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Related work

 with some applications to an integrated production-distribution planning model under supply and demand uncertainties. The elastic p-robustness increases flexibility of the relative deviation constraint by adding some variables reflecting the constraint violation whose values are penalised in the objective function. For yet another measure of robustness under the discrete uncertainty representation, the so-called (b, w)-robustness, that does not focus only on the worst case and is able to better capture the robustness, we refer the reader to Roy (2010).

. The fuzzy intervals are regarded as possibility distributions, describing the sets of more or less plausible values of demands. Consequently, we obtain a joint possibility distribution, induced by these fuzzy intervals, on the set of scenarios U. Clearly, this approach is a generalisation of the interval uncertainty representation. In this context, the planning processes of MRPII were adapted in Fargier and Thierry (

 [START_REF] Tavakkoli-Moghaddam | A Fuzzy Aggregate Production Planning Model for Make-to-Stock Environments[END_REF][START_REF] Mula | The Effectiveness of a Fuzzy Mathematical Programming Approach for Supply Chain Production Planning with Fuzzy Demand[END_REF][START_REF] Guillaume | A Robust Lot Sizing Problem with Ill-known Demands[END_REF]. Interestingly, it is shown in [START_REF] Guillaume | A Robust Lot Sizing Problem with Ill-known Demands[END_REF] that there exists a link between the interval uncertainty with the minmax criterion and the fuzzy uncertainty representation with the possibility-based criteria. It turns out that choosing a plan in fuzzy-valued lot sizing problems with backorders is not harder than their interval-valued counterparts, since they are reduced to examining a small number of interval problems with the minmax criterion.

If some additional information about uncertain parameters is provided, then less conservative criteria can be used to choose a solution that enable to model various preferences with respect to a risk. For instance, information about importance of each scenario. In this case, such importance may be expressed by assigning some weights to scenarios in U and one can apply the Ordered Weighted Averaging aggregation operator (OWA for short) proposed by [START_REF] Yager | On Ordered Weighted Averaging Aggregation Operators in Multi-criteria Decision Making[END_REF] that utilises this information while computing a solution. It is worth pointing out that the OWA criterion generalises the classical criteria such as the maximum, minimum, average and Hurwicz. If probability distributions of parameters or a probability distribution in U are available, then the value at risk and the conditional value at risk criteria are worthy of consideration (see [START_REF] Pflug | Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk[END_REF][START_REF] Rockafellar | Optimization of Conditional Value-at-Risk[END_REF]. In contrast to the minmax and minmax regret criteria, which consider all scenarios, the above risk criteria take into account a subset of scenarios aggregated with respect to a certain confidence level. In consequence they are less conservative (seeAlem and Morabito 2013 for an application of the risk criteria in production planning under stochastic demands and setup times). A criterion that exploits information about both importance and probability of occurrence of each scenario is the Weighted Ordered Weighted Averaging aggregation operator proposed in [START_REF] Torra | The Weighted OWA Operator[END_REF] (see also [START_REF] Ogryczak | On Efficient WOWA Optimization for Decision Support under Risk[END_REF]. It is a generalization of the expected value and OWA.

Another way of hedging against uncertainty of parameters that does not fall into the aforementioned frameworks of uncertainty handling was given in [START_REF] Bertsimas | The Price of Robustness[END_REF]. It models uncertain parameters as symmetric random variables, with unknown distributions, centred at their nominal values. The main advantage of this framework is its computational tractability and probabilistic guaranties for constraint violation. Moreover, it flexibly controls the level of conservativeness of a resulting solution by assigning to each constraint a parameter, the so-called budget of uncertainty that is an upper bound on the total (scaled) variability of parameters in the constraint from their nominal values. The budgets of uncertainty allow the decision-maker to take his/her attitude towards a risk into account. It is worth pointing out that the approach is a generalisation of a conservative framework earlier proposed in [START_REF] Soyster | Convex Programming with Set-inclusive Constraints and Applications to Inexact Linear Programming[END_REF] which assumes that all parameters may realise at their worst-case values -(the case holds for large values of the budgets of uncertainty). The first direct application of the above-mentioned method to solve lot sizing problems with backorders under uncertain demand with nondecreasing uncertainty budgets in periods was given in [START_REF] Bertsimas | A Robust Optimization Approach to Inventory Theory[END_REF]. Along the same line as the previous application, the method was adapted to periodic inventory control and production planning with uncertain product returns and demand in [START_REF] Wei | Robust Optimal Policies of Production and Inventory with Uncertain Returns and Demand[END_REF], to lot sizing combined with cutting stock problems under uncertain cost and demand in [START_REF] Alem | Production Planning in Furniture Settings via Robust Optimization[END_REF] and to planning in agriculture and processing industry in [START_REF] Bohle | A Robust Optimization Approach to Wine Grape Harvesting Scheduling[END_REF], [START_REF] Alvarez | Application of Robust Optimization to the Sawmill Planning Problem[END_REF], [START_REF] Roccoa | Robust Optimisation Approach Applied to the Analysis of Production/Logistics and Crop Planning in the Tomato Processing Industry[END_REF]. It was also used in [START_REF] Bienstock | Computing Robust Basestock Levels[END_REF] to obtain a good approximation of optimal basestock policies under uncertain demand in the minmax setting. Furthermore, the above ideas are introduced in a continuous time fluid model for dynamic pricing and inventory control with demand uncertainty by Adida and Perakis (2006).

Our results

In this paper, we focus on the tactical level by examining the MPS and MRP planning processes. Namely, we deal with the CLSP (for the MPS process) and MLCLSP (for the MRP process), both with backordering, with uncertain cumulative demand under the interval uncertainty representation of scenario set U with the minmax criterion for choosing a robust production plan (see, e.g. [START_REF] Zangwill | A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System -A Network Approach[END_REF][START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF][START_REF] Mula | Material Requirement Planning with Fuzzy Constraints and Fuzzy Coefficients[END_REF][START_REF] Albrecht | Supply Chain Coordination Mechanisms[END_REF] for models for their deterministic counterparts). Moreover, we assume that deterministic counterparts of the problems under consideration are polynomially solvable and we would like to preserve their computational tractability. Therefore we do not study production processes, for instance, with set-up costs/times, which become NP-hard problems even for many special cases (see, e.g. [START_REF] Florian | Deterministic Production Planning: Algorithms and Complexity[END_REF][START_REF] Chen | Analysis of Relaxations for the Multi-item Capacitated Lot-sizing Problem[END_REF] and with other production parameters under uncertainty, since it may lead to computationally harder problems.

To the best of our knowledge, such a model of uncertainty in cumulative demand has not been investigated in the literature on production planning so far. We distinguish two interval representations of set U of cumulative demand scenarios, namely for the MPS problems and for MRP ones. They are more realistic than the model of uncertainty in demand in periods (see Section 3 for a detailed explanation). Moreover, we show that they lead to the polynomial solvability of the planning problems under consideration in the minmax setting in contrast to the same problems with uncertainty in demand in periods for which there are few polynomial methods. Accordingly, in Section 4.1, we show that computing a worst-case scenario (the adversarial problem) can be done in O(T ) time for the MPS under L4L and POQ rules -note that its computational complexity in the case of uncertainty in demand in periods is still an open problem (see [START_REF] Guillaume | A Robust Lot Sizing Problem with Ill-known Demands[END_REF] and also other hard adversarial problems [START_REF] Bienstock | Computing Robust Basestock Levels[END_REF]). We provide a linear programme for the MPS under L4L and a strongly polynomial combinatorial algorithm for the MPS under POQ for determining an optimal robust production plan. Interestingly, under uncertainty on demand in periods there is only one iterative algorithm given in [START_REF] Guillaume | A Robust Lot Sizing Problem with Ill-known Demands[END_REF] based on Benders' decomposition. A situation is much more involved under the cumulative demand uncertainty for the MRP problems. In Section 4.2 we prove, by characterising optimal scenarios, that computing a worst-case scenario (the adversarial problem) can be done in O(P • T 3 ) time, where P is the number of products. This allows us to propose a linear programming model for determining an optimal robust production plan. In Section 5, we provide and experimental evaluation of the proposed methods, which show, among others, that the decrease in profit of optimal robust production plans is consistently linear when uncertainty increases.

Deterministic MPS/MRP problems

In this section, we recall the deterministic counterparts of the MPS and MRP problems (see, e.g. Albrecht 2010; [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF]. We provide slightly modified linear programmes and some compact formulations for them that allow us to propose and analyse, in Section 4, methods and linear programming models for these problems under uncertainty.

Single-item model (MPS) -Lot for Lot rule (L4L)

We now discuss a single-item problem under capacity and cumulative capacity constraints. Given T periods, for period t ∈ [T ] ([T ] denotes the set {1, . . . , T }), let d t ≥ 0 be the demand in period t, let x t ≥ 0 be the production amount in period t. Set D t = t i=1 d i and X t = t i=1 x i , D t and X t stand for the cumulative demand up to period t and the cumulative production up to period t, respectively. Obviously, X t-1 ≤ X t and D t-1 ≤ D t , t = 2, . . . , T . The production x t in each period t ∈ [T ] can be under two kinds of limits: capacity limits l t and u t such that l t ≤ x t ≤ u t and cumulative capacity limits L t and U t on the cumulative production up to period t such that L t ≤ t i=1 x i ≤ U t . Thus the set of feasible production amounts X ⊆ R T + can be defined as follows:

X = {x = (x 1 , . . . , x T ) : l t ≤ x t ≤ u t , L t ≤ t i=1 x i ≤ U t , t ∈ [T ]}. (1) 
Moreover, at this (tactical) level of planning for MPS, we assume that production, inventory and backordering cost coefficients and the selling price coefficient do not depend on the period t. These cost and selling price coefficients are denoted, respectively, by c I , c B and b P . We do not consider in the production process setup times and costs. Thus the problem, here studied, is a version of the capacitated single-item lot sizing model with backordering (see, e.g. [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF] and it can be formulated as a linear programming model as follows -the decision variables and parameters in model ( 2)-( 7) are defined in Table 1:

min T t=1 (c I I t + c B B t -b P s t ) (2) s.t. B t -I t = D t - t i=1 x i t ∈ [T ] (3) t i=1 s i = D t -B t t ∈ [T ] (4) l t ≤ x t ≤ u t t ∈ [T ] (5) L t ≤ t i=1 x i ≤ U t t ∈ [T ] (6) B t , I t , s t , x t ≥ 0 t ∈ [T ] (7) 
Since we have only one product and production cost coefficients are constant over the planning horizon, they can be ignored in the formulation (2)-(7). Constraints (3) are the flow constraints of production with backordering and (4) specify the potential sales of the product in the planning horizon. It is easily seen that ( 4) can be also rewritten as: t i=1 s i = t i=1 x i -I t . Constraints (5) are the capacity limits in each period and (6) are the limits on the cumulative production up to period t. We have assumed that an initial inventory and an initial backorder are equal to zero. This assumption is not particularly restrictive.

An easy computation shows that ( 2)-( 7) may be written in an equivalent compact form. Indeed, define C and P to be the nonnegative real functions that represent either the cost of storing inventory from period t to period t + 1 or the cost of backordering the product amount from period t + 1 to period t, and the benefit from selling the product in the planning horizon, respectively. The functions have the forms: 2) and ( 3)) and 3) and ( 4)). We can now write (2)-( 7) in the following equivalent form:

C(X t , D t ) = max{c I (X t -D t ), c B (D t -X t )} (see (
P(X T , D T ) = b P min{X T , D T } (see (2), (
MPS-L4L: min x∈X F(x) = min x∈X T t=1 C(X t , D t ) -P(X T , D T ) (8)
Therefore, our production planning consists in finding a feasible production plan x ∈ X, subject to the conditions of satisfying each demand, which minimises the total cost of storage and backordering minus the benefit from selling the product. The compact form (8) allows us to formulate (2)-( 7) as the following linear programme which will be exploited in Section 4:

min T t=1 π t (9) s.t. π t ≥ c I t i=1 x i -D t t = 1, . . . , T -1 (10) π t ≥ c B D t - t i=1 x i t = 1, . . . , T -1 ( 1 1 ) π T ≥ c I T i=1 x i -D T -b P D T (12) π T ≥ c B D T - T i=1 x i -b P T i=1 x i (13) π t unrestricted t ∈ [T ] (14) x x x ∈ X (15)
where the optimal values of π t , t = 1, . . . , T -1, are such that π t = C(X t , D t ), π T = C(X T , D T ) -P(X T , D T ) and the value of T t=1 π t equals F(x) for an optimal robust production plan x x.

Single-item model (MPS) -periodic order quantity rule (POQ)

We now turn to a single-item problem under periodic capacity constraints in which u t = ∞ if t is the production period; and u t = 0 otherwise. Obviously, it is a special case of the single product problem with the Lot-For-Lot rule (see problem (8)). Furthermore, we are given a periodicity being a positive integer such that: 1 < < T and x t ≥ 0 if t mod = 1;

x t = 0 otherwise (if t mod = 1) for t ∈ [T ].
We assume without loss of generality that (T -1) mod = 0. Now, the set of feasible production amounts X ⊆ R T + can be defined as follows:

X = {x = (x 1 , . . . , x T ) : x t ≥ 0 for t mod = 1, x t = 0 for t mod = 1, t ∈ [T ]}. ( 16 
)
The optimisation problem consists in finding a feasible production plan x ∈ X, subject to the conditions of satisfying each demand, which minimises the total cost of storage and backordering, that is:

MPS-POQ: min x x∈X F(x x) = min x∈X T t=1 C(X t , D t ). ( 17 
)
Clearly, problem ( 17) is a version of the uncapacitated single-item lot sizing model with backordering (see, e.g. [START_REF] Zangwill | A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System -A Network Approach[END_REF]) with the periodic order quantity policy. Thus, it can be formulated as follows:

min T t=1 (c I I t + c B B t ) (18) s.t. B t -I t = D t - t i=1 x i t ∈ [T ] ( 19 
)
x t = 0 t mod = 1, t ∈ [T ] (20) B t , I t , x t ≥ 0 t ∈ [T ] (21) 
Taking into account the periodicity in the problem MPS-POQ and its network nature, one can adapt the results of Ahuja, Magnanti, and Orlin (1993, Chapter 19.9) for problem ( 18)-( 21) and obtain the following proposition:

Proposition 1 The problem (18)-( 21) can be solved in O(T ).

Proof. See Appendix 1.

Multi-Item, multi-level model (MRP)

We focus on the most involved problem. We are given T periods, P products and R resources. For period t ∈ [T ] and product p ∈ [P] let d t, p be the external demand for product p in period t, d t, p ≥ 0, let x t, p be the production amount of product p in period t, x t, p ≥ 0. Set D t, p = t i=1 d i, p and X t, p = t i=1 x i, p , D t, p and X t, p stand for the cumulative demand for product p up to period t and the cumulative production of product p up to period t, respectively. Obviously, X t-1, p ≤ X t, p and D t-1, p ≤ D t, p , t = 2, . . . , T . In this problem, making products requires resources. Let a p,r be the required amount of resource r, r ∈ [R], to produce one unit of product p, p ∈ [P]. Hence the production of product p in period t, x t, p , will satisfy two kinds of resource constraints: the capacity limits of each resource r in each period t, denoted by l t,r and u t,r , respectively, such that l t,r ≤ P p=1 a p,r x t, p ≤ u t,r and the cumulative capacity limits of each resource r in each period t, denoted by L t, p and U t, p , respectively, such that L t,r ≤ P p=1 a p,r X t, p ≤ U t,r . Besides the external demand d t, p , a given amount of product p ∈ [P] is required to make one unit of product p ∈ [P], denoted by b p, p (b p, p = 0 if p = p ), and so P j=1 b p, j x t+Ld j , j is the internal demand for product p in period t, where Ld j is the lead-time of product j. Furthermore, if one accepts backordering, this means that an external demand for product p in period t can be fulfilled in period t such that t > t. Of course the backordering concerns only external demands. Therefore, the set of feasible production amounts X ⊆ R T ×P + has the following form:

X = {x x = (x t, p ) : l t,r ≤ P j=1 a j,r x t, j ≤ u t,r , L t,r ≤ P j=1 a j,r t i=1 x i, j ≤ U t,r , t i=1 ⎛ ⎝ x i, p - P j=1 b p, j x i+Ld j , j ⎞ ⎠ ≥ 0, t ∈ [T ], r ∈ [R], p ∈ [P]}, (22) 
Table 2. The parameters and decision variables in model ( 23)-( 28). External demand of product p ∈ where t i=1 (x i, p -P j=1 b p, j x i+Ld j , j ) is the cumulative production of product p up to period t minus the internal demand for product p. At the (tactical) level of planning, one assumes that the inventory, production and backordering cost coefficients and selling prices only depend on product p and not on period t. We are now ready to give the linear programming model of the problem under consideration, the decision variables and parameters are defined in Table 2 (we do not take into account setup times and costs in the production process):

Definition

Set of indices

[P] in period t ∈ [T ], cumulative demand D t, p = t i=1 d i, p l t,r Lower capacity limit of resource r ∈ [R] in period t ∈ [T ] u t,r Upper capacity limit of resource r ∈ [R] in period t ∈ [T ] L t,r Lower cumulative capacity limit of resource r ∈ [R] in period t ∈ [T ] U t,
min P p=1 T t=1 (c I p I t, p + c B p B t, p + c P p x t, p -b P p s t, p ) (23) s.t. B t, p -I t, p = D t, p - t i=1 ⎛ ⎝ x i, p - P j=1 b p, j x i+Ld j , j ⎞ ⎠ t ∈ [T ], p ∈ [P] (24) t i=1 s i, p = D t, p -B t, p t ∈ [T ], p ∈ [P] (25) l t,r ≤ P j=1 a j,r x t, j ≤ u t,r t ∈ [T ], r ∈ [R] (26) L t,r ≤ P j=1 a j,r t i=1 x i, j ≤ U t,r t ∈ [T ], r ∈ [R] (27) B t, p , I t, p , s t, p , x t, p ≥ 0 t ∈ [T ], p ∈ [P] (28) 
Note that the model ( 23)-( 28) admits that each product can have external and internal demands simultaneously, thus it is a generalisation of ones proposed in [START_REF] Albrecht | Supply Chain Coordination Mechanisms[END_REF], [START_REF] Mula | Material Requirement Planning with Fuzzy Constraints and Fuzzy Coefficients[END_REF], Pochet and Wolsey model, the practitioners are able to express different types of uncertainty on the demand effortlessly. Indeed, the uncertainty can be constant all over a planning horizon, or can increase proportionally to the demand or can be due to shifts of a part of the demand between two consecutive periods. The above three cases can be expressed as uncertainty on the cumulative demand. In the first one, this uncertainty is expressed as an uncertainty of ±K on the cumulative demand. More formally, t = t = K , where K is a constant. In the second case, t = t = αD n t , where α ∈ [0, 1] is a prescribed uncertainty parameter being the maximum percentage deviation of cumulative demands in periods from their nominal values. In the third case t = αd t , and t = αd t+1 , where α ∈ [0, 1], which is the maximum percentage deviation of the demand that can be moved to its adjacent periods. For instance, α = 1 means that all the demand in a period can be moved to its adjacent periods and α = 0.5 means that half of the demand in a period can be moved to its adjacent periods. Moreover, in contrast with the period-specific uncertainty that cannot model uncertainty reductions in parts of a planning horizon, defining uncertainty on the cumulative demand allows the decision-maker to capture a variation of uncertainty throughout a planning horizon.

Model of uncertainty for the MPS problems

For MPS-L4L, MPS-POQ problems studied in Sections 2.1 and 2.2, we adopt a model in which uncertainty in the cumulative demand is small with respect to the minimum demand. In other words, a demand in a period can be equal to 0 only if the previous cumulative demand is at its maximum value. In fact, at this level of planning, the lengths of time periods are big enough (for example, one month) to have the minimum periodic demand greater than zero. Thus this assumption is realistic. More formally, cumulative demand intervals are such that D t-1 ≤ D t for every t = 2, . . . , T . Hence the set of cumulative demand scenarios U is the Cartesian product of the cumulative demands intervals, i.e.

U = [D 1 , D 1 ] × • • • × [D T , D T ], where D t-1 ≤ D t .
(30)

Model of uncertainty for the MRP problem

For the MRP problem, formulated in Section 2.3, one assumes that the length of periods is smaller than the length of periods of the MPS problems, for instance, the length of a period for MPS is one month while the length of a period for MRP is one week. Moreover, the demand has more versatility in the short range. For such a length of periods of MRP, it is possible that the demand is delayed by a period, what is not possible for a longer length of period. For both reasons, it is hard to assume that for MRP problem, uncertainty in the cumulative demand is small with respect to the minimum demand. Furthermore, we extend now the previously described model of uncertainty for the single-item model to the one for the multi-item model. 

U = {S = (D(S) t, p ) : D(S) t, p ∈ [D t, p , D t, p ], , t ∈ [T ], D(S) t-1, p ≤ D(S) t, p , t = 2, . . . , T, p ∈ [P]}. ( 31 
)

Robust MPS/MRP problems

Assuming that demand uncertainty is represented as in Section 3, we wish to find a robust production plan x ∈ X in MPS-L4L, MPS-POQ, MRP problems with the best worst-case cost guarantee. In order to this, one of common robust criteria called the minmax can be adopted (see, e.g. [START_REF] Kouvelis | Robust Discrete Optimization and its Applications[END_REF]. In other words, we seek a production plan that minimises the maximum production plan cost F(x, S) over all the cumulative demand scenarios from a fixed set U (see ( 30), ( 31)). This leads to the following general robust problem P:

ROB P: min x∈X A(x x) = min x∈X max S∈U F(x, S),
where P ∈ {MPS-L4L, MPS-POQ, MRP}, F(x, S) is the cost of production plan x x (see ( 8), ( 17), ( 29)) under scenario S ∈ U, A(x) is the maximum cost of production plan x ∈ X, A(x x) = max S∈U F(x x, S), and the set of feasible production plans X is the one of the forms: (1), ( 16) and ( 22). An optimal solution x r to the problem ROB P is called optimal robust production plan for P.

We are aware of the conservativeness of the minmax. Fortunately, using this criterion, with the assumed cumulative demand uncertainty representation (see ( 30), ( 31)), enables us to construct polynomial methods for the problems under consideration. Moreover, applying other less conservative criteria may not guarantee the preservation of polynomial solvability and requires additional information about uncertain demands (see Section 1 for comments).

A natural optimisation problem associated with ROB P, and simpler than ROB P, is the one of evaluating a given production plan x x * ∈ X. A scenario S o ∈ U that minimises the total cost F(x x * , S) of the production plan x x * is called optimistic scenario. A scenario S w ∈ U that maximises the total cost F(x * , S) of the production plan x * is called the worstcase scenario. The problem of computing a worst-case scenario is often called adversarial problem (see, e.g. [START_REF] Bienstock | Computing Robust Basestock Levels[END_REF][START_REF] Nasrabadi | Robust Optimization with Incremental Recourse[END_REF], in which an adversary maliciously wants to increase the total cost F(x * , S) of the production plan x * . Therefore in order to evaluate a given production plan x * , we look for the interval,

F x * = [ f x x * , f x x * ],
containing possible values of costs of x * , such that

f x * =F(x x * , S o ) = min S∈U F(x x x * , S), ( 32 
)
f x * =F(x * , S w ) = max S∈U F(x * , S). ( 33 
)

Robust MPS problems

In this section, we focus on the problem of evaluating a fixed production plan and the problem of computing an optimal robust production plan to ROB P, where P ∈ {MPS-L4L, MPS-POQ}, under the uncertainty representation U defined in (30). We start by proving the following proposition that we substantially use in this section.

Proposition 2 The objective function F(x x * , S) for any fixed production plan x x * ∈ X in ROB P, P ∈ {MPS-L4L, MPS-POQ}, is convex in U.

Proof. See Appendix 1.

The convexity of F(x * , S) in U is a crucial fact. For problem (32), it implies that a locally optimal scenario is also globally optimal. For problem (33), it implies the maximum of F is attained at a vertex of convex polytope U. We recall that a scenario S ∈ U is a vertex of U if it is not the strict convex combination of scenarios of U.

Evaluating a given production plan

We now examine the problem of evaluating a given production plan x x * ∈ X. Namely, we wish to find the interval F x x * = [ f x x * , f x * ] (see problems (32) and ( 33)). Interval F x * determined provides valuable information for the decision-maker, since it contains possible values of costs of x * . It may be useful, for instance, in a risk analysis in the setting of possibility theory [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF], where it helps in evaluating degrees of possibility and necessity that a cost of a given plan x * does not exceed a given threshold. Thus we need to compute its optimistic and worst-case scenarios. We consider the case ROB MPS-L4L. All the results presented in this section apply also to ROB MPS-POQ -it is sufficient to set b p to zero.

We first deal with the problem of determining an optimistic scenario S o ∈ U for a production plan x x x * , i.e. the problem (32). Fortunately, for every x x * ∈ X one can give the explicit form of an optimistic scenario S o :

D(S o ) t = ⎧ ⎪ ⎨ ⎪ ⎩ D t if X * t < D t , X * t if D t ≤ X * t ≤ D t , D t if X * t > D t , t ∈ [T ]. (34) 
It is easy to check that S o in the form of ( 34) is feasible and locally optimal for the problem (32). Hence and from Proposition 2, scenario S o is also globally optimal, f x x * = F(x * S o ). Thus computing an optimistic scenario can be done in O(T ) time.

We now study the problem of computing a worst-case scenario S w ∈ U for a given production plan x x * ∈ X (the adversarial problem), i.e. the problem (33). It turns out that, for problem (33), the set U can be reduced to the set of extreme scenarios denoted by

U ext , U ext ⊆ U, U ext = {D 1 , D 1 } × • • • × {D T , D T }, where D t-1 ≤ D t . ( 35 
)
The following proposition characterises a worst-case scenario S w .

Proposition 3 A worst-case scenario S w is an extreme one, i.e. S w ∈ U ext .

Proof. See Appendix 1.

Using Proposition 3 and the fact that the bounds are such that D t-1 ≤ D t , we can rewrite problem (33), equivalently, as

f x x * = F(x x x * S w ) = max S∈U F(x x * , S) = max S∈U ext F(x x x * , S) = T -1 t=1 max D(S) t ∈{D t ,D t } C(X * t , D(S) t ) + max D(S) T ∈{D T ,D T } C(X * T , D(S) T ) -P(X * T , D(S) T ). ( 36 
)
Thus a special form of optimisation problem (36) and the forms of functions C and P allow us to give an explicit formula for an optimal solution -a worst-cost scenario S w for every x * ∈ X. That is for t ∈ [T ]:

D(S w ) t = ⎧ ⎪ ⎨ ⎪ ⎩ D t if c I (X * t -D t ) > c B (D t -X * t ) and t = 1, . . . , T -1, D t if c I (X * t -D t ) -b P D t > c B (D t -X * t ) -b P X * t and t = T , D t otherwise. (37)
Therefore, a worst-cost scenario S w for a given production plan x x x * can be computed in O(T ) time.

Computing an optimal robust production plan

In this section, we address the problem of computing an optimal robust production plan x x r ∈ X to ROB P, P ∈ {MPS-L4L, MPS-POQ}. We first consider the problem ROB MPS-L4L. It is easy to see that the problem contains as subproblem, the one of computing a worst-case scenario for a fixed x x x ∈ X -problem (36). Hence, we get the decomposition of ROB MPS-L4L:

min x∈X max S∈U F(x x, S) = min x x∈X max S∈U ext F(x, S) = min x∈X T -1 t=1 max D(S) t ∈{D t ,D t } C(X t , D(S) t ) + max D(S) T ∈{D T ,D T } C(X T , D(S) T ) -P(X T , D(S) T ). ( 38 
)
Using model ( 9)-( 14) and the fact that D(S) t ∈ {D t , D t }, t ∈ [T ], we may formulate problem (36) as the following linear programme:

min T t=1 π t (39) s.t. π t ≥ c I (X * t -D t ) t = 1, . . . , T -1 π t ≥ c B (D t -X * t ) t = 1, . . . , T -1 π T ≥ c I (X * T -D T ) -b P D T π T ≥ c B (D T -X * T ) -b P X * T π t unrestricted t ∈ [T ]
For an optimal solution to (39), the value of T t=1 π t equals max S∈U F(x * , S) (problem (36)), the values of

π t , t ∈ [T ], are such that π t = max D(S) t ∈{D t ,D t } C(X * t , D(S) t ) and π T = max D(S) T ∈{D T ,D T } C(X * T , D(S) T ) -P(X * T , D(S) T ).
Adding now the constraints describing the feasible production amounts (1) to (39) and developing X t , t ∈ [T ] yield a linear programming model for computing an optimal robust production plan x r to ROB MPS-L4L:

min T t=1 π t (40) s.t. π t ≥ c I t i=1 x i -D t t = 1, . . . , T -1 (41) π t ≥ c B D t - t i=1 x i t = 1, . . . , T -1 (42) π T ≥ c I T i=1 x i -D T -b P D T (43) π T ≥ c B D T - T i=1 x i -b P T i=1 x i (44) π t unrestricted t ∈ [T ] (45) x x ∈ X (46)
The vector of decision variables x x = (x t ) t∈[T ] describes an optimal robust production plan x r to ROB MPS-L4L and T t=1 π t provides max S∈U F(x x, S). The interpretation of variables π t , t ∈ [T ], is the same as for model (39). A worst-case scenario S w for x x r can be determined by formula (37) and corresponding inventory and backordering levels and sales at the end of each period can be easily computed by ( 3) and ( 4). The problem ROB MPS-L4L with no capacity and cumulative capacity limits is a trivial one. Namely, from results presented in Guillaume, Kobylański, and Zieliński (2012, Section 4.2) and the decomposed form (38) of the problem, we immediately deduce the following O(T ) method for computing an optimal robust production plan x r , for t ∈ [T ]:

X r t = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ c B D t +c I D t c B +c I if t = 1, . . . , T -1, c B D t +(c I +b P )D t c B +c I +b P if t = T. ( 47 
)
Of course, X r t-1 ≤ X r t for t = 2, . . . , T . Thus one can set x r 1 = X r 1 and x r t = X r t -X r t-1 for t = 2, . . . , T . It is worth noting that linear programme ( 40)-( 46) for ROB MPS-L4L can be also obtained if we adapt a more general approach proposed in [START_REF] Soyster | Convex Programming with Set-inclusive Constraints and Applications to Inexact Linear Programming[END_REF] to model ( 9)-( 15) for MPS-L4L under cumulative demand uncertainty. Indeed, this approach copes with uncertainty in cumulative demands by considering their worst-case values. Furthermore, it is equivalent to the robust approach to linear optimisation problems in the sense of [START_REF] Bertsimas | The Price of Robustness[END_REF] if cumulative demand D t in each period t is admitted to be uncertain. In order to maximise the values of the right-hand side of constraints ( 10)-( 13) over cumulative demand scenario set U, we set cumulative demand D t in (10), ( 12) and ( 11), ( 13) at its lower possible value D t and its upper possible value D t , respectively, and get constraints ( 41)-( 44). The above equivalence between Soyster's method applied to MPS-L4L under cumulative demand uncertainty and ROB MPS-L4L holds only under scenario set U defined by (30), when D t-1 ≤ D t , t = 2, . . . , T . If D t-1 ≤ D t is dropped then Soyster's approach considers infeasible cumulative demand scenarios, i.e. scenarios S which do not satisfy D(S) t-1 ≤ D(S) t , t = 2, . . . , T . This follows from the fact that the approach assumes that the value of each cumulative demand may vary independently of the values of the remaining cumulative demands. Therefore, Soyster's method and in consequence the method proposed in [START_REF] Bertsimas | The Price of Robustness[END_REF] can no longer be applied to problem MRP under cumulative demand scenario set U defined by (31) considered in Section 4.2.

We proceed with the study of the problem ROB MPS-POQ. An approach similar to ( 40)-( 46) can be applied to obtain a linear programming model for computing an optimal robust production plan x r to ROB MPS-POQ. However, a more efficient combinatorial algorithm for determining x x r can be proposed. From Proposition 3, the fact that the bounds fulfil inequalities D t-1 ≤ D t and the periodicity in the problem ROB MPS-POQ, it follows that one can decompose the problem into N + 1 separate subproblems, where N = (T -1)/ ,that is:

min x x∈X max S∈U ext T t=1 C(X t , D t (S)) = N k=1 min X (k-1)• +1 ∈X k max S∈U k ext k• t=(k-1)• +1 C(X (k-1)• +1 , D t (S)) + min X T ∈X T max S∈U T ext C(X T , D T (S)), ( 48 
)
where

X k = [D (k-1)• +1 , D (k-1)• +1 ] ∪ • • • ∪ [D k•P , D k• ], U k ext = {D (k-1)• +1 , D (k-1)• +1 } × • • • × {D k•P , D k• }, k ∈ [N ], X T = [D T , D T ] and U T ext = {D T , D T }; U ext = U 1 × • • • × U N × U T .
Obviously, the above possible cumulative production levels are nondecreasing sequence of their values, X 1 ≤ X +1 ≤ • • • ≤ X T . Therefore, we need only to solve the N + 1 separate subproblems. The last subproblem is trivial, i.e. an optimal cumulative production level X r T can be computed by formula:

X r T = c B D T + c I D T c B + c I . ( 49 
)
Hence problem (33) has the equivalent separable form:

f x x * = max S∈U F(x x * , S) = max S∈U P p=1 T t=1 C p (X * int t, p , D(S) t, p ) -P p (X * int T, p , D(S) T, p ) + c P p X * T, p = P p=1 c P p X * T, p + max S∈U p T t=1 C p (X * int t, p , D(S) t, p -P p (X * int T, p , D(S) T, p )). ( 53 
)
Accordingly, the problem of computing a worst-case scenario S w ∈ U for a given production plan x x * ∈ X boils down to solving the P separated problems. Namely, max

S∈U p T t=1 C p (X * int t, p , D(S) t, p ) -P p (X * int T, p , D(S) T, p ) + c P p X * T, p , p ∈ [P]. (54) 
Let us regard p as fixed. It is evident that the objective function in ( 54) is convex in U p for a given production plan x * ∈ X (see the proof of Proposition 4). Consequently, it attains its maximum value at a vertex of convex polytope U p (see, e.g. [START_REF] Martos | Nonlinear Programming Theory and Methods[END_REF]). Hence it suffices to examine only vertices of U p . We now characterise vertices (vertex scenarios) of scenario set U p . We recall first that v ∈ U p is a vertex (vertex scenario) of U p if v v cannot be the strict convex combination of elements (scenarios) of U p . Thus the following lemma is obvious.

Lemma 1 Let v ∈ U p ∩ t∈[T ] {D t, p , D t, p }. Then v is a vertex of U p . Lemma 2 Suppose that v (v t ) t∈[T ] ∈ U p and there exits at least one component v k of v such that v k ∈ (D k, p , D k, p ). Then v v is a vertex of U p if and only if for each component v k of v, v k ∈ (D k, p , D k, p ), in the subsequence (v i , . . . , v k-1 , v k , v k+1 , . . . , v l ) of v, where i = min{t ∈ [T ] : v t = v k , t ≤ k} and l = max{t ∈ [T ] : v t = v k , k ≤ t}, the first and the last elements are such that v i = D i, p or v l = D l, p . Proof. See Appendix 1.
The above lemma shows, among others, that there may exist a vertex scenario S = (D(S) t, p ) ∈ U p , a candidate for an optimal solution to (54), with at least one cumulative demand D(S) k, p in some period, say k, such that D(S) k, p ∈ (D k, p , D k, p ). Therefore, for instance, Soyster's framework [START_REF] Soyster | Convex Programming with Set-inclusive Constraints and Applications to Inexact Linear Programming[END_REF], which is a particular case of the method for robust linear problems proposed in [START_REF] Bertsimas | The Price of Robustness[END_REF] and focuses also on a worst-case analysis, cannot be applied here. This framework assumes that every cumulative demand D t, p , t ∈ [T ] has to be taken its worst-case value in the interval [D t, p , D t, p ]. Thus it may omit the vertex scenario described above or lead to a scenario S that violates conditions D(S) t-1, p ≤ D(S) t, p , t = 2, . . . , T .

Using Lemmas 1 and 2, we can construct a layered graph G p = (V p , A p ) that represents a subset of scenarios of set U p that contains all its vertex scenarios and during examining no vertex scenario can be omitted. The set 

V p is partitioned into T + 2 disjoint layers V p 0 , V p 1 , . . . , V p T , V p T +1 in which V p 0 = {s}
p u , v p u ∈ [D t, p , D t, p ] ∩ t∈[T ] {D t, p , D t, p }, of all the vertices of U p . Obviously, |V p t | = |[D t, p , D t, p ] ∩ t∈[T ] {D t, p , D t, p }|, t ∈ [T ]. Let A p = A p 1 ∪ • • • ∪ A p T ∪ A p T +1 . Arc (u, w) ∈ A p 1 if u ∈ V p 0 and w ∈ V p 1 ; (u, w) ∈ A p T +1 if u ∈ V p T and w ∈ V p T +1 ; and arc (u, w) ∈ A p t , t = 2, . . . , T , if u ∈ V p t-1 , w ∈ V p t and v p u ≤ v p w .
An easy computation shows that A p has O(T 3 ) arcs and V P has O(T 2 ) nodes. We associate with each arc (u, w) ∈ A p length l p u,w in the following way:

l p u,w = ⎧ ⎪ ⎨ ⎪ ⎩ C p (X * int t, p , v p w ) if (u, w) ∈ A p t , t = 1, . . . , T -1, C p (X * int T, p , v p w ) -P p (X * int T, p , v p w ) + c P p X * T, p if (u, w) ∈ A p T , 0 i f (u, w) ∈ A T +1 (55) 
for a fixed x * ∈ X. The graph G p models a subset of

U p . Indeed, if s = u 0 ; u 1 ; • • • ; u T ; u T +1 = t is a path from s to t, then it corresponds to v = (v p u t ) t∈[T ] ∈ U p , u t ∈ V p t , t ∈ [T ]
, and the length of this path, t∈[T ] l p u t-1 ,u t , is equal to the value of the objective function in (54) for v. Since G p has been built according to Lemmas 1 and 2, the subset modelled contains all the vertices of U p . Thus by the convexity of the objective function in (54) over U p , this subset contains all the optimal scenarios to problem (54). Hence solving (54) boils down to finding a longest path σ p from s to t in G p , which can be done in O(T 3 ) (see, e.g. [START_REF] Ahuja | Network Flows: Theory, Algorithms, and Applications[END_REF]. From the decomposition of (53), we have an O(P • T 3 ) algorithm for the determining a worst-case scenario S w ∈ U for a given production plan x x * ∈ X (the problem (33)). Worst-case scenario S w corresponds to the concatenation σ 1 ; Making use of (56), combining ( 58)-( 68) with the definition of the set of feasible production amounts X (see ( 22)) and developing X int t, p , X T, p , t ∈ [T ], p ∈ [P], we obtain a linear programing model for computing an optimal robust production plan x r to ROB MRP:

min P p=1 π p t (69) s.t. B p w -I p w = v p w - t i=1 (x i, p - P j=1 b p, j x i+Ld j , j ) w ∈ V p t , t ∈ [T ], p ∈ [P] π p w -π p u ≥ c I p I p w + c B p B p w (u, w) ∈ A p t , t = 1, . . . , T -1, p ∈ [P] π p w -π p u ≥ c I p I p w + c B p B p w -b P p z p w + c P p T i=1 x i, p (u, w) ∈ A p T , p ∈ [P] π p t -π p u ≥ 0 u ∈ V p T , p ∈ [P] π p s = 0 p ∈ [P] z p w ≤ v p w w ∈ V p T , p ∈ [P] z p w ≤ t i=1 (x i, p - P j=1 b p, j x i+Ld j , j ) w ∈ V p T , p ∈ [P] B p w , I p w ≥ 0 w ∈ V p t , t ∈ [T ], p ∈ [P] z p w ≥ 0 w ∈ V p T , p ∈ [P] π p u unrestricted u ∈ V p , p ∈ [P]
x x ∈ X

The decision variables x j, p , p ∈ [P], t ∈ [T ], describe an optimal robust production plan x r to ROB MRP and P p=1 π p t provides max S∈U F(x x r , S). Meanings of the constraints and the rest of decision variables are the same as for model ( 58)-(68).

Experimental results

In this section, we present experiments illustrating our robust approach to the MRP problem with uncertain cumulative demand (ROB MRP, see Section 4.2) under the uncertainty representation U defined in (31). We are given 12 products and 3 resources, P = 12 and R = 3. The bill of materials (the product structures) with the product costs and the lead times of the products are presented in Figure 2. The selling prices of the products are as follows: b P 1 = 10, 000, b P 2 = 5500 and b P p = 0 for p = 3, . . . , 12. The backorder cost c B p of each product p is equal to 15% of its selling price. The inventory cost c I p of each product p is equal to 5% of the sum of the production cost of product p and all the components consumed when product p is produced. For instance, using the product structures shown in Figure 2, the inventory cost of product 5 is computed as follows: c I 5 = 0.05(c P 5 + b 12,5 c P 12 + b 11,5 c P 11 ) = 22.5. The planning horizon consists of 23 periods, T = 23, with the capacity limits: l t,1 = l t,2 = l t,3 = 0 for t = 1, 2 and l t,1 = 1000, l t,2 = l t,3 = 2000 for t = 3, . . . , 23; u t,1 = 10, 000 for t = 1, . . . , 23, u t,2 = 9100 for t = 1, . . . , 14, u t,2 = 11, 200 for t = 15, . . . , 23 and u t,3 = 10, 300 for t = 1, . . . , 8, u t,3 = 9300 for t = 9, . . . , 14, u t,3 = 6800 for t = 15, . . . , 17 u t,3 = 10, 800 for t = 18, . . . , 23. There are no cumulative capacity limits in this example.

Regarding the uncertainty representation (31) of scenario set U, cumulative demands are uncertain and modelled by intervals (see Section 3). In our experiments, the cumulative demand intervals have the following form [D n t, pt, p , D n t, p + t, p ], where D n t, p = t i=1 d i, p is the nominal cumulative demand and d t, p is given demand in period t. We assume that product 1 and 2 have external demand so we only provide in Table 3 demands d t, p for p = 1, 2. The rest of d t, p , and in consequence D n t, p , for t = 1, . . . , 23 and p = 3, . . . , 12 are equal to zero. The values of t, p and t, p are determined according to two kinds of uncertainty on the cumulative demand. In the first type t, p = t, p = αD n t, p , t = 1, . . . , 23, p = 1, 2, where α ∈ [0, 1] is a prescribed uncertainty parameter being the maximum percentage deviation of cumulative demands in periods from their nominal values. In the second type t, p = αd t, p , t = 1, . . . , 23, and t, p = αd t+1, p , t = 1, . . . , 22 and 23, p = 0, p = 1, 2, where α ∈ [0, 1], which is the maximum percentage deviation of demands in periods from their nominal values. This type reflects uncertainty about occurring demands in periods, i.e. some of them may advanced or delayed. For instance, α = 0.5 means half demand in a period can be moved to its adjacent periods. Therefore, optimistic and chooses the nominal production plan x n , instead of an optimal robust plan x r , then its profit may decreases when a worst case scenario reveals. The relative reduction of the minimum profit of optimal robust production plans red r approximately equals twice and 1/5 of the percentage uncertainty introduced for the first and the second types, respectively (see Figure 5). For the latter type, the reduction red n is twice higher than red r (see Figure 5(b)). For instance, for the first type fora = 0.05 the minimum profit of an optimal robust production plan 6.6609 x 10 7 is reduced by 11 % to 5.8980 x 10 7

.

For the second type for a 0.22, the minimum profit of an optimal robust production plan 7.2367 x 10 7 is reduced by 4% to 6.9449 X 10 7 .

Ali the experiments, including the methods runs (see Section 4.2), were implemented using the modelling package JuMP [START_REF] Lubin | Computing in Operations Research Using Julia[END_REF] embedded in the prograrnming language Julia. Within our implementations, we called IBM ILOG CPLEX 12. 5 optimiser. The experiments were executed on a computer equipped with Intel Core 2 Duo 2. 4

GHz. Computation time required to find nominal production plan x n was 9.06 s. Average computation times for computing optimal robust production plans x r under the first and second types of cumulative demand uncertainty were 10.6 and 9.88 s, respectively ( over 30 problem instances for each type of uncertainty ). Thus the ROB MRP problems are still computationally tractable.

Conclusions

In the context of supply chains, the problem of tactical production and capacity planning under uncertainty in the demand is a central concern for the production planning systems. In this paper, we have dealt with the MPS (CLSP) under small uncertainty in the cumulative demand and with MRP (MLCLSP) problems under uncertainty in the cumulative demand. The mode! of uncertainty in the cumulative demand enables to take into account jointly the imprecision on order quantities and dates. For both problems, linear prograrnming models, which include backordering and the cumulative demand, have been presented. Further on, we have proposed efficient methods for evaluating the impact of uncertainty on production plans and linear programmes for computing optimal robust production plans for MPS and MRP problems under the uncertainty in the cumulative demand. Thus we have shown that introducing uncertainty in the cumulative demand to the above optimisation processes with the minmax criterion does not significantly increase their computational complexity, comparing with the deterministic counterparts, -they still remain polynomially solvable. Therefore, they can be applied in industrial context, i.e. in the manufacturing planning tools using linear prograrnming solvers.

There are some opportunities for further research in production planning in the robust optimisation setting. Namely, analysing the above problems under Jess conservative robust criteria or considering the second source of uncertainty in production planning, pointed out in the literature, that is the uncertainty in the process (uncertain lead time and scrap of components) are good topics for further research.
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  and V p T +1 = {t} contain two distinguished nodes, s and t, and each node u ∈ V p t , t ∈ [T ], corresponds to exactly one possible value of the tth component, denoted by v

  p w ). Constraint (59) together with the right-hand side of (61) and constraints (64), (65) represent the value of C p (X * int T, p , v p w ) -P p (X * int Ta possible value of the cumulative demand in period T of product p, v p w ∈ [D T, p , D T, p ]∩ t∈[T ] {D t, p , D t, p }, (64) and (65) help to model the value of P p (X * int T, p , v p w ). Solving linear programming model (58)-(68) for each p ∈ [P] yields P longest paths σ 1 , . . . , σ P whose concatenation σ 1 ; • • • ; σ P corresponds to worst case scenario S w for a fixed production plan x * . Namely, if node w ∈ σ p and w ∈ V p t , t ∈ [T ], then D(S w ) t, p = v p w and the values of decisions variables I p w and B p w are corresponding inventory and backordering levels, respectively, at the end of period t for product p, . Such a longest path in G p can be identified (after solving (58)-(68)), if needed, by performing a breadth-first search of G p using the arcs satisfying the equalities: * int T, p } + c P p X * T, p or π p t -π p u = 0.
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  gur e 5. Relative reductions as functions of uncertainty parameter a. (a) The first type of uncertainty. (b) The second type of uncertainty.

  • • • ; σ P of each longest path σ p in G p , p ∈ [P].4.2.2 Computing an optimal robust production plannow deal with the problem of computing an optimal robust production plan x x r to ROB MRP. Using (53), it can be decomposed in the following way:The inner problem in (56) corresponds to the problem of computing a worst-case scenario for a fixed x * ∈ X. The latter problem can be reduced to find the value of a longest path σ p in each of the P layered weighted graphs G p = (V p , A p ), p ∈ [P] (see Section 4.2.1). Finding the length of a longest path σ p from s to t in G p = (V p , A p ) for a fixed p may be modelled by the following linear programming problem: , (u, w) ∈ A p , are determined according to (55) for a given x x * ∈ X. The optimal value of decision variable π p t is the length of longest path σ p from s to t in G p , i.e. π . Substituting (55) into model (57), we obtain an equivalent linear programming model of the longest path problem in G p = (V p , A p ) for fixed p and x x x * ∈ X: ] {D t, p , D t, p }, of all the vertices of U p . In other words, v p w is a possible value of the cumulative demand in period t of product p. Constraint (59) and the right-hand side of (60) express the value of C p (X * int t, p , v
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Appendix 1. Some proofs

Proof of Proposition 1 It is clear that problem (18)-( 21) is a network flow problem. Thus using the results presented in Ahuja, Magnanti, and Orlin (1993, Chapter 19.9) one can model problem ( 18)-( 21) as the shortest path problem in a network that has T + 1 nodes, where node 0 represents the source and the tth node for each t ∈ [T ] corresponds to the tth period. There are zero cost production arcs (0, t) if t mod = 1, t ∈ [T ]; the inventory carrying arcs (t -1, t), t = 2, . . . , T , with cost c I ; and the backorder carrying arcs (t, t -1), t = 2, . . . , T , with cost c B in the network. It turns out (see Ahuja, Magnanti, and Orlin 1993, Chapter 19.9) that an optimal production plan to a tree of shortest paths from the source to every node t ∈ [T ]. Indeed, for each k ∈ [N ], where N = (T -1)/ , we find period nodes:

The node h k determines two paths. The first one 0 ; (k -1) + 1 ; (k -1) + 2 ; • • • ; h k that goes through production and inventory carrying arcs and the second path 0 ; k + 1 ; k P ; • • • ; h k + 1 that traverses production and backorder carrying arcs. Using a tree of shortest paths in the network, induced by h k , k ∈ [N ], an optimal production plan to ( 18)-( 21) can be determined by the following formula:

Proof of Proposition 2 We will show the convexity of F(x * , S) in U for ROB MPS-L4L. Similar arguments apply to the objective function F(x x * , S) in ROB MPS-POQ. Observe that the objective function for production plan x * under scenario S = (D(S) t ) t∈[T ] ∈ U can be rewritten as follows (see ( 8)

and -D(S) T are convex in U. Hence the maximum and the sum of them in U is also a convex function.

Proof of Proposition 3 Proposition follows from the same as in [START_REF] Guillaume | A Robust Lot Sizing Problem with Ill-known Demands[END_REF] reasoning. Scenarios S ∈ U ext are easily seen to be the vertices of convex polytope U . Hence and Proposition 2, we get that F(x x x * , S) attains the maximum value at a vertex of U (see, e.g. [START_REF] Martos | Nonlinear Programming Theory and Methods[END_REF].

Proof of Proposition 4 Note that term c P p X * T, p , p ∈ [P], in F(x x * , S) (see ( 29)) is a constant. Applying Proposition 2 for each p ∈ [P] (taking into account slightly modified functions C p and P p ), we deduce that F(x x * , S) is the sum of P convex functions in U and so F(x x * , S) is also convex in U.

Proof of Lemma 2 Suppose contrary that there exists a component

) and v l ∈ (D l, p , D l, p ). We need consider four cases: (2) such that v lies between them. Set v (1) (2) . Moreover, it is easily seen that there exist λ ∈ (0, 1), (2) . It easy to check that there exist λ ∈ (0, 1) such that v = λ v (1) + (1 -λ )v (2) , a contradiction with the fact that v is a vertex of U p . (iii) 1 = i ≤ l < T and so andv (2) t = D l, p for t = 1, . . . , l. Again a trivial verification shows that v lies between v v (1) and v (2) , a contradiction.

. Similarly to the above cases, we obtain a contradiction. Suppose that v is not a vertex of U p . Thus there exist v (1) , v (2) ∈ U p and v = v v (1) , v v = v (2) and λ ∈ (0, 1) such that v v = λ v v v (1) + (1 -λ )v v (2) . By assumption, for each sequence (v i , . . . , v k-1 , v k , v k+1 , . . . , v l ) associated with a component v k ∈ (D k, p , D k, p )

(2) t = v t for t = i, . . . , l. The other components of v v are at their boundary values. Therefore v v = v (1) and v v = v (2) , a contradiction.