∈ X, A(xx) = maxS∈U F(xx, S), and the set of feasible production
plans X is the one of the forms: (1), (16) and (22). An optimal solution xr to the problem ROB P is called optimal robust
production plan for P .



We are aware of the conservativeness of the minmax. Fortunately, using this criterion, with the assumed cumulative
demand uncertainty representation (see (30), (31)), enables us to construct polynomial methods for the problems under con-
sideration. Moreover, applying other less conservative criteria may not guarantee the preservation of polynomial solvability
and requires additional information about uncertain demands (see Section 1 for comments).

A natural optimisation problem associated with ROB P , and simpler than ROB P , is the one of evaluating a given
production plan xx∗ ∈ X. A scenario So ∈ U that minimises the total cost F(xx∗, S) of the production plan xx∗ is called
optimistic scenario. A scenario Sw ∈ U that maximises the total cost F(x∗, S) of the production plan x∗ is called the worst-
case scenario. The problem of computing a worst-case scenario is often called adversarial problem (see, e.g. Bienstock and
Özbay 2008; Nasrabadi and Orlin 2013), in which an adversary maliciously wants to increase the total cost F(x∗, S) of the
production plan x∗. Therefore in order to evaluate a given production plan x∗, we look for the interval, Fx∗ = [ f

xx∗ , f xx∗ ],
containing possible values of costs of x∗, such that

f
x∗ =F(xx∗, So) = min

S∈U
F(xxx∗, S), (32)

f x∗ =F(x∗, Sw) = max
S∈U

F(x∗, S). (33)

4.1 Robust MPS problems

In this section, we focus on the problem of evaluating a fixed production plan and the problem of computing an optimal
robust production plan to ROB P , where P ∈ {MPS- L4L, MPS- POQ}, under the uncertainty representation U defined
in (30). We start by proving the following proposition that we substantially use in this section.

Proposition 2 The objective function F(xx∗, S) for any fixed production plan xx∗ ∈ X in ROB P , P ∈ {MPS- L4L,

MPS- POQ}, is convex in U .

Proof. See Appendix 1.

The convexity of F(x∗, S) in U is a crucial fact. For problem (32), it implies that a locally optimal scenario is also
globally optimal. For problem (33), it implies the maximum of F is attained at a vertex of convex polytope U . We recall that
a scenario S ∈ U is a vertex of U if it is not the strict convex combination of scenarios of U .

4.1.1 Evaluating a given production plan

We now examine the problem of evaluating a given production plan xx∗ ∈ X. Namely, we wish to find the interval Fxx∗ =
[ f

xx∗ , f x∗ ] (see problems (32) and (33)). Interval Fx∗ determined provides valuable information for the decision-maker, since
it contains possible values of costs of x∗. It may be useful, for instance, in a risk analysis in the setting of possibility theory
(Dubois and Prade 1988), where it helps in evaluating degrees of possibility and necessity that a cost of a given plan x∗ does
not exceed a given threshold. Thus we need to compute its optimistic and worst-case scenarios. We consider the case ROB

MPS- L4L. All the results presented in this section apply also to ROB MPS- POQ – it is sufficient to set b p to zero.
We first deal with the problem of determining an optimistic scenario So ∈ U for a production plan xxx∗, i.e. the problem

(32). Fortunately, for every xx∗ ∈ X one can give the explicit form of an optimistic scenario So:

D(So)t =

⎧⎪⎨
⎪⎩

Dt if X∗
t < Dt ,

X∗
t if Dt ≤ X∗

t ≤ Dt ,

Dt if X∗
t > Dt ,

t ∈ [T ]. (34)

It is easy to check that So in the form of (34) is feasible and locally optimal for the problem (32). Hence and from Proposition
2, scenario So is also globally optimal, f

xx∗ = F(x∗So). Thus computing an optimistic scenario can be done in O(T ) time.
We now study the problem of computing a worst-case scenario Sw ∈ U for a given production plan xx∗ ∈ X (the adversarial

problem), i.e. the problem (33). It turns out that, for problem (33), the set U can be reduced to the set of extreme scenarios
denoted by Uext, Uext ⊆ U ,

Uext = {D1, D1} × · · · × {DT , DT }, where Dt−1 ≤ Dt . (35)

The following proposition characterises a worst-case scenario Sw.



Proposition 3 A worst-case scenario Sw is an extreme one, i.e. Sw ∈ Uext.

Proof. See Appendix 1.

Using Proposition 3 and the fact that the bounds are such that Dt−1 ≤ Dt , we can rewrite problem (33), equivalently, as

f xx∗ = F(xxx∗Sw) = max
S∈U

F(xx∗, S) = max
S∈Uext

F(xxx∗, S)

=
T −1∑
t=1

max
D(S)t ∈{Dt ,Dt }

C(X∗
t , D(S)t ) + max

D(S)T ∈{DT ,DT }
C(X∗

T , D(S)T ) − P(X∗
T , D(S)T ). (36)

Thus a special form of optimisation problem (36) and the forms of functions C and P allow us to give an explicit formula
for an optimal solution – a worst-cost scenario Sw for every x∗ ∈ X. That is for t ∈ [T ]:

D(Sw)t =

⎧⎪⎨
⎪⎩

Dt if cI (X∗
t − Dt ) > cB(Dt − X∗

t ) and t = 1, . . . , T − 1,

Dt if cI (X∗
t − Dt ) − bPDt> cB(Dt − X∗

t ) − bPX∗
t and t = T ,

Dt otherwise.

(37)

Therefore, a worst-cost scenario Sw for a given production plan xxx∗ can be computed in O(T ) time.

4.1.2 Computing an optimal robust production plan

In this section, we address the problem of computing an optimal robust production plan xxr ∈ X to ROB P , P ∈
{MPS- L4L, MPS- POQ}. We first consider the problem ROB MPS- L4L. It is easy to see that the problem contains as
subproblem, the one of computing a worst-case scenario for a fixed xxx ∈ X – problem (36). Hence, we get the decomposition
of ROB MPS- L4L:

min
x∈X

max
S∈U

F(xx, S) = min
xx∈X

max
S∈Uext

F(x, S) = min
x∈X

T −1∑
t=1

max
D(S)t ∈{Dt ,Dt }

C(Xt , D(S)t )

+ max
D(S)T ∈{DT ,DT }

C(XT , D(S)T ) − P(XT , D(S)T ). (38)

Using model (9)–(14) and the fact that D(S)t ∈ {Dt , Dt }, t ∈ [T ], we may formulate problem (36) as the following linear
programme:

min
T∑

t=1

πt (39)

s.t. πt ≥ cI (X∗
t − Dt ) t = 1, . . . , T − 1

πt ≥ cB(Dt − X∗
t ) t = 1, . . . , T − 1

πT ≥ cI (X∗
T − DT ) − bPDT

πT ≥ cB(DT − X∗
T ) − bPX∗

T

πt unrestricted t ∈ [T ]
For an optimal solution to (39), the value of

∑T
t=1 πt equals maxS∈U F(x∗, S) (problem (36)), the values of πt , t ∈ [T ], are

such that πt = maxD(S)t ∈{Dt ,Dt } C(X∗
t , D(S)t ) and πT = maxD(S)T ∈{DT ,DT } C(X∗

T , D(S)T ) − P(X∗
T , D(S)T ). Adding now

the constraints describing the feasible production amounts (1) to (39) and developing Xt , t ∈ [T ] yield a linear programming
model for computing an optimal robust production plan xr to ROB MPS- L4L:

min
T∑

t=1

πt (40)

s.t. πt ≥ cI

(
t∑

i=1

xi − Dt

)
t = 1, . . . , T − 1 (41)

πt ≥ cB

(
Dt −

t∑
i=1

xi

)
t = 1, . . . , T − 1 (42)



πT ≥ cI

(
T∑

i=1

xi − DT

)
− bPDT (43)

πT ≥ cB

(
DT −

T∑
i=1

xi

)
− bP

T∑
i=1

xi (44)

πt unrestricted t ∈ [T ] (45)

xx ∈ X (46)

The vector of decision variables xx = (xt )t∈[T ] describes an optimal robust production plan xr to ROB MPS- L4L and∑T
t=1 πt provides maxS∈U F(xx, S). The interpretation of variables πt , t ∈ [T ], is the same as for model (39). A worst-case

scenario Sw for xxr can be determined by formula (37) and corresponding inventory and backordering levels and sales at the
end of each period can be easily computed by (3) and (4). The problem ROB MPS- L4L with no capacity and cumulative
capacity limits is a trivial one. Namely, from results presented in Guillaume, Kobylański, and Zieliński (2012, Section 4.2)
and the decomposed form (38) of the problem, we immediately deduce the following O(T ) method for computing an optimal
robust production plan xr , for t ∈ [T ]:

Xr
t =

⎧⎪⎪⎨
⎪⎪⎩

cBDt +cI Dt
cB+cI if t = 1, . . . , T − 1,

cBDt +(cI +bP )Dt
cB+cI +bP if t = T .

(47)

Of course, Xr
t−1 ≤ Xr

t for t = 2, . . . , T . Thus one can set xr
1 = Xr

1 and xr
t = Xr

t − Xr
t−1 for t = 2, . . . , T .

It is worth noting that linear programme (40)–(46) for ROB MPS- L4L can be also obtained if we adapt a more general
approach proposed in Soyster (1973) to model (9)–(15) for MPS- L4L under cumulative demand uncertainty. Indeed, this
approach copes with uncertainty in cumulative demands by considering their worst-case values. Furthermore, it is equivalent
to the robust approach to linear optimisation problems in the sense of Bertsimas and Sim (2004) if cumulative demand Dt

in each period t is admitted to be uncertain. In order to maximise the values of the right-hand side of constraints (10)–(13)
over cumulative demand scenario set U , we set cumulative demand Dt in (10), (12) and (11), (13) at its lower possible value
Dt and its upper possible value Dt , respectively, and get constraints (41)–(44). The above equivalence between Soyster’s
method applied to MPS- L4L under cumulative demand uncertainty and ROB MPS- L4L holds only under scenario set U
defined by (30), when Dt−1 ≤ Dt , t = 2, . . . , T . If Dt−1 ≤ Dt is dropped then Soyster’s approach considers infeasible
cumulative demand scenarios, i.e. scenarios S which do not satisfy D(S)t−1 ≤ D(S)t , t = 2, . . . , T . This follows from
the fact that the approach assumes that the value of each cumulative demand may vary independently of the values of the
remaining cumulative demands. Therefore, Soyster’s method and in consequence the method proposed in Bertsimas and Sim
(2004) can no longer be applied to problem MRP under cumulative demand scenario set U defined by (31) considered in
Section 4.2.

We proceed with the study of the problem ROB MPS- POQ. An approach similar to (40)–(46) can be applied to obtain
a linear programming model for computing an optimal robust production plan xr to ROB MPS- POQ. However, a more
efficient combinatorial algorithm for determining xxr can be proposed. From Proposition 3, the fact that the bounds fulfil
inequalities Dt−1 ≤ Dt and the periodicity in the problem ROB MPS- POQ, it follows that one can decompose the problem
into N + 1 separate subproblems, where N = (T − 1)/� ,that is:

min
xx∈X

max
S∈Uext

T∑
t=1

C(Xt , Dt (S)) =
N∑

k=1

min
X(k−1)·�+1∈X k

max
S∈Uk

ext

k·�∑
t=(k−1)·�+1

C(X(k−1)·�+1, Dt (S))

+ min
XT ∈X T

max
S∈UT

ext

C(XT , DT (S)), (48)

where X k = [D(k−1)·�+1, D(k−1)·�+1] ∪ · · · ∪ [Dk·P , Dk·�], Uk
ext = {D(k−1)·�+1, D(k−1)·�+1} × · · · × {Dk·P , Dk·�}, k ∈ [N ],

X T = [DT , DT ] and UT
ext = {DT , DT }; Uext = U1 × · · · × U N × UT . Obviously, the above possible cumulative production

levels are nondecreasing sequence of their values, X1 ≤ X�+1 ≤ · · · ≤ XT . Therefore, we need only to solve the N + 1
separate subproblems. The last subproblem is trivial, i.e. an optimal cumulative production level Xr

T can be computed by
formula:

Xr
T = cBDT + cI DT

cB + cI
. (49)





Hence problem (33) has the equivalent separable form:

f xx∗ = max
S∈U

F(xx∗, S) = max
S∈U

P∑
p=1

T∑
t=1

Cp(X
∗int
t,p , D(S)t,p) − Pp(X

∗int
T,p , D(S)T,p) + cP

p X∗
T,p

=
P∑

p=1

(
cP

p X∗
T,p + max

S∈U p

T∑
t=1

Cp(X
∗int
t,p , D(S)t,p

)
− Pp(X

∗int
T,p , D(S)T,p)). (53)

Accordingly, the problem of computing a worst-case scenario Sw ∈ U for a given production plan xx∗ ∈ X boils down to
solving the P separated problems. Namely,

max
S∈U p

T∑
t=1

Cp(X
∗int
t,p , D(S)t,p) − Pp(X

∗int
T,p , D(S)T,p) + cP

p X∗
T,p, p ∈ [P]. (54)

Let us regard p as fixed. It is evident that the objective function in (54) is convex in U p for a given production plan x∗ ∈ X

(see the proof of Proposition 4). Consequently, it attains its maximum value at a vertex of convex polytope U p (see, e.g.
Martos 1975). Hence it suffices to examine only vertices of U p.

We now characterise vertices (vertex scenarios) of scenario set U p. We recall first that v ∈ U p is a vertex (vertex scenario)
of U p if vv cannot be the strict convex combination of elements (scenarios) of U p. Thus the following lemma is obvious.

Lemma 1 Let v ∈ U p ∩∏t∈[T ]{Dt,p, Dt,p}. Then v is a vertex of U p.

Lemma 2 Suppose that v = (vt )t∈[T ] ∈ U p and there exits at least one component vk of v such that vk ∈ (Dk,p, Dk,p).
Thenvv is a vertex of U p if and only if for each componentvk of v,vk ∈ (Dk,p, Dk,p), in the subsequence (vi , . . . , vk−1, vk, vk+1,

. . . , vl) of v, where i = min{t ∈ [T ] : vt = vk, t ≤ k} and l = max{t ∈ [T ] : vt = vk, k ≤ t}, the first and the last
elements are such that vi = Di,p or vl = Dl,p.

Proof. See Appendix 1.

The above lemma shows, among others, that there may exist a vertex scenario S = (D(S)t,p) ∈ U p, a candidate for an
optimal solution to (54), with at least one cumulative demand D(S)k,p in some period, say k, such that D(S)k,p ∈ (Dk,p, Dk,p).
Therefore, for instance, Soyster’s framework (Soyster 1973), which is a particular case of the method for robust linear problems
proposed in Bertsimas and Sim (2004) and focuses also on a worst-case analysis, cannot be applied here. This framework
assumes that every cumulative demand Dt,p, t ∈ [T ] has to be taken its worst-case value in the interval [Dt,p, Dt,p]. Thus
it may omit the vertex scenario described above or lead to a scenario S that violates conditions D(S)t−1,p ≤ D(S)t,p,
t = 2, . . . , T .

Using Lemmas 1 and 2, we can construct a layered graph G p = (V p, Ap) that represents a subset of scenarios of set
U p that contains all its vertex scenarios and during examining no vertex scenario can be omitted. The set V p is partitioned
into T + 2 disjoint layers V p

0 , V p
1 , . . . , V p

T , V p
T +1 in which V p

0 = {s} and V p
T +1 = {t} contain two distinguished nodes,

s and t, and each node u ∈ V p
t , t ∈ [T ], corresponds to exactly one possible value of the t th component, denoted by v

p
u ,

v
p
u ∈ [Dt,p, Dt,p] ∩ ⋃t∈[T ]{Dt,p, Dt,p}, of all the vertices of U p. Obviously, |V p

t | = |[Dt,p, Dt,p] ∩ ⋃t∈[T ]{Dt,p, Dt,p}|,
t ∈ [T ]. Let Ap = Ap

1 ∪ · · · ∪ Ap
T ∪ Ap

T +1. Arc (u, w) ∈ Ap
1 if u ∈ V p

0 and w ∈ V p
1 ; (u, w) ∈ Ap

T +1 if u ∈ V p
T and

w ∈ V p
T +1; and arc (u, w) ∈ Ap

t , t = 2, . . . , T , if u ∈ V p
t−1, w ∈ V p

t and v
p
u ≤ v

p
w. An easy computation shows that Ap has

O(T 3) arcs and V P has O(T 2) nodes. We associate with each arc (u, w) ∈ Ap length l p
u,w in the following way:

l p
u,w =

⎧⎪⎨
⎪⎩

Cp(X
∗int
t,p , v

p
w) if (u, w) ∈ Ap

t , t = 1, . . . , T − 1,

Cp(X
∗int
T,p , v

p
w) − Pp(X

∗int
T,p , v

p
w) + cP

p X∗
T,p if (u, w) ∈ Ap

T ,

0 if (u, w) ∈ AT +1

(55)

for a fixed x∗ ∈ X. The graph G p models a subset of U p. Indeed, if s = u0 � u1 � · · · � uT � uT +1 = t is a path
from s to t, then it corresponds to v = (v

p
ut )t∈[T ] ∈ U p, ut ∈ V p

t , t ∈ [T ], and the length of this path,
∑

t∈[T ] l p
ut−1,ut ,

is equal to the value of the objective function in (54) for v. Since G p has been built according to Lemmas 1 and 2, the
subset modelled contains all the vertices of U p. Thus by the convexity of the objective function in (54) over U p, this subset
contains all the optimal scenarios to problem (54). Hence solving (54) boils down to finding a longest path σp from s to t
in G p, which can be done in O(T 3) (see, e.g. Ahuja, Magnanti, and Orlin 1993). From the decomposition of (53), we have
an O(P · T 3) algorithm for the determining a worst-case scenario Sw ∈ U for a given production plan xx∗ ∈ X (the problem
(33)). Worst-case scenario Sw corresponds to the concatenation σ1 � · · · � σP of each longest path σp in G p, p ∈ [P].



4.2.2 Computing an optimal robust production plan

We now deal with the problem of computing an optimal robust production plan xxr to ROB MRP. Using (53), it can be
decomposed in the following way:

min
x∈X

max
S∈U

F(x, S) = min
x∈X

P∑
p=1

cP
p XT,p + max

S∈U p

T∑
t=1

Ct (Xint
t,p, D(S)t,p) − Pp(Xint

T,p, D(S)T,p). (56)

The inner problem in (56) corresponds to the problem of computing a worst-case scenario for a fixed x∗ ∈ X. The latter
problem can be reduced to find the value of a longest path σp in each of the P layered weighted graphs G p = (V p, Ap),
p ∈ [P] (see Section 4.2.1). Finding the length of a longest path σp from s to t in G p = (V p, Ap) for a fixed p may be
modelled by the following linear programming problem:

min π
p
t (57)

s.t. π p
w − π

p
u ≥ l p

u,w (u, w) ∈ Ap
t , t ∈ [T ]

π
p
t − π

p
u ≥ 0 u ∈ V p

T

π
p
s = 0

π
p
u unrestricted u ∈ V p

where lengths l p
u,w, (u, w) ∈ Ap, are determined according to (55) for a given xx∗ ∈ X. The optimal value of decision variable

π
p
t is the length of longest path σp from s to t in G p, i.e. π p

t = maxS∈U p
∑T

t=1 Cp(X
∗int
t,p , D(S)t,p)−Pp(X

∗int
T,p , D(S)T,p)+

cP
p X∗

T,p. Substituting (55) into model (57), we obtain an equivalent linear programming model of the longest path problem
in G p = (V p, Ap) for fixed p and xxx∗ ∈ X:

min π
p
t (58)

s.t. B p
w − I p

w = v p
w − X

∗int
t,p w ∈ V p

t , t ∈ [T ] (59)

π p
w − π

p
u ≥ cI

p I p
w + cB

p B p
w (u, w) ∈ Ap

t , t = 1, . . . , T − 1 (60)

π p
w − π

p
u ≥ cI

p I p
w + cB

p B p
w − bP

p z p
w + cP

p X
∗
T,p (u, w) ∈ Ap

T (61)

π
p
t − π

p
u ≥ 0 u ∈ V p

T (62)

π
p
s = 0 (63)

z p
w ≤ v p

w w ∈ V p
T (64)

z p
w ≤ X

∗int
T,p w ∈ V p

T (65)

B p
w, I p

w ≥ 0 w ∈ V p
t , t ∈ [T ] (66)

z p
w ≥ 0 w ∈ V p

T (67)

π
p
u unrestricted u ∈ V p (68)

where v
p
w, w ∈ V p

t , t ∈ [T ] is a parameter, i.e. it is a possible value of the t th component, v
p
w ∈ [Dt,p, Dt,p] ∩⋃

t∈[T ]{Dt,p, Dt,p}, of all the vertices of U p. In other words, v
p
w is a possible value of the cumulative demand in period t of

product p. Constraint (59) and the right-hand side of (60) express the value of Cp(X
∗int
t,p , v

p
w). Constraint (59) together with

the right-hand side of (61) and constraints (64), (65) represent the value of Cp(X
∗int
T,p , v

p
w) − Pp(X

∗int
T,p , v

p
w) + cP

p X∗
T,p , where

v
p
w, w ∈ V p

T , is a possible value of the cumulative demand in period T of product p, v p
w ∈ [DT,p, DT,p]∩⋃t∈[T ]{Dt,p, Dt,p},

(64) and (65) help to model the value of Pp(X
∗int
T,p , v

p
w). Solving linear programming model (58)–(68) for each p ∈ [P]

yields P longest paths σ1, . . . , σP whose concatenation σ1 � · · · � σP corresponds to worst case scenario Sw for a fixed
production plan x∗. Namely, if node w ∈ σp and w ∈ V p

t , t ∈ [T ], then D(Sw)t,p = v
p
w and the values of decisions variables

I p
w and B p

w are corresponding inventory and backordering levels, respectively, at the end of period t for product p, clearly if
I p
w > 0 (resp. B p

w > 0) then B p
w = 0 (resp. I p

w = 0). Such a longest path in G p can be identified (after solving (58)–(68)),
if needed, by performing a breadth-first search of G p using the arcs satisfying the equalities: π

p
w − π

p
u = cI

p I p
w + cB

p B p
w or

π
p
w − π

p
u = cI

p I p
w + cB

p B p
w − bP

p min{v p
w, X

∗int
T,p } + cP

p X
∗
T,p or π

p
t − π

p
u = 0.



Making use of (56), combining (58)–(68) with the definition of the set of feasible production amounts X (see (22)) and
developing Xint

t,p, XT,p , t ∈ [T ], p ∈ [P], we obtain a linear programing model for computing an optimal robust production
plan xr to ROB MRP:

min
P∑

p=1

π
p
t (69)

s.t. B p
w − I p

w = v p
w −

t∑
i=1

(xi,p −
P∑

j=1

bp, j xi+Ld j , j ) w ∈ V p
t , t ∈ [T ], p ∈ [P]

π p
w − π

p
u ≥ cI

p I p
w + cB

p B p
w (u, w) ∈ Ap

t , t = 1, . . . , T − 1, p ∈ [P]

π p
w − π

p
u ≥ cI

p I p
w + cB

p B p
w − bP

p z p
w + cP

p

T∑
i=1

xi,p (u, w) ∈ Ap
T , p ∈ [P]

π
p
t − π

p
u ≥ 0 u ∈ V p

T , p ∈ [P]
π

p
s = 0 p ∈ [P]

z p
w ≤ v p

w w ∈ V p
T , p ∈ [P]

z p
w ≤

t∑
i=1

(xi,p −
P∑

j=1

bp, j xi+Ld j , j ) w ∈ V p
T , p ∈ [P]

B p
w, I p

w ≥ 0 w ∈ V p
t , t ∈ [T ], p ∈ [P]

z p
w ≥ 0 w ∈ V p

T , p ∈ [P]
π

p
u unrestricted u ∈ V p, p ∈ [P]

xx ∈ X

The decision variables x j,p, p ∈ [P], t ∈ [T ], describe an optimal robust production plan xr to ROB MRP and
∑P

p=1 π
p
t

provides maxS∈U F(xxr , S). Meanings of the constraints and the rest of decision variables are the same as for model (58)–(68).

5. Experimental results

In this section, we present experiments illustrating our robust approach to the MRP problem with uncertain cumulative
demand (ROB MRP, see Section 4.2) under the uncertainty representation U defined in (31). We are given 12 products and
3 resources, P = 12 and R = 3. The bill of materials (the product structures) with the product costs and the lead times of the
products are presented in Figure 2. The selling prices of the products are as follows: bP

1 = 10, 000, bP
2 = 5500 and bP

p = 0
for p = 3, . . . , 12. The backorder cost cB

p of each product p is equal to 15% of its selling price. The inventory cost cI
p of

each product p is equal to 5% of the sum of the production cost of product p and all the components consumed when product
p is produced. For instance, using the product structures shown in Figure 2, the inventory cost of product 5 is computed
as follows: cI

5 = 0.05(cP
5 + b12,5cP

12 + b11,5cP
11) = 22.5. The planning horizon consists of 23 periods, T = 23, with the

capacity limits: lt,1 = lt,2 = lt,3 = 0 for t = 1, 2 and lt,1 = 1000, lt,2 = lt,3 = 2000 for t = 3, . . . , 23; ut,1 = 10, 000
for t = 1, . . . , 23, ut,2 = 9100 for t = 1, . . . , 14, ut,2 = 11, 200 for t = 15, . . . , 23 and ut,3 = 10, 300 for t = 1, . . . , 8,
ut,3 = 9300 for t = 9, . . . , 14, ut,3 = 6800 for t = 15, . . . , 17 ut,3 = 10, 800 for t = 18, . . . , 23. There are no cumulative
capacity limits in this example.

Regarding the uncertainty representation (31) of scenario set U , cumulative demands are uncertain and modelled by
intervals (see Section 3). In our experiments, the cumulative demand intervals have the following form [Dn

t,p −�t,p, Dn
t,p +

�t,p], where Dn
t,p = ∑t

i=1 di,p is the nominal cumulative demand and dt,p is given demand in period t . We assume that
product 1 and 2 have external demand so we only provide in Table 3 demands dt,p for p = 1, 2. The rest of dt,p, and in
consequence Dn

t,p, for t = 1, . . . , 23 and p = 3, . . . , 12 are equal to zero. The values of �t,p and �t,p are determined
according to two kinds of uncertainty on the cumulative demand. In the first type �t,p = �t,p = αDn

t,p , t = 1, . . . , 23,
p = 1, 2, where α ∈ [0, 1] is a prescribed uncertainty parameter being the maximum percentage deviation of cumulative
demands in periods from their nominal values. In the second type �t,p = αdt,p, t = 1, . . . , 23, and �t,p = αdt+1,p,
t = 1, . . . , 22 and �23,p = 0, p = 1, 2, where α ∈ [0, 1], which is the maximum percentage deviation of demands in
periods from their nominal values. This type reflects uncertainty about occurring demands in periods, i.e. some of them may
advanced or delayed. For instance, α = 0.5 means half demand in a period can be moved to its adjacent periods. Therefore,
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Figure 5. Relative reductions as functions of uncertainty parameter a. (a) The first type of uncertainty. (b) The second type of uncertainty. 

optimistic and chooses the nominal production plan xn , instead of an optimal robust plan xr , then its profit may decreases 
when a worst case scenario reveals. The relative reduction of the minimum profit of optimal robust production plans redr 

approximately equals twice and 1/5 of the percentage uncertainty introduced for the first and the second types, respectively 
(see Figure 5). For the latter type, the reduction redn is twice higher than redr (see Figure 5(b)). For instance, for the first 
type fora = 0.05 the minimum profit of an optimal robust production plan 6.6609 x 107 is reduced by 11 % to 5.8980 x 107

. 

For the second type for a  0.22, the minimum profit of an optimal robust production plan 7.2367 x 107 is reduced by 4% 
to 6.9449 X 107

. 

Ali the experiments, including the methods runs (see Section 4.2), were implemented using the modelling package JuMP

(Lubin and Dunning 2015) embedded in the prograrnming language Julia. Within our implementations, we called IBM

ILOG CPLEX 12. 5 optimiser. The experiments were executed on a computer equipped with Intel Core 2 Duo 2. 4

GHz. Computation time required to find nominal production plan xn was 9.06 s. Average computation times for computing 
optimal robust production plans xr under the first and second types of cumulative demand uncertainty were 10.6 and 9.88 s, 
respectively ( over 30 problem instances for each type of uncertainty ). Thus the ROB MRP problems are still computationally 
tractable. 

6. Conclusions

In the context of supply chains, the problem of tactical production and capacity planning under uncertainty in the demand 
is a central concern for the production planning systems. In this paper, we have dealt with the MPS (CLSP) under small 
uncertainty in the cumulative demand and with MRP (MLCLSP) problems under uncertainty in the cumulative demand. The 
mode! of uncertainty in the cumulative demand enables to take into account jointly the imprecision on order quantities and 
dates. For both problems, linear prograrnming models, which include backordering and the cumulative demand, have been 
presented. Further on, we have proposed efficient methods for evaluating the impact of uncertainty on production plans and 
linear programmes for computing optimal robust production plans for MPS and MRP problems under the uncertainty in the 
cumulative demand. Thus we have shown that introducing uncertainty in the cumulative demand to the above optimisation 
processes with the minmax criterion does not significantly increase their computational complexity, comparing with the 
deterministic counterparts, - they still remain polynomially solvable. Therefore, they can be applied in industrial context, 
i.e. in the manufacturing planning tools using linear prograrnming solvers.

There are some opportunities for further research in production planning in the robust optimisation setting. Namely, 
analysing the above problems under Jess conservative robust criteria or considering the second source of uncertainty in 
production planning, pointed out in the literature, that is the uncertainty in the process (uncertain lead time and scrap of 
components) are good topics for further research. 
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Appendix 1. Some proofs

Proof of Proposition 1 It is clear that problem (18)–(21) is a network flow problem. Thus using the results presented in Ahuja, Magnanti,
and Orlin (1993, Chapter 19.9) one can model problem (18)–(21) as the shortest path problem in a network that has T + 1 nodes, where
node 0 represents the source and the t th node for each t ∈ [T ] corresponds to the t th period. There are zero cost production arcs (0, t)
if t mod � = 1, t ∈ [T ]; the inventory carrying arcs (t − 1, t), t = 2, . . . , T , with cost cI ; and the backorder carrying arcs (t, t − 1),
t = 2, . . . , T , with cost cB in the network. It turns out (see Ahuja, Magnanti, and Orlin 1993, Chapter 19.9) that an optimal production



plan corresponds to a tree of shortest paths from the source to every node t ∈ [T ]. Indeed, for each k ∈ [N ], where N = (T − 1)/�, we
find period nodes:

hk = max{t : t ∈ {(k − 1) · � + 1, . . . , k · �}, cI (t − (k − 1) · � − 1) ≤ cB(k · � + 1 − t)}.
The node hk determines two paths. The first one 0 � (k − 1)� + 1 � (k − 1)� + 2 � · · · � hk that goes through production and
inventory carrying arcs and the second path 0 � k� + 1 � k P � · · · � hk + 1 that traverses production and backorder carrying arcs.
Using a tree of shortest paths in the network, induced by hk , k ∈ [N ], an optimal production plan to (18)–(21) can be determined by the
following formula:

xt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dh1 if t = 1,

Dhk − Dhk−1 if t = (k − 1) · � + 1 and 2 ≤ k ≤ N ,

DhT − DhN if t = T,

0 otherwise,

t ∈ [T ].

�
Proof of Proposition 2 We will show the convexity of F(x∗, S) in U for ROB MPS- L4L. Similar arguments apply to the objective
function F(xx∗, S) in ROB MPS- POQ. Observe that the objective function for production plan x∗ under scenario S = (D(S)t )t∈[T ] ∈ U
can be rewritten as follows (see (8)):

∑T
t=1 C(X∗

t , D(S)t )+(−P(X∗
T , D(S)T )), where C(X∗

t , D(S)t ) = max{cI (X∗
t −D(S)t ), cB(D(S)t −

X∗
t )} and −P(X∗

T , D(S)T ) = bP max{−X∗
T , −D(S)T }. Clearly, functions: cI (X∗

t − D(S)t ), cB(D(S)t − X∗
t ) and −D(S)T are convex

in U . Hence the maximum and the sum of them in U is also a convex function. �
Proof of Proposition 3 Proposition follows from the same as in Guillaume, Kobylański, and Zieliński (2012) reasoning. Scenarios
S ∈ Uext are easily seen to be the vertices of convex polytope U . Hence and Proposition 2, we get that F(xxx∗, S) attains the maximum
value at a vertex of U (see, e.g. Martos 1975). �
Proof of Proposition 4 Note that term cP

p X∗
T,p , p ∈ [P], in F(xx∗, S) (see (29)) is a constant. Applying Proposition 2 for each p ∈ [P]

(taking into account slightly modified functions Cp and Pp), we deduce that F(xx∗, S) is the sum of P convex functions in U and so
F(xx∗, S) is also convex in U . �
Proof of Lemma 2 Suppose contrary that there exists a component vk , vk ∈ (Dk,p, Dk,p), for which the subsequence (vi , . . . , vk−1, vk ,

vk+1, . . . , vl ) has the first and the last elements such that vi ∈ [Di,p, Di,p) and vl ∈ (Dl,p, Dl,p]. Fix vi = Di,p . Thus Di,p = vi =
vk > Dk,p , a contradiction with the fact that Di,p ≤ Dk,p . Similarly, fix vl = Dl,p . Then Dl,p = vl = vk < Dk,p , a contradiction with
Dl,p ≥ Dk,p . Therefore vi ∈ (Di,p, Di,p) and vl ∈ (Dl,p, Dl,p). We need consider four cases:

(i) 1 < i ≤ l < T . Thus vi−1 < vi and vl < vl+1. We construct v(1) = (v
(1)
t )t∈[T ], v(2) = (v

(2)
t )t∈[T ] ∈ U p and vv �= vv(1),

v �= v(2) such that v lies between them. Set v
(1)
t = v

(2)
t = vt for t = 1, . . . , i − 1, l + 1, . . . , T ; v

(1)
t = min{Di,p, vl+1} and

v
(2)
t = max{vi−1, Dl,p} for t = i, . . . , l. Clearly, v(1), vv(2) ∈ U p and v �= v(1), vv �= vv(2). Moreover, it is easily seen that there

exist λ′ ∈ (0, 1), λ′ = (vi − v
(2)
i )/(v

(1)
i − v

(2)
i ), such that v = λ′v(1) + (1 − λ′)v(2) which contradicts that vv is a vertex of U p .

(ii) 1 < i ≤ l = T and so vi−1 < vi . Set v
(1)
t = v

(2)
t = vt for t = 1, . . . , i − 1; v

(1)
t = Di,p and v

(2)
t = max{vi−1, Dl,p}

for t = i, . . . , T . Obviously, v(1), vv(2) ∈ U p and v �= v(1), v �= v(2). It easy to check that there exist λ′ ∈ (0, 1) such that
v = λ′v(1) + (1 − λ′)v(2), a contradiction with the fact that v is a vertex of U p .

(iii) 1 = i ≤ l < T and so vl < vl+1. Set v
(1)
t = v

(2)
t = vt for t, l + 1, . . . , T ; v

(1)
t = min{Di,p, vl+1} and v

(2)
t = Dl,p for

t = 1, . . . , l. Again a trivial verification shows that v lies between vv(1) and v(2), a contradiction.
(iv) 1 = i ≤ l = T . Set v

(1)
t = Di,p and v

(2)
t = Dl,p for t ∈ [T ]. Similarly to the above cases, we obtain a contradiction.

Suppose that v is not a vertex of U p . Thus there exist v(1), v(2) ∈ U p and v �= vv(1), vv �= v(2) and λ′ ∈ (0, 1) such that vv =
λ′vvv(1) + (1−λ′)vv(2). By assumption, for each sequence (vi , . . . , vk−1, vk , vk+1, . . . , vl ) associated with a component vk ∈ (Dk,p, Dk,p)

we have vi = Di,p or vl = Dl,p . Hence v
(1)
t = v

(2)
t = vt for t = i, . . . , l. The other components of vv are at their boundary values.

Therefore vv = v(1) and vv = v(2), a contradiction. �




