
HAL Id: hal-02640704
https://hal.science/hal-02640704

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of models for high-performance scientific
computing applications: an experience report
Ileana Ober, Marc Palyart, Jean-Michel Bruel, David Lugato

To cite this version:
Ileana Ober, Marc Palyart, Jean-Michel Bruel, David Lugato. On the use of models for high-
performance scientific computing applications: an experience report. Software and Systems Modeling,
2018, 17, pp.319-342. �10.1007/s10270-016-0518-0�. �hal-02640704�

https://hal.science/hal-02640704
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/2 2025

To cite this version:

Ober, Ileana and Palyart, Marc and Bruel, Jean-Michel and Lugato, David
On the use of models for high-performance scientific computing applications: an
experience report. (2018) International Journal on Software and Systems
Modeling, 17. 319-342. ISSN 1619-1366.

Official URL:

https://doi.org/10.1007/s10270-016-0518-0

Open Archive Toulouse Archive Ouverte

On the use of models for high-performance scientific computing
applications: an experience report

Ileana Ober1
• Marc Palyart2

• Jean-Michel Bruel1
• David Lugato3

Abstract This paper reports on a four-year project that

aims to raise the abstraction level through the use of model

driven engineering (MDE) techniques in the development of

scientific applications relying on high-performance comput

ing. The development and maintenance of high-performance

scientific computing software is reputedly a complex task.

This complexity results from the frequent evolutions of

supercomputers and the tight coupling between software and

hardware aspects. Moreover, current parallel programming

approaches result in a mixing of concems within the source

code. Our approach relies on the use of MDE and consists in

defining domain-specific modeling languages targeting var

ious domain experts involved in the development of HPC

applications, allowing each of them to handle their dedicated

mode! in a both user-friendly and hardware-independent way.

The different concems are separated thanks to the use of

several models as well as several modeling viewpoints on

these models. Depending on the targeted execution plat

forms, these abstract models are translated into executable

implementations by means of mode! transformations. To

make ail of these effective, we have developed a tool chain

Communicated by Prof. Dorina Petriu.

181 Ileana Ober
ileana.ober@irit.fr

2

Marc Palyart
mpalyart@cs.ubc.ca

Jean-Michel Bruel
bruel@irit.fr

David Lugato
david.Jugato@cea.fr

IRIT, University of Toulouse, Toulouse, France

University of British Columbia, Vancouver, BC, Canada

CEA CESTA, Le Barp, France

that is also presented in this paper. The approach is assessed

through a multi-dimensional validation that focuses on its

applicability, its expressiveness and its efficiency. To cap

italize on the gained experience, we analyze some lessons

leamed during this project.

Keywords HPC · High-performance calculus · MDE ·

Model-driven engineering · Architecture · Fortran

1 Introduction

It is not every day that Nature--one of the most influen

tial interdisciplinary research joumals-focuses on topics

related to computer science. In 2010, a paper dedicated to sci

entific computing [40] stressed the bard time scientists have

due to the increased importance of software use and devel

opment in their work coupled with Jack of formai training

to software development. The paper revealed that scientific

computer engineers face major problems in effectively main

taining scientific software, in a domain where software life

spans count in decades, whereas the underlying hardware is

highly volatile.

Since the 1960s, the increase in hardware performance

has been continuous and followed Moore's law [44]. In this

landscape, the last decade brought a major shift in the way

hardware performance increases. While we were used ben

efiting from faster processor chips thanks to the decrease in

transistors size, as we approach the physical limits of minia

turization, the increase in performance witnessed over the

past IOyears is due to the widespread use of complex parai

lei architectures.

This change bas some serious repercussions. Software

applications no longer benefit automatically from perfor

mance increases. They need to be completely redesigned.

108

-;:,; 106

10•

o..
102

-1-

�

�

-e-

1,994

Sum

#1
#500
CEA

1,998 2,002

Year

lphone 6
2,006 2,010 2,014

Fig. 1 Performance development

As highlighted in [38], the new performance gains mecha

nism "shift[s] the burden of software performance from chip

designers and processor architects to software developers."

High-performance computing (HPC) has always been an

area where parallel architectures were used to gain more com

putational power. Over the last 20 years, the performance of

the world's most powerful supercomputers used by the HPC

community has been scrutinized by the TOP500 group. 1

Figure l , generated via information available on Top500,

illustrates that the performance increases in the last years.

This chart highlights several interesting facts. First, by fol

lowing the topmost curve (cross shaped and labeled Sum),

we can see that the cumulative performance of the world's

500 most powerful supercomputers outpaces Moore's law.

Moreover, we can see that the evolution is even more vigor

ous for the world #1 (dot shaped and labeled #J). This curve

shows a more stepwise evolution, where steps correspond

to technological breakthroughs that happen regularly and to

the fact the top 500 is released twice a year. We must point

out that these rapid hardware developments are also driven

by energy performance goals. As highlighted in a recent

study [55], performance growth shows a recent slowdown

in performance increase, which is analyzed as being due to

"hardware-, software- and funding-" related causes.

Since the world's most powerful supercomputer changes

regularly, one may think that the strong performance increase

would not correspond to the reality within the same orga

nization. While it is true that the owner of the world's

most powerful computer changes frequently, the need for

performance increase within an organization is following a

sirnilarly strong increase, with all the software porting and

maintenance issues that corne with it. In Fig. l , the square

shaped curve depicts the performance evolution within CEA,

1 http://www.top500.org.

the French Atornic Energy and Alternative Energies Com

mission. As part of its Tera program [24], CEA plans to

change its main supercomputer every 4 years. As one can

see, this evolution follows the general tendency and outpaces

Moore's law. This rapid growth in performance cornes at the

expense of inevitable hardware and software technological

breakthroughs. 2

1.1 Current practice in HPC application development

One of the main concerns of the high-performance scien

tific computing developer community is to produce efficient

code for numerical simulation. Due to their thirst for com

putational power, the shift in the performance increase

mechanism that involves the intensive use of parallelization

had to be initiated a long rime ago. As often highlighted

(e.g., [54]), current mainstream parallel programrning mod

els, and in particular those addressing HPC, are low level and

machine specific. Even though good performance levels can

be achieved with these approaches, drawbacks in terms of

architecture dependency, rnix-up of concerns and program

rning complexity occur:

- Applications versus supercomputers lifetime cycle.

Physics does not change frequently, supercomputers do.

In this application domain, the life cycle of supercom

puters is sometimes five to seven times shorter than the

life cycle of scientific applications. For example, CEA's

experience has shown that the simulation models and

numerical analysis methods associated with our profes

sional problems have a life expectancy of 20-30 years

and must therefore be maintained over that period, with

all the additional problems that come with software main

tenance over such a period of rime (e.g., team turnover).

- The lack of separation of concerns. The problem to

be solved-the scientific knowledge of the physics

is entirely rnixed with numerical schemes and target

dependent information, added to manage the parallelism.

Once a complex system has been built, it is difficult to

extract the physical models. As a result, maintenance and

upgrading become even more complicated.

- Inaccessibility to domain experts. The complexity of soft

ware programrning restricts the use of these workstations

and supercomputers to a few scientists who are willing to

spend a significant amount of time learning the character

istics of a particular set of machines to take full advantage

of their capabilities.

Furthermore, the situation is getting worse with the new

emerging generation of machines: hybrid machines. They are

2 It is instructive to note that the Jast iPhone6 could have been ranked
in the top 500 in 1994, the reader may find the performance of bis own
computer in [21).

built by mixing heterogeneous hardware resources such as
CPUs with many cores and graphics processing units. GPUs
are usually found within graphics cards, where they com-
pute the rendering of massive 2D and 3D scenes. However,
hardware manufacturers of supercomputers have started to
integrate GPUs, since they are particularly well suited to
specific operations such as fast Fourier transform or matrix
computations and thus linear algebra solving. GPUs contain a
large number (in the range of hundreds) of stream processors
which increase the computation power of supercomputers.
To exploit them, however, developers have to depend on
hardware manufacturer-specific instructions (NVIDIA Cuda
[36]), or in the best case, on libraries which attempt to be
more generic such as the OpenCL API [34].

Our research goal in this context is to apply model-driven
techniques to define a tool-supported approach where the
separation of concerns, the domain expert accessibility and
reactivity to the hardware evolution would be addressed as
primary concerns, not just as extra-functional features as they
often are.

1.2 Overview of our approach

Our thesis is that model-driven development techniques
can help us deal with the complexity existing in high-
performance and scientific computing applications.

We feel that high-performance computing is a typical can-
didate for applying model-driven development techniques in
order to deal with this complexity and to facilitate porta-
bility by using abstraction. This befitting is due to the fact
there is a huge need for maintenance in terms of hardware
architecture change; thus, techniques that help distinguish
between platform-dependent and platform-independent code
are much needed. This is precisely a strength of model-driven
techniques.

Our approach consists in defining a method and a toolset
supporting the use of the abstraction principles specific to
model-based software development (MBSD) techniques in
the context of HPC applications that use partial-differential
equations with mesh-based numerical modeling. In order to
assess the feasibility of this approach, we applied it to signifi-
cant size HPC applications of realistic algorithm complexity,
involving several domain expertises.

In this paper, we detail the following contributions:

– MDE4HPC—our approach for adding abstraction in
HPC applications by applying the principles of MBSD.
An earlier presentation of this approach was published
previously here [51];

– An abstraction-based hierarchy of a set of domain-
specific languages addressing the needs of various
business domains, with a focus on HPCML—the domain-
specific language that we defined as an answer to

the abstraction needs of HPC applications. A partial
overview of HPCML is available in a previous paper [52].
The current paper introduces the need for a hierarchy of
domain-specific languages and positions HPCML in this
hierarchy.

– A toolset-ArchiMDE—allowing the use of our tech-
niques in an industrial setting. Our assumption is that
we need an integrated tool set offering the functionalities
needed by the various business domains (such as physi-
cists, applied mathematicians), supporting MDE4HPC
and natively using our domain-specific language
HPCML, while offering services such as model trans-
formation, code generation, validation and compiling.
Although we partially describe the architecture of this
tool set in previous publications [46,50,51], this paper
gives a complete overview of our toolset.

– A multi-dimensional validation We have validated the
approach by applying it to large HPC applications. Given
the variety and complexity of HPC applications, we opted
for a three-dimensional validation.

First, we focus on the overall applicability of our
method. For this, we used ArchiMDE to model a simpli-
fied Lagrangian hydrodynamic module. This case study,
also described in [50], shows that it is possible to obtain
viable code, in terms of performance, using HPCML and
that this decreases the maintenance costs.

The second case study aims at an expressiveness
assessment on the capacity of our domain-specific lan-
guage to model an application under industrial usage,
based on a different physical domain. For this, we reverse-
engineered a subset of a simulation software used in
production for electromagnetism and show that it is pos-
sible to model it using our domain-specific language. This
case study, essential in our view for a multi-dimensional
evaluation, was never published before.

The third validation aims at an efficiency assessment,
and it is based on the second case study and consists in
analyzing the execution time of the numerical simula-
tion of the electromagnetism application code obtained
by using our approach and comparing it with the origi-
nal “old-style” code. For this, we have performed several
sets of simulations on the Terra100 supercomputer, by
varying the number of processors. These results have not
been published before.

This multi-dimensional validation shows that introduc-
ing abstraction in HPC applications is not incompatible
with preserving performance. We consider this as a very
important result in a domain culturally dedicated to
low-level optimizations and closeness to hardware archi-
tecture.

– A set of lessons learned during our four-year experience
in applying modeling techniques to high-performance
computing. These lessons, which go beyond the context

of HPC, could be useful for further experiences of apply

ing MDE to new domains.

The paper is organized as follows. Section 2 presents the

main principles of our approach. The domain-specific lan

guage that we defined to address the abstraction needs of

HPC is introduced in Sect. 3. Section 4 presents the tool

chain that supports our approach. The multi-dimensional

evaluation that we propose for our approach is detailed in

Sect. 5 which also contains a broader discussion. Section

6 describes the tessons learned from this project. Section 7

presents related work on existing solutions for developing

numerical simulations with a focus on approaches aiming at

adding abstraction. Section 8 discusses the conclusions of

our project and areas for future work.

2 MDE4HPC the step toward adding abstraction

As highlighted in the previous section, the major goal of

our approach consists in increasing the abstraction level

throughout the development life cycle of numerical simu

lation applications.

The key characteristics of high-performance computing

applications are deeply analyzed here [22, 32]. According

to [22], the common characteristics of scientific application

that makes use of high-performance computing are: (l) the

computational performance involved, (2) the target range of

platforms-and the changing targets, (3) the number of sep

arate disciplines involved in the development teams, (4) the

size of software effort to develop and build the needed soft

ware, (5) the size of software effort to maintain software and

(6) the economical model. Our study explicitly addresses the

characteristics (2), (3), (4) and (5) while concerned of the

first one (l).

At first sight, the choice of a (subset of) UML could seem

like a natural choice of language for our approach: It sup

ports abstract reasoning with a good expressiveness and it is

a fairly widespread language. However, in the context of sci

entific simulation software, the models expose information

of various natures (numerical, physical, algorithmic, plat

form dependent, etc.) that is exploited by various types of

domain experts. For this reason, instead of a large general

modeling language, such as UML, we prefer to use a set of

focused domain-specific modeling languages (DSML), ide

ally accessible to domain experts, as long as there is a set of

model transformations to move from one DSML to the other.

It soon became obvious that the definition of the DSMLs and

transformations would need to go hand in hand with a dedi

cated tool suite and a set of methodological guidelines.

In this section, we introduce MDE4HPC, our approach

for applying the principles of MBSD on the development of

scientific simulation software. In particular, we describe the

Physical Model

HPCML

Numerical Mode!

HPCML
0

Execution Mode!

HPCML
8

Fig. 2 HierarchicaJ abstraction Jayering in MDE4HPC

general structure of the domain-specific modeling language

called High-Performance Computer Modeling Language

(HPCML) on which the approach is built.

2.1 Overview of the approach

The MDE4HPC approach follows a classical model-based

strategy: model all artifacts-including those that are non

software- dependent-produced by the range of experts who

typically take part in the development (physicists, applied

mathematicians, computer scientists, hardware and software

architects) and combine them to generate the simulation

code. To that end, the MDE4HPC approach offers a multi

layered architecture relying on several abstraction levels

where each abstraction level targets specific types of experts.

Figure 2 depicts an overall view of the hierarchical

abstraction layering in MDE4HPC. We find two types of

elements in this diagram: models (one type per domain)

and HPCML which acts as middleman between the three

domains. For these reasons, HPCML is decomposed into

three sub-languages: HPCML
p
-the layer dedicated to

physics, HPCMLn-the layer dedicated to mathematics and

HPCMLe-the layer dedicated to execution-related matters

(software and hardware). Several types of experts might be

found in a given domain. Figure 3 illustrates the situation

by showing the different viewpoints on the models of some

domain experts and how they overlap. Each ellipse repre

sents an abstract view of the model elements used by the

corresponding expert as well as which part of the HPCML

language they depend on. With this figure, we better under

stand that numerous artifacts are used and required by several

domain experts. The HPCML language allows the exis

tence of a common underlying model, thus facilitating the

exchange of information between various domains. It also

enables the traceability of decisions and concepts across the

various abstraction levels.

2.2 Physics-dedicated layer

The physicist is usually the person formulating the require

ments for a numerical simulation. He is also frequently the

Fig. 3 Viewpoints of the
domain experts taking part in
the development Physicist

� -·- -·-·· - _ ...
- -.. - - ··- HPCML

0

Numerical ··- .•. _ ··- •.
Analyst A··""::::::::::::::::::::::::::::::::::::::�:-�--�--�--:���::�\�---�.:�. .:�_.......____ ___

GUI Designer

Numerical
Simulation
Modcls&
Transformations

'9-::::::::·�:�:�:� HPCML•

requirement

validation

Software
Enginccr

Fig. 4 HPCML
p
-language dedicated to specification of the physicaJ

mode)

final user of the simulation application. In our setting, the lan
guage HPCML

p
(p stands for Physics) provides primitives

to support these two roles. Figure 4 depicts the structure of
the HPCML

p
language with its two parts:

- requirement the physicist must be able to specify its phys
ical mode! (in terms of equations, hypothesis, properties
for example), as well as the modeling choices that led to
this mode!.

- validation the physicist must be able to specify the valid
ity range of its mode! and annotate this range with
expected properties of the obtained results.

2.3 Mathematics-dedicated layer

HPCML11 (n stands for Numerical) provides pruruttves
required by a numerical analyst to precisely specify the
numerical schema picked as a solution for the resolution
of the physical mode! defined by a physicist. This part of
HPCML;s central to our approach, as it interacts with the
two other parts of the language.

The primitives of HPCML11 aim to abstract as much as
possible ail the software and hardware concerns related to the

numerical

------ ...

Fig. 5 HPCMLn-language dedicated to modeling the numerical
information

target execution platform for two reasons. First it improves
accessibility for the numerical analysts who in general have
a limited training in computer science. Second it increases
the portability capability of the applications developed using
our approach by making them Jess impacted by software and
hardware technological breakthroughs. Overall the definition
of this part of the language is not straightforward sin ce we aim
for a high abstraction level while being concrete enough to be
able to specialize the numerical mode! to a concrete execution
platform. Figure 5 provides an overview of the structure of
the HPCML11 language, whose major components are:

- input-the numerical analyst must be able to specify in
an orderly manner input data for its simulation code.
These parameters can either be of physical or mathe
matical nature. Typically, the information contained in
this part of the mode! can be used to generate the graphi
cal user interfaces that are used for exploiting simulation
code.

- numerical�e numerical analyst must be able to specify
her numerical algorithm using a formalism close to math
ematics, which is her native domain-specific language.

This part of the language enables inter-application reuse

thanks to composition mechanisms.

- parallelism-the numerical analyst expert must be able

to specify potential sources of parallelism in her applica

tion without having to master advanced concepts specific

to a supercomputer.

- output-the numerical analyst must be able to specify

the computation results that need to be exported from

the application. This part of the language provides vol

untarily abstract concepts to facilitate integration with

software used post-simulation such as scientific visual

ization software.

- parametrization-the numeric analyst must be able to

specify how her application can be used for conducting

parametric studies. This part of the model can be used

to both generate user interfaces for conducting paramet

ric studies and exploit the parallelism provided by such

parametric studies.

2.4 Execution-dedicated layer

Our approach relies on a clear separation of concems in order

to allow each type of domain expert to focus on activities and

optimization
-----L

Fig. 6 HPCML,-DSML that targets the software part

Fig. 7 MDE4HPC
development process

HPCML
p

<<CIM>>

[Œ) : Transformation

@ : Modification

information specific to their field. Thanks to the abstractions

provided by HPCMLn , several computer-oriented aspects

that in current practice are assigned to numerical analysts

can be transferred back to hardware and software engineers.

The goal of the HPCMLe (e stands for Execution) is

to offer to hardware and software engineers the primitives

needed to specify how a numerical resolution model spec

ified with HPCMLn should be implemented on a specific

target platform. Figure 6 depicts the structure of HPCMLe ,

mainly focusing on three aspects:

- optimization-the engineer must be able to annotate a

numerical model to specify what kind of optimization

(improved algorithm, memory management, processor

specificity, etc.) he wants to apply during the transforma

tion toward a particular execution platform;

- platform-the engineer must be able to describe the exe

cution platform. This specification would parametrize

the model transformations leading to the simulation code

generation;

- transformation---besides generic model transformations

shared by several projects, the engineer must be able to

define transformations specific to a particular project,

either to enable some optimizations or to handle new

platform characteristics.

2.5 Development process

The development process promoted by MDE4HPC is pre

sented in Fig. 7. We distinguish several models (oval shapes)

based on the three sub-languages of HPCML we introduced

in the previous sections. We notice that the MDE4HPC

process can be mapped to a certain extent to the OMG Model

Driven Architecture recommendations [41]. An HPCML
p

mode) can be viewed as a Computation lndependent Mode!

HPCML
n

<<PIM>>

<<PSM>>

<<PDM>>

®

Simulation

Software

(CIM) since it describes the problem. An HPCMLn model
can be viewed as a Platform-Independent Model (PIM) since
it describes how to solve the problem. An HPCMLe model
describes the specificities of a target execution platform and
thus can be viewed as a Platform Description Model (PDM).
Finally, an HPCMLn model specialized with an HPCMLe

model could be considered as a platform-specific model
(PSM).

Overall, the MDE4HPC process is well decoupled as
model elements updates can be performed regardless of
their abstraction level. Thanks to the use of static model
verification to check the conformance with the metamodel,
it is possible to work on its own abstraction level with-
out running the whole generation process. In addition, this
process fits well with iterative and incremental development
approaches that are adapted to the development of scientific
software.

One of the major concerns that triggered our work relates
to maintenance, in particular platform changes. In this sit-
uation, which results in adaptive maintenance, only the
low-level steps of the process are affected: models and
transformations based on HPCMLe. Concretely the platform-
specific model and thus the application itself need to be
regenerated as described in Fig. 7.

The layered definition of the HPCML enforced the sep-
aration of concerns, by allowing each domain expert to
focus on artifacts relevant to its work. Obviously, the result-
ing layers are not disjoint (as one can infer from Fig. 3).
The parts that are common to various domains are the ones
that ensure the consistency of the transformations required
when going back-and-forth between two domains. At the sur-
face syntax level, the domain-specific language constraints
proposed to various domain experts may even vary (in prac-
tice, this was seldom the case yet it occurred); however,
as the underlying metamodel (for the concerned parts) is
the same, the resulted transformation is accurate. As the
various DSMLs target various aspects, a full transforma-
tion between these domain-specific languages would be
irrelevant.

3 HPCML the dedicated language

Our work has been primarily focused on the definition of
HPCMLn . For that reason, we usually refer to HPCMLn

solely as HPCML. This layer is located at the intersection of
physical and execution domains (HPCMLe, HPCMLp), and
it concentrates interesting scientific challenges. For example
it covers concepts hard to express such as parallelism abstrac-
tion for which little experience has been capitalized by the
modeling community. This section provides an overview of
HPCMLn abstract and concrete syntaxes. A more complete

description of this language is available in previous publica-
tions [49,52].

3.1 Abstract syntax definition

The HPCML abstract syntax was defined through a meta-
model based on the ECore metametamodel [57]. At its higher
level, the HPCML metamodel is composed of six packages:
kernel, structure, behavior, output, validation and paramet-
ric. The rest of this section focuses on the first three packages.

3.1.1 Kernel package

The kernel package gathers basic concepts that are used by
the other packages. In particular it contains concepts regard-
ing the definition of types and meshes. The HPCML language
is provided with a library of standard model elements such
as default types.

– Basic types—the higher-level concept. The standard
library provides String and Boolean. Extension of basic
types through inheritance is supported.

– Numerical types—the standard library provides usual
numerical types (Integer, Real, Complex) but also pro-
vides domain-specific types (Length, Mass, Time, Vol-
ume, Speed, Frequency, Force, Pressure, etc.) in order to
ensure strong typing in our type collection.

– Structured types—to assemble existing types, such as
Real3 composed of three reals to manipulate 3D coor-
dinates.

– Array types—to model parameterizable arrays. The stan-
dard library provides Matrix and Vector.

– Mesh related types—probably the most important
domain- specific data type, largely used in partial-
differential equations and finite difference methods. The
standard library provides Nodes, Edges, Faces and Cells,
as well as structure using these kinds of elements.

3.1.2 Structure package

The Structure package of the meta-model (see Fig. 8)
contains primitives to model the structural aspects of the
application. It includes common structuring primitives, such
as Package, Component, Interface, along with specific prim-
itives, such as DataSet. Based on the observed need for
structured sets of physical constants values, often used as
tuning mechanisms of a numeric schema, we included in
the meta-model the notion of DataSet, which models sets
of strongly typed data, built upon custom base types. The
DataSet concept was introduced to make sure that physi-
cal constants are managed properly, i.e., that their values are
consistent over the whole application.

Fig. 8 Package structure from
HPCMLn

o .. •
types

o .. •

sharedlnterfaces

g HPCinteJface 1 owner

dataSet 0 .. 1

l;I HPCPa e El HPCCom ent
behavior 0 .. 1

nestedPackagesf-------f components 'i' main : EBoolean <<enumeratlon>>
11 HPCPo.+'T\•=

- IN
o .. •

nestlngPackage o .. • 0 .. 1 parent

0 .. 1

nestingPackage

3.1.3 Behavior package

One of the central packages in our meta-model is the Behav

ior package presented in Fig. 9. It gathers behavior-specific

building blocks to define the flow of an application by

composing and referencing structural building blocks. The

current practice in the development of HPC applications ori

ented us toward a formalism inspired by UML and SysML

like activity diagrams, because they offer a convenient mix of

data flow and control flow. Accordingly, this package allows

us to model:

Control flow-to model the control graph of the appli

cation in terms of oriented graphs formed of nodes

(behavior-intensive activities) and transitions (to model

the behavior flow between nodes).

Dataflows-to model the data flow within an application.

The specification is done in terms of fonctions called and

their flow. The fonctions are connected using communi

cation ports, which offer means for conveying variables

issued from some data set, parameters of the current data

flow or some local variables.

- Aspects-to facilitate the separation of concems between

the main numerical model and side concems such as

numerical validation or output management, we intro

duced concepts (e.g., HPCAspect) that support an

aspect-based approach [35].

Given its target domain, our DSML needed parallel

programrning- specific primitives. The definition of these

O •. • subComponents

-OUT

- INOUT

0 HPCConstData

O .. *

requlredC.Onstants

o .. •

signature 1 functionsSignatures

pnm1t1ves is inspired by existing parallel design patterns

[33] and in-house libraries using parallel programrning. Our

metamodel contains the following main primitives to model

parallel aspects:

Task parallelism-to model parallel tasks. HPCFork and

HPCJ o in primitives serve to achieve the modeling of this

parallelism.

Domain decomposition (HPCSetEnumerator)-to

decompose the domain on which the computing is per

formed into sub-domains, so that each of these sub

domains may be assigned to a distinct physical execution

unit. In a real setting, perforrning the computation on a

grid element requires access to (connex) grid elements. In

such a case, the dependencies are explicitly captured at

the model level and can be exploited during code genera

tion, for instance by defining code generation patterns that

make local copies with dummy grid elements, in order to

minirnize the resource- consuming communications.

Parallel loops (HPCParallelFor)-to model parallel

iterations.

To capture the variety in terms of dependencies between

iterations in a parallel loop, we introduce the possibility to

distinguish between two kinds of iterations. On the one side,

there are iterations without outputs between iteration steps

(but with possible access to the same data), with accumu

lation of the iteration (which therefore requires a reduction

operation in order to recombine the result after each itera

tion). On the other side, there are more complex iterations

in 1

out 1
ElHPCFlo�

1 .. *

Il nodes

1 1 1 1
1 13 HPCFunctlonNode 1 1 13 HPCFork 1 13 HPCJoln 1 1 13 HPC!f 1 13 HPŒndlf 1 1 13 HPCAnalNode 1 13 HPClnltlalNode 1

13 HPCOlm="'teNode 1
targets 2 .. *

1 fl HPCGuardedTransition
1 ° oond�ion : EStrina

taraet 1
source

�
source

1 2 .. •
§ HPCTransition

targe!
1 � 1 source

source 2 .. •

taraet 2 .. • 1 .,�.,.

source 1
1 target

target 1 1 source
functlon

1 source

1
13 HPCFunctlonSignature 21 1 o .. *

lfrom structurel lnsei1!onlocatlon transitions
1 ° version : EStrlna 1 innerStructure

1
§ HPCFunctionSignature'.!11 l L.,behavior 1 (frorn structurel

1 1 ° version : EStrina
13 HPCAowDescr1otor

L.,_ - -î
_j

1§ HPCAs

signature 0 .. 1

o .. •aspects ''---
1�

§ HPCCornponent l!l o .. • 1.
1 /frorn structurel 1 requiredCornponents

servicelocatîon1 � main : EBoolean 1

1
1

o .. •! connections

El HPCFu 1 O .. 7 g HPCDataPortConnectod
connections

fl HPCAJaorithmicContent 1
produ

�
11

�
umer

o .. • data

1 § HPCDatalnstance

port ?
1 1 D HPCMeshStructure 1

§ HPCJ>arallelFor
0 dataDependency : HPCloopDependenceCategory
o loopvar : EString
0 in� : EString
o step : EString
o stooeondition : EStrlng
-

0 oontent : EStrfng 1 ËI HPCDataPort C!I
L _J �structurel

J
0 kind : HPCPortTVOP 1 § HPCSetEnumerator 1 iteratori § HPCSetlterator 1

<<enumeratlon>>
1;t HPCLoonl'lPnPndenœCateoorv
- none � set O .. l -structure 0 .. 1

1 a stencil : EStrina --::11r-
1 l

ty
pe • accumulation

• oomolex

Fig. 9 Package behavior from HPCMLn

where the dependencies between iteration steps go beyond
simple data accumulators. Capturing the information on the
kind of iteration is critical when generating code and deciding
on the application deployment.

Let us stress here that, as in the case of any language defin
ition, the primitives presented here do not preclude their bad
usage. In particular, in the case of task parallelism expressed
at model level, we need to check afterward for possible dead
locks or possible race conditions. One possibility would be
to use symbolic execution libraries.

3.1.4 Others packages

In addition to the three packages, we have presented HPCML

that contains three other packages:

1
13 HPCMesh "'
/from kernen § HPCElementType i?l

1 1
lfrorn kemel\

The output package provides concepts for specifying in
an abstract way outputs of a simulation code. Output data
of a simulation code can be gigantic. Different storage
formats and ways of collecting outputs exist. Abstract
ing these aspects allows us to adapt easily to ail these
options.

The validation package provides concepts to specify
properties of model elements such as post-conditions, pre
conditions or test methods based on aspect-oriented tech
niques.

The parametric package offers ail the concepts required
to design pararnetric studies. The idea here is also to benefit
from the large amount of parallelism that can be extracted
from these studies and to generate tailored simulation appli
cations to exploit it.

(a) (b)

Fig. 10 Concrete syntaxes for Fork and Join in HPCML. a HPCFork.
b HPCJoin

3.2 Concrete syntax definition

This section gives an insight into the concrete syntax def

inition of HPCML. The concrete syntax definition is often

a rather neglected issue, probably because presenting it

requires a lot of lengthy uninteresting details. Without going

into a throughout syntactic description, we present here some

principles that guided our choices.

The graphical syntax of a modeling language is a very

important premise for its adoption. As stressed by [43],

"research in diagrammatic reasoning shows that the form

of representations has an equal, if not greater, influence

on cognitive effectiveness as their content." Aware of the

importance of the graphical representation, we designed it

by applying Moody's theory [43] which encompasses nine

general principles to conceive cognitively efficient graphical

notations. These principles range from the need for percep

tual discrirninability and semantic transparency to the need

for a cognitive integration (for a detailed overview of these

principles, the reader is referred to the paper [43]).

To illustrate the impact of applying this theory on the

graphical syntax of HPCML, let us refer to the join andfork

concepts. Figure 10 illustrates comparatively the symbols

representing these concepts. The symbols we have chosen

are inspired by symbols frequently encountered in many

languages to represent synchronization (e.g., UML activ

ity diagrams). Contrary to these other languages that use

the same symbol for both concepts, we chose to graphi

cally differentiate them while also improving their semantic

transparency (principles 2 and 3 in [43]). The dashed lines

represent potential incoming and outgoing transitions. The

inner part of the fork is composed of several small blocks

expressing the decomposition into several execution flows.

On the contrary, the inner part of the join is composed of one

(a)

SetEnumerator: « iterator.name »

<< innerSt-ructure>>

unique block expressing the merging of the different execu

tion flow into one.

Another example of our design choices in terms of con

crete syntax is illustrated in Fig. 11. The HPCSetEnumerator

symbol uses a rectangular shape to recall the drawing zone

as it can contain an inner structure sirnilar to the overall dia

gram. The icon present at the top left part of the diagram

suggests the decomposition of a domain (the big square) into

sub-domains (the four small inner square).

The right side of Fig. 11 illustrates the symbol for an HPC

ParallelFor. Its graphical representation is intentionally close

to the one of HPCSetEnumerator, as the two concepts are

semantically close and are derived from the same concept

the H PCCompositeNode. The icon present at the top left zone

is different at this time and suggests the parallel semantic of

a HPCParallelFor.

This section presented HPCML, the domain-specific mod

eling language dedicated to high-performance numerical

simulation applications. We looked at both the abstract and

concrete syntax of this language. Section 5 will give another

glimpse of this language through some examples. Before that,

we will focus in the next section on an overview of the tool

ing we have developed to support the MDE4HPC approach

andHPCML.

4 ArchiMDE the tool

Only a true integrated development environment (IDE) bring

ing together ail the services needed by the various skills

taking part in development would be in a position to respond

to the requirements of the MDE4HPC approach. Such an

IDE would, among other things, have to manage modeling

activities for the various skills, for the transformation of mod

els, validation, code generation, compilation, debugging and

version management.

This section presents the main outlines of the ArchiMDE

(pronounced ar-shi-med) tool, an IDE implementing

HPCMLn language and following the recommendations of

the MDE4HPC approach. After a presentation of its software

architecture and the Paprika tool that it includes, we detail

(b)

I
ParallelFor : « paramcters »

« innerStructure»

Fig. 11 Concrete syntax for set enumerator and paraJlel for in HPCML. a HPCSetEnumerator. b HPCParaJleIFor

Fig. 12 Software architecture
ofArchiMDE Modeler Generator

"'O
QI

-0
� [I] :j:

HPCML
7'

QI s

[!]
tI1

the development process associated with it that leads to the
generation of applications based on the Arcane [25] platform.
Arcane is a software development framework for 2D and 3D
numerical simulation codes that handles the mesh manage
ment and the parallelism strategy. We also address problems
of implementing integration of low-level algorithmic with
models.

One advantage of MBSD is that there exists a whole panel
of tools enabling you to implement approaches based on it.
Arnong this panel, you find tools that more or less faithfully
implement OMG standards, like the set of projects under the
Eclipse Modeling Project [57].

Our choice went in favor of the Eclipse platform [17]
as it has a number of interesting characteristics in addi
tion to its predispositions for MBSD through the Eclipse

Modeling Project that focuses on the evolution and promo
tion of model-driven development technologies. At its core,
the Eclipse Modeling Framework (EMF) [57] provides a
metamodeling language known as ECore. ECore is a meta
model whose specification cornes close to the essential MOF
standardized by the OMG [27]. The implementation of the
HPCML metamodel within AchiMDE is based on ECore.

Figure 12 offers a simplified view of ArchiMDE's soft
ware architecture. In addition to the components we have just
mentioned, there are components that take charge of mode!
transformations (Xtend, Xpand) as well as the Graphical
Modeling Framework (GMF) that provides a development
approach based on models to implement the concrete syntax
of a metamodel. In what follows, we describe the Paprika

component in detail.

4.1 Paprika studio

During previous works, we have already used MBSD to
improve the development of numerical simulation software
thanks to the Paprika tooling [46]. This tool aims to facilitate
the creation and maintenance of GUI dedicated to the editing
of data sets used to parametrize simulation codes.

EMF CDT 11 PTP

Eclipse Platform

The use of Paprika relies on a two-stage process. The
first stage of a Paprika development is the modeling of the
structure and the constraints specific to the data set required
by the target simulation application. This step is performed
according to the Paprika:Numerical metamodel which was
defined with the ECore metamodel. Its complete definition is
available in [46]. The two basic concepts of this metamodel
are types (Type) and data (AbstractData). Complex types can
be constructed by combining or extending the simple basic
types provided by Paprika. One of the special features of
this metamodel is that it provides a strong typing system: An
existing type can be combined with a physical unit to create
highly specific data types.

Once the Numerical mode! has been defined, the sec
ond stage of the process offers two possibilities. In the first
case, Paprika can generate a GUI based either on the Google
Web Toolkit (GWT) [28] or on the Standard Widget Toolkit
(SWT) [47] allowing the final user to create and edit data
sets respecting the structure and constraints defined in this
mode! from the previous step. In the second case, Paprika

provides a generic editor capable of editing data sets from
any type of Numerical mode!. Nassiet et al. [46] provide fur
ther details on these two approaches, especially regarding
their advantages and drawbacks. Overall, ArchiMDE reuses
and integrates Paprika thanks to a set of mode! transforma
tions.

4.2 Tool operation

The internai process of theArchiMDE tool is shown in Fig. 13
through the sequencing of the various transformations of
models on which it is based. We provide several points of
view, also known as perspectives (see also Fig. 3), on the
models adapted to the various skill profiles of the partici
pants in the development of a simulation application: Applied
mathematicians are able to take advantage of perspectives to
implement a numerical schema as independently as possible
from the platform; GUI developers benefit from perspec
tives for the management of inputs/outputs of the simulation

Fig. 13 ArchiMDE

tra nsformation process

ArchiMDE

[j HPCML A�=�

� Numcrical ---.�
�Ana.ly&t W

!

[j Mode!

Transformation

r"'b\ HPCML � so-,..

LJ ! �Eog,ne<r

100
011
010
001

Generated
artefact

� 1/aJdwan, � � Softwar•

� F.nginett V � F.ngineicr

100

m GUI
001

100

m Serializer
001

100

mARCFiles
001

Serialization
process

Expert in
charge

Arcane Platform

code; finally, through transformations, software developers

determine how abstract models designed by applied mathe

maticians can be translated into executable code for a target

platform.

Regarding software target platform, the current version

of ArchiMDE is capable of generating applications based on

the Arcane framework [25]. Figure 13 shows ail the software

artifacts needed to create an Arcane application and how they

are generated via model transformations. Generally, there is

duplication of data between the source code of a simulation

code and the associated graphie interface to edit its data set.

As the latter are most often written in different program

rning languages, a serialization mechanism must be set up to

establish communication between the two applications. As

the Paprika tool does not know how these data sets must be

generated, it does not allow the data set editor serializer to be

generated automatically. Although this stage is elementary,

it was always done manually. Now ArchiMDE has a global

vision of the application and can thus generate this serial

izer. Thanks to that serializer, ARC configuration files (data

set format for Arcane) can be created (see Fig. 13). This

example clearly shows that ArchiMDE allows the various

developer profiles to focus on their core skill while also facil

itating the exchange and reuse of data between the various

skills.

Although Fig. 13 represents the sequencing of the various

transformations more or less sequentially, a frequently used

technique of iteration on the first transformations can also be

adopted (HPCML merged with Paprika:Numerical) with

out using lower-level transformations (HPCML to Arcane

or Paprika:Numerical to Paprika:HMI). This flexibility

dur-

ing development complies with the recommendations of the

MDE4HPC approach.

4.3 Low-level algorithmic management

The HPCML version presented here does not offer a formal

ism to define an HPCAlgori thmicContent butjust the

constraints on the formalism to be used. There are several

ways in ArchiMDE to manage integration of the low-level

algorithrnic (expressed in the formalism provided by the

Arcane platform) with high-level models. lndeed, we have

identified four generation management approaches: direct,

incremental, algorithrnic model and synchronization. For fur

ther details regarding the advantages and drawbacks of each

approach, see [49].

As our objective was to start by defining and vali

dating the HPCMLn language, which has a considerable

impact on the development of the tool, we have selected

the direct generation approach. In this configuration, the tar

get platform language (here Arcane) is used to describe the

HPCAlgori thmicContents. A String attribute is used

to store the content. On generation, this content is used as

such by model transformations.

Although it is only a prototype, this tool was used as

a medium for practical works at the international summer

school organized by the CEA, EDF and Inria in 2010. This

event, the topic of which was "Sustainable High Performance

Computing", provided the opportunity to have the tool tested

with more than 40 people. The considerable feedback on

rnissing or unsuitable concepts contributed to upgrading the

ArchiMDE tool as well as the HPCMLn language.

5 Evaluation and discussions

In this section, we present the evaluation we have per-
formed for our approach and we take advantage of the
conclusions raised by this evaluation to more largely dis-
cuss on MDE4HPC in Sect. 5.4. The evaluation of the
MDE4HPC approach was performed in two stages. First
we used the ArchiMDE tool to redevelop the simplified
Lagrangian hydrodynamics code introduced in [25]. The
evaluation of this development, the results of which have
been published in [50], enabled us to validate the fact that it is
possible to use the MDE4HPC approach to generating viable
code in terms of performance while obtaining a reduction
in maintenance costs. Secondly we wanted to evaluate the
capacity of HPCMLn language to model an application both
used in production and based on another physical domain.
This section presents the results of this new evaluation.

5.1 Presentation of the simulated system

The simulation code introduced in this section is based on a
code used in production that serves to simulate the diffrac-
tion of a plane electromagnetic wave by complex 3D objects
composed of several materials. These materials may be con-
ducting or dielectric. In our case, we focused on conducting
mono-material 3D objects.

5.1.1 Problem

A perfectly conducting body is illuminated by an incident
harmonic plane wave. The presence of this obstacle modifies
the incident field: This is what is known as the diffraction phe-
nomenon. Our goal is to compute the electric current induced
by this incident wave on the object’s surface.

5.1.2 Physical model

The physical model chosen for the study of this phenomenon
is based on Maxwell’s equations [29].

5.1.3 Mathematical models for resolution

For the resolution, we rely on a formulation based on the sur-
face integral equations of Maxwell’s equations in harmonic
regime. We thus reduce a three-dimensional problem on an
unbounded domain to a boundary problem posed on a sur-
face.

The integral equations in a variational formulation that we
propose to resolve are the conventional electric-field inte-
gral equations (EFIE) [18]. We then use the finite element
method to solve these integral equations. The main stages in
constructing a finite elements model are as follows [48]:

– discretization of the continuous medium into sub-domains
(meshing);

– construction of the approximation by sub-domain (choice
of the finite elements);

– computation of the elementary matrices corresponding
to the variational formulation of the problem;

– assembly of elementary matrices;
– consideration for boundary conditions;
– resolution of the system of linear equations of type

Ax = b.

5.2 Modeling of the application with HPCML

5.2.1 Modeling process

The existing code, from which the models presented in this
section are derived, is written in Fortran 90 and uses the Mes-
sage Passing Interface MPI [56] standard (Message Passing
Interface) [56] for expressing parallelism. The rise of the
abstraction level when (retro)modeling was performed could
only be achieved with participation from mathematicians
who passed on their knowledge during more or less formal-
ized discussions. Even if the approach adopted (retrodesign)
in this case study is not identical to a new development, we
were able to identify a general process that seemed to be
suited to both cases.

The first stage of this process, which takes place during
discussions on the mathematical model, involves drawing
on a sheet of paper the hierarchy and sequencing of func-
tions using a simplified version of the HPCML concrete
syntax. Once this first rough sketch is completed, we can
determine what functions are available in the existing com-
ponents. Then we can model the application by following
the sequence described in the rough sketch we just estab-
lished (sequencing of functions and their origins). Finally, a
global refactoring of a subset of the application is performed
to determine whether all the potential sources of parallelism
have been identified.

5.2.2 General overview of the models

Figure 14 presents a high-level structural view of the appli-
cation by showing the organization of the main components.
Two main packages (HPCPackage) can be seen: The first
one contains the components specific to the simulation code
we are developing (EMPrototypeMDE Project), and the
second contains components providing generic numerical
services (resolution of linear system and integration).

Figure 14 also shows part of the structure of the appli-
cation’s main component (HPCComponent EMPrototype-
MDE with the main property true) and especially the
definition of its interface (HPCComponentInterface).
It is interesting to note that even on the first hierarchi-

" fil platform:/resource/fr.cea.archimde.hpcml.core/model/EMPrototypeMOE.xmi
• + HPC Package EMPrototypeMDE Project

• � HPC Component EMPrototypeMDE

,,, + HPC Compone:nt (nterface

Property

06ctiption
Main
Name

Volue

!'� Component simulating the diffraction of a plane electromagnetic wave b)
liiitrue
ü EMPrototypeMDE

" + HPC Function Signature: gentrailnit

� � HPC Data Port mesh
,,, + HPC Function Signature computeContributionsMatrix

� � HPC Data Port mesh

� � HPC Data Port contributionsMatrix
" + HPC Function Signature computeZCom

� � HPC Data Port incidenceAngle

� � HPC Data Port zComPolarl

t> --} HPC Data Port zComPolar2
� � HPC Data Port mesh

� + HPC Data Set
.,O. HPC Algorithmic lmplcmcntation

-0,. HPC Composite lmplementation
-0- HPC Composite Implementation

C> + HPC Flow Oesc,iptor
� � HPC Component ComputeZCom

b "9- HPC Component ComputeContributionsMatrix
" + HPC Package numerical

� � HPC Component Solver
� � HPC Component lntegration

� + HPC Structure Type CellRelation

+ HPC Array Type SymmetricMatrix

t> i) platfotm:/resource/fr.cea.11rchimde:.hpcml.core/modl!:l/hpcml_v3.e:core
C> i platform:/resourcc/fr.cea.archimdc,hpcml.core/modcl/Modcllibra,y.xmi

Fig. 14 Main view of the structural part

ParallelFor : (angle, angleStart, angleStop)

i
-

f(x solveSystem

Fig. 15 HPCFlowDescriptor of the EMPrototypeMDE compo
nent

cal level of the EMPrototypeMDE application component,

you see both sorts of irnplementations (HPCComposite

Implementation and HPCAlgorithmicContent).

Nesting Package
Parent

tif HPC Package EMPrototypeMDE Project
i'î,

UR! ...

The structural view follows the master/detai/,s UI pattern with

two zones: a tree on the left representing the hierarchy of the

model elements and on the right the details of the selected

model element.

Concerning behavior modeling of the application, Fig. 15

shows the HPCFlowDescriptor of the EMPrototype

MDE component where only the execution flow is visible.

An HPCFlowDescriptor allows to specify the execu

tion flow of an application or a function with a semantic

close to activity diagrams in UML. This one uses several

forms of expression of parallelism: an HPCParallelFor

(same processing applied to different data) and the couple

HPCFork/HPCJoin (different processing concurrently).

Note that the interleaving of several constructions to express

parallelism allows them to be combined to obtain even more

parallelism.

5. 2. 3 Calculation of the matrix of contributions

Figure 16 gives a view of how the ComputeContribu

tionsMatrix component, which is a sub-component of the

EMPrototypeMDE component, is used to refine the behavior

specification of its parent.

Meanwhile Fig. 17 shows the HPCF 1 owDescr iptor of

this component with its control flow. Sorne new elements as

compared to the HPCFlowDescriptor of the EMProto

typeMDE component present in Fig. 15 can be distinguished

here.

First the ComputeContributionsMatrix component is a

sub-component of the EMPrototypeMDE component, and

Modd

,. l-9- HPC Component ComputeCcntributionsMatri:xl
,. + HPC Component Interface

,. + HPC Function Signature computeGaussWeightsForOisjointsElements
1> ,,r), HPC Data Port xGauss
� ? HPC D•t• Port wG•u»

1> + HPC Functîon Signature computeGaussWeightsForMingled8ements
1> + HPC Function Signature computeGaussWeightsForEle.mentsWithOne.NodelnCommon
I> + HPC Function Signature computeGaussWeightsForElementsWithOneVert.icdnCommon
, + HPC Function Signature getCellRelation

1> .,O. HPC Data Port celll
� ? HPC D•t• Port cell2
� ? HPC Data Port cellRelation

,. + HPC Function Signature computeElementaryMatrix

� ? HPC Data Port celll

� ? HPC Data Port cell2
I> {,, HPC Data Port efementaryMatrix
� ? HPC Data Port xGauss

� ? HPC Data Port wG,uss
,. + HPC Fundion Signature addElementa.ryMatrixContribution

� ? HPC Data Port celll
� ? HPC Data Port cell2
I> .,O. HPC Data Port el.ementaryMatrix
� ? HPC Data Port cellRelation

, + HPC Data Set
• + Data Block integrationPrecision

+ Data NptTR3OneNode

+ Dat> NptTR3On,V,rtice

+ Data NptTR3Disjoint
+ Data NptTR3Mingled

,O. HPC Algorithmic Implerntntation
,O. HPC AJgorithmic Implemtntation
� HPC Algorithmic (mplem,ntation
,O. HPC Algorithmic Implerntnt.ation
,O. HPC AJgorithmic Implemtntation
� HPC Composite lmplementation

Propcrties

URI

Description

Main

Name

Composant responsable de la construction de fa matrice conte.na

El

ComputeContributionsMatrix

Nesting Package I HPC Package ArfeneMOE Project

Fig. 16 View of the structural part of the ComputeContributionsMatrix component

as a result, its HPCFlowDescriptor has an HPC

FunctionSignature that results from one of the HPC

FunctionSignatures of the EMPrototypeMDE com

ponent interface: It is the computeContributionsMatrix sig

nature whose declaration is visible in Fig. 14.

Second you can see an example of the third way of express

ing parallelism: the HPCSetEnumerator. Here we even

find the interleaving of two HPCSetEnumerators since

we wish to calculate the contribution of each mesh with

respect to the other meshes. It is not visible on the figure

since it is not defined through this view, but the value of

s tenci 1 (the mode! element describing the memory depen

dencies) for these two HPCSetEnumerators is all, since

each mesh will have to access all the other meshes, at least in

read (HPCDataPort of the relation set in mode IN). This

is typically a case that will pose more problems on genera

tion of implementation toward architectures with distributed

memory than on those with shared memory. In the case of

shared memory, it can be imagined that ail the execution units

access mesh data by their common memory. In the second

case, a number of solutions can be envisaged one of which

would be to replicate the meshing data on the memory of each

execution unit. Of course, this solution can only be consid

ered if the memory of the execution units is big enough to

receive mesh data.

Finally, Fig. 17 contains the last control flow structure

that was not presented: conditional connections (HPCI f and

HPCEndif).

5.3 Benchmarks

The modeled application was used to generate an executable

program based on the Arcane framework as described in Sect.

4. This section presents the results of benchmarks performed

with this program (based on C++ with Arcane) and the orig

inal version of the application (based on Fortran with MPI)

on the TeralOO supercomputer-a Bull supercomputer com

posed of 4370 node servers with 138 368 Intel Xeon cores, an

Infiniband interconnect system with a performance of 1,05

petaflops.

First we conducted benchmark to compare the two appli

cations as we wanted to see whether the application produced

with the MDE4HPC approach was at least as efficient as the

application developed in a traditional way. This benchmark

was performed on an object with 50,000 meshes. The results,

which are presented in Fig. 18, are extremely encouraging. It

can be seen that the execution time of the EMPrototype pro

duction version and that obtained with MDE4HPC, called

EMPrototypeMDE, are very much similar. Despite being

functionally equivalent, the difference in tenus of frame-

Fig. 17 HPCFlowDescriptor

of the
ComputeContributionsMatrix
component

1500

1000

·.;;

500

4 8

SetEnumerator : 0011

SetEnumerator : œ112

-+- EMPrototype

. EMPrototypeMDE

16 32

Number of Processors

Fig. 18 EMPrototypeMDE: computation timecomparisons

works and languages (before the assembler [sic]) explains
the slight differences in performance.

Second we conducted another benchmark on EMPro

totypeMDE alone this time to assess its scalability. This

benchmark used two test cases, the first one with an object

addElemenlaty

f(x MstrixContri:>u· @
don

35 r--r-r-�r---;::::==========::::::;-i

30

25

o. 20
;::s

g- 15

10

5

� Linear
� EMPrototypeMDE Casel

� EMPrototypeMDE Case2

Number of Processors

Fig. 19 EMPrototypeMDE: ScaJability study

composed of 10,000 meshes and the second one with an

object composed of 50,000 meshes. The results exposed in

Fig. 19 show a noteworthy speedup on the first case (Case

l) tending to show the operational nature of the generation

of scalable code from models. This is al! the more true in

so far as this scalability improves as the scale of the prob-
lem increases (Case 2). But we must clarify that scalability
obtained here is rather due to the algorithm used than the
development approach.

5.4 Experiments takeaway and discussion

In this section, we presented a two-stage evaluation of the
MDE4HPC approach. The criteria mainly addressed in this
evaluation are the scalability and the viability of MDE4HPC.
However, our approach provides improvements outside of
the criteria assessed here. For example, the HPCML lan-
guage is especially useful in formalizing the specification of
simulation codes. This characteristic is a decisive factor in
knowledge capitalization and the transmission of skills.

This case study enabled us to better understand the behav-
ior of the HPCML language when modeling a different
physical domain and fits in with our previous works where
we showed viability in terms of performance of the code gen-
erated by the MDE4HPC approach as well as a reduction in
maintenance costs, especially when porting an application to
a new supercomputer [50].

The reduction in terms of maintenance costs was not eval-
uated again in this new evaluation mainly due to resource
constraints. This evaluation is part of our future plans and
will be conducted after the deployment of the next genera-
tion of supercomputers. Nevertheless, the preliminary results
obtained in the different experiments already performed, con-
vinced us that the benefits induced by the use of automation
and by the capitalization of the best practices, if gener-
alized to an entire organization, would lead to substantial
gains.

The model of the application presented here uses all the
concepts we proposed to express parallelism. This model
thus provides an adequate basis to run the experimentation
needed to define the HPCMLe layer as addressed later when
discussing future perspectives.

In order to validate the transformation chains and the code
generation, as part of the future work, we propose the uncer-
tainty quantification—classical technique in HPC, adapted to
the model-based context. It consists in making some paramet-
ric studies on the models, because several numerical models
can solve on physical one, but also on the optimization of
the code generator. Based on these studies, it would be pos-
sible to quantify the ratio precision/performance to get the
best compromise, depending on the specific needs, in terms
of deadline, performance or supercomputer availability con-
straints.

The performed evaluation allowed us to experience several
of the benefits of the use of model-driven development in the
context of HPC. In the order of their perceived importance
these benefits are:

– MDD enables a selective view of the system and the sep-
aration of concerns, through the layered definition used
in MDE4HPC;

– The use of code generators that lead to a high quality of
the obtained code (in terms of performance);

– Allows for domain-specific languages, with a look and
feel close to the domain-specific culture to be used instead
of raw programming code, thus increasing the accessibil-
ity of the domain experts and reducing the cognitive effort
required for developing applications;

– Facilitates the apprehension of an HPC application,
through offering various abstract views of the system.

Up to this stage, our project did not had the opportunity to
take advantage of lots of other promising openings offered by
the introduction of models in this context such as reasoning
on the abstract model to perform early verification and vali-
dation, to investigate non-functional properties of the model,
etc. Even so, the results obtained up to this stage make us
very eager to investigate further on such openings as part
of our future work. The next section complements the quick
overview of the model-driven engineering particular benefits
that we exploited in our approach.

6 Lessons learned

In the previous sections, we introduced MDE4HPC—our
approach for adding abstraction in HPC applications by
using MDE techniques. In addition to that, a set of domain-
specific languages stemming from our method with a focus
on HPCMLn , the toolset supporting our framework and
finally a multi-dimensional validation that assessed the rele-
vance of the current approach have been introduced.

We had the chance of being involved in a full-fledged
experiment lasting more than four years, applying MDE prin-
ciples in high-performance computing. Looking back, we
realize that some of the choices we made (with greater or
lesser awareness), although seeming reasonable at the time,
may be subject to improvement.

In the present section, we analyze the experience we
gained and draw a set of lessons from our experimenta-
tion of MBSD on a new application domain. Through these
lessons learned, we hope to contribute to a wider dissemina-
tion of MBSD in a higher number of application domains.
To establish these lessons learned, we adopted the perspec-
tives of both the end user of our solution (developer of
HPC applications: mainly the numerical analyst presented
in Fig. 3) and the developer of MBSD solutions (mainly the
software engineer presented in Fig. 3). The current analy-
sis emerges from experience and is in line with other efforts
[4,16,30,31,37,42] to capitalize on insights, awareness and
best practices obtained from concrete settings.

6.1 The introduction of MBSD should not neglect
domain-specific expectations

As we stressed in the introduction, the quest for perfor-
mance is a central characteristic of high-performance and
scientific computing. The goal we targeted in the cur-
rent experiment was to show that we can obtain using
MBSD similar performance to what we can obtain using
traditional techniques, with maintainability, portability and
customizable code generation as a bonus. Indeed, we demon-
strated that the generated code was as effective as the
existing code with highly acceptable scalability results (see
Sect. 5.3).

Looking back, we realize we should have thought more
about HPC practice and put more effort into obtaining a
significantly more effective code, which would have earned
more interest from simulation code developers. Such perfor-
mance increases should indeed be feasible, as the rise in the
level of abstraction opens new capabilities for optimization
(huge deployment of loops, optimum prefetching, general-
ized inlining, etc.) that are inaccessible when writing code
manually.

This lesson seems to us to be something that can be gen-
eralized whatever the domain. For example, in real-time and
embedded systems, MBSD should show that it adequately
satisfies both problems of criticality and existing technical
issues. In applications with a strong “Time-To-Market” con-
straint, rapidity of evolution or production of the code will
have to be proved.

6.2 The overall payoff for switching to MBSD is neither
immediate nor predictable

6.3 The DSL must comply with usual practices
in the domain

Our approach for adding abstraction to scientific comput-
ing applications includes the definition of a domain-specific
modeling language (cf. Sect. 3). Following current practice
in applying MBSD, we used MBSD tools to define a graph-
ical syntax and were proud to end up with a clean, efficient
language that complies with expectations. However from the
user’s perspective, it may have been wiser to have an alter-
native textual syntax for this language.

One of the priorities for future work is the definition
of a textual language for describing low-level algorithms
(HPCAlgorithmicContent). The syntax of the Liszt language
[20] could be a good candidate as its implementation based on
Scala makes it possible to use it in ArchiMDE as a generic
language for the description of algorithms. Even if such a
domain-specific language will necessarily differ from For-
tran, it should look familiar to the developer of simulation
code.

6.4 MBSD introduces overhead in terms of complexity

MBSD tools often introduce (too much?) complexity, with
respect to the existing technological levels. The technolog-
ical break (moving on from Fortran to Eclipse Modeling
Framework, or from the Nedit to Eclipse) is often extremely
significant. The considerable personal investment for future
users may be dissuasive. The overall cost of setting up the
technologies and investments (in operational terms) is signif-
icant for a remote (and not understood by everybody) return
on investment.

Computer science and engineering curricula should allow
students to acquire modern software technologies. In parallel
with this, the MBSD community must devote efforts to make
using their tools simpler and more intuitive. There is a large
consensus (see for instance [15]) that efforts are needed in
making modeling tools more accessible to a wider range of
users. Our experience confirms these needs.

6.5 MBSD can still make progress

According to the feedback we received, the use of model-
ing techniques suffers from two major weaknesses that are
linked: co-evolution of models and team work.

During the definition of the HPCML metamodel and dur-
ing the actual language use on the evaluations, we frequently
faced the need to make changes which led to painstaking
model migration activities. Even though the number changes
in the metamodel and language definition started to fall once
a certain maturity point was reached, changes must still be
expected for newer versions. To aim at an industrial use of
its technologies, MBSD needs a flexible and effective model

Our experiment focused on the use of modeling in order
to facilitate the development and maintenance of scientific
computing applications. The models obtained in this process
could be exploited in directions that are “classical” for the
modeling community, but are not used these days by the
HPC community. These extras could include the formal ver-
ification of some properties on the model, a more precise and
better sustained (and possibly formal) characterization of the
needs for particular algorithms in terms of platform resources
or architectures, an abstract description of timing properties
that may lead to model-level time analysis for existing algo-
rithms, etc.

The fact that there is not yet any direct demand for such
analysis by the HPC community is due to the current habits of
having low-level code that is not readily operable by analysis
tools. Adding more abstraction should open the door to a
wide range of model-level analyses, most of them yet to be
defined in order to carefully address the needs of the HPC
community.

version management mechanism handling both model and
metamodel versioning. We are aware of interesting results in
this area, but the fact that commonly used tools lack effective
version management makes their usage difficult to defend in
an industrial setting. We therefore feel that there is an urgent
need for standardization and integration of such mechanisms
in environments like Eclipse.

7 Related work

There is a rich diversity of parallel programming solutions
available for developing scientific software. This situation
stems from the complexity and the fast evolution of the hard-
ware we described in Sect. 1. The existing solutions tackle
the development of scientific applications at different lev-
els of abstraction. The current section gives an overview of
the capabilities of existing solutions for developing paral-
lel numerical simulation at various levels of abstraction, in
order to understand how they complement and differ from
our approach. The overview covers both solutions consisting
in adding abstraction at the programming language or envi-
ronment level, as well as a few solutions that are sensitive to
model-driven techniques.

7.1 Mainstream programming solutions

For more than half a century, the Fortran language has been
the reference in HPC. Even though C++, Python or even Java
are gaining interest in the scientific community, Fortran 90 is
still massively used in scientific computing. However, none
of these languages are capable of exploiting massively par-
allel architectures directly, and they must rely on external
components. The most widely used of these complemen-
tary solutions is certainly MPI (Message Passing Interface)
[56] which is a standardized message-passing system. It is
mainly used to exploit distributed memory architectures.
For shared memory architectures in addition to the usual
threading libraries, the OpenMP (Open Multi-Processing)
[19] which is an API that supports multi-platform shared
memory multiprocessing is quite popular. Even though they
are widespread, these solutions suffer from the problems we
highlighted in the introduction (see Sect. 1.1).

The use of libraries that contain optimized math routines
for science such as the Intel Math Kernel Library (MKL)
[1] is a common practice. On the bright side, these libraries
hide most of the complexity of the underlying hardware, and
they are usually developed by experts who write very effi-
cient code. However, they can only be used to parallelize the
portion of the code where they take part. Furthermore they
require the use of predefined data structures and thus can
demand costly data conversions mainly if a developer want
to mix several libraries of this kind.

7.2 PGAS model

A programming model that gained a certain popularity in
recent years is the Partitioned Global Address Space (PGAS).
This model offers a shared address space model that simpli-
fies programming while exposing data/thread locality with
the aim of enhancing both productivity and performance.
PGAS programming solutions include Coarray Fortran [53]
and Unified Parallel C (UPC) [59]. Coarray Fortran is a small
Fortran extension adding an explicit notation for data decom-
position, with the aim of improving its native support for
parallelism. Similarly, UPC is a PGAS extension of the C
programming language designed for high- performance com-
puting on large-scale parallel machines[12].

The PGAS model relies on a static allocation approach.
The APGAS (Asynchronous Partitioned Global Address
Space) model extends and solve some of the problems of the
PGAS model. APGAS programming solutions were devel-
oped as part of the High Productivity Computing Systems
(HPCS) program launched in 2002 by the DARPA [60].
Three novel programming languages emerged: Chapel [13]
(Cray), Fortress [3] (SUN) and X10 [14] (IBM). The prin-
cipal drawback of this approach is the need to develop
high-performance compiler, debugger and implementation
for each existing architecture.

7.3 Dynamic scheduling

New hardware architectures cover various aspects (such
as fault tolerance, energy consumption management while
offering heterogeneous execution units,…) that make it dif-
ficult to dynamically schedule the calculus. To answer this
problem, projects such as StarPU [6] and Qilin [39] describe
applications in terms of tasks and let an external sched-
uler take care of the resource allocation, based on run-time
information. These approaches that suffer from a very high
dependency on the external scheduler lead to unpredictable
execution performances, and hardware evolution may require
significant rethinking of the application.

7.4 Component assembly

The Common Component Architecture (CCA) [2] is a com-
ponent model specification targeting scientific computing.
CCA has the merit of allowing a combination within the
same system of components that use various programming
languages.

Other approaches, such as the High-Level Component
Model (HLCM) [8], also based on component-based archi-
tectures, serve to specify the composition by adding custom
composition operators, without touching the components
themselves. The abstract HLCM models are specialized

refined toward lower abstraction levels, which make the
design space exploration possible. For the moment, the
approach transformation chains the transformation chain
toward SystemC that only manages software execution on a
processor-based architecture at the PVT (Programmer View
Timed) abstraction level.

Another project tackling our problematic by raising the
level of abstraction is Liszt [20]. It aims at solving partial-
differential equations on meshes by providing a domain-
specific language built on top of Scala. Due to its qualities
and common philosophy with HPCML , we plan to add
Liszt as an additional target of the transformation process in
the ArchiMDE tool. This would demonstrate the capability
of HPCML to target multiple high-level platforms (Arcane,
Liszt). Singe [7] is a DSL compiler for a dedicated physics
simulation problem that leverages warp specialization to pro-
duce high-performance code for GPUs. Singe demonstrates
that the generated code can be much faster than previously
optimized data-parallel GPU kernels.

A more complete view of related work can be found in
[51]. As far as we know, none of these approaches target
a fully fledged solution for introducing abstraction in sci-
entific software applications though the use of models. The
MDE4HPC approach presented in this paper was previously
introduced [51] and evaluated [50]. Parts of the HPCML lan-
guage have been also introduced [52]. This paper extends
these publications by giving more details about the approach
(Sect. 2) and the language (Sect. 3), by providing an addi-
tional evaluation regarding performance (Sect. 5) and by
summarizing the lessons learned from the overall project
(Sect. 6).

8 Conclusions

This paper reports on a 4-year experiment in raising the
abstraction level in the development of scientific applica-
tions using high-performance computing through applying
model-driven software development (MBSD) techniques.
High-performance computing is not a field where MBSD
is traditionally used. A recent search we have performed
shows that none of the SoSym papers addresses this field,
and among the papers submitted in 2014 at the MODELS
conference,3 the premier venue conference for modeling
techniques, only one paper (0.66%) addressed this topic.
We had the unique opportunity of being involved in an
industrial project that aimed at adding more abstraction in
high-performance scientific applications through the use of
modeling. The duration of this study as well as the feedback
we gathered through informal interviews from approximately
10 domain experts makes this experiment more than just yet

3 http://www.modelsconference.org/.

using model-based approaches, such as those done for CCA
and Corba [26].
While the component-based developments proved success-
ful, the existing approaches are not constraining the internal
component architecture enough, in particular with respect to
handling the parallelism, and thus offer limited portability of
the components on various hardware platforms.

7.5 Legacy code improvement

Macro-based approaches such as HMPP (Hybrid Multi-core
Parallel Programming environment) [9] offer a respectable
solution for improving legacy code. However, as their use is
based on compiler directives which limit the separation of
concerns, this solution has limited interest for new develop-
ments.

7.6 High-level programming language-based solutions

One strategy to deal with the complexity of general-purpose
GPU is to use high-level programming languages, such
as OCaml, and a library to handle GPGPU programs and
data transfers between devices. This is the way taken by
SPOC [10]—a library that expresses GPGPU kernel through
interoperability with common low-level extensions. While
promising, this approach is currently limited in terms of han-
dled data type and it offers another attempt to provide a higher
level of abstraction in the GPGPU programming.

7.7 Model-based approaches

The use of model-driven techniques in the context of high-
performance computing is rather marginal, but some attempts
at using MBSD in HPC and scientific computing do exist.

Trying to answer the acute need of support for mainte-
nance existing in HPC applications, ForUML [45] proposes
a software tool to extract UML class diagrams from Fortran
code. This reverse engineering tool seems to facilitate main-
tenance and refactoring.

In [5], the authors propose a model-driven approach to
analyze, model and select feasible mappings of parallel algo-
rithms to a parallel computing platform. The approach claims
to offer support for an early analysis of potential mappings
with respect to speedup and efficiency and generate the
platform-specific model and the source code.

The GASPARD [23] design framework addresses mas-
sively parallel embedded systems at a higher level of
abstraction. The approach relies on a repetitive Model of
Computation (MoC), which offers a powerful and factorized
representation of parallelism in both system functionality
and architecture. Embedded systems are designed using the
MARTE (Modeling and Analysis of Real-time and Embed-
ded systems). Using MBSD paradigm, MARTE models are

another standard application of MBSD principles and allows
us to report on some lessons learned that could be useful
to other experiments applying modeling techniques in novel
fields.

We have presented MDE4HPC, our approach for applying
MBSD in the development of scientific simulation software.
This approach is based on the definition of a multi-layered
domain-specific language HPCML. This language has a
modular and layered definition that serves to capture infor-
mation specific to the modeling of the numerical aspects, of
the physical model and of the computation information. For
the definition of this language, we defined its metamodel as
well as a graphical syntax addressed to domain experts, thus
making the manipulation of models transparent to this class
of users, in general without formal training in computer sci-
ence. In order to make our approach effectively usable, we
made the required tool developments to integrate it in exist-
ing development tool chains, as described in Sect. 4. We have
reported on the evaluation that we conducted on applying our
approach to realistic simulation problems as well as on the
experience gained and lessons learned.

Given confidentiality issues related to the project, there is
no public Web site presenting it or the tools developed in this
context. Most of the artefacts we developed in this project
(metamodels, model transformations, language definitions,
etc.) are, however, unclassified and are available on request
to one of the authors of this paper.

The pragmatic approach that we adopted consisted in
grounding our entire toolset on an already existing tool
ecosystem developed in-house—Arcane [25], as well as
some optimizations of the Fortran compiler. This led us
to a multi-layered approach with layers corresponding to
the operating system, to the compiler, to the Middleware
(Arcane) and to the abstract model corresponding to our
MDE4HPC approach. This layered structuring, detailed in
Sect. 4, has the advantage of reusing already available and
operational components, where optimized code generators
from intermediate formats are already available. The current
study shows that it is possible to have an automatized trans-
formation chain, allowing to use the models as core artefacts
for reasoning, while generating customized code targeted to
the architecture we focus on.

The most generally applicable outcomes of our study are
synthesized in the section dedicated to the lessons learned
(Sect. 6). A basic summary of these lessons would be the
following:

in spite of the undeniable advantages in terms of
maintenance facility, separation of concerns, etc.,
being capable of just reproducing the technical results
obtained in a solution not using modeling and abstrac-
tion is not enough, to allow the deployment and the
adoption of such solutions.

At the beginning of this study, we started from the hypoth-
esis that the rise of the level of abstraction introduced by
the use of models, and the openings for the separation of
concerns, maintenance, etc., would be enough to allow its
adoption. It would be interesting to have more empirical
studies related to the resistance to change related to the
introduction of new technologies in particular in the field
of scientific applications.

The current work opens the way to more exciting studies.
One direction would be to enrich the current model with non-
functional information related, for instance, to uncertainty
characterizations of some calculus, performance analysis
of some algorithms, resource consumption information (in
terms of time, energy or hardware charge), etc. This non-
functional information expressed at the model level would
open the way to parameterizations following various crite-
ria, possibly defined dynamically that would lead to more
flexible computations. Depending on certain resource avail-
ability parameters, the execution would vary dynamically
to become either more trustworthy (thus minimizing the
uncertainty parameter), more rapid (minimizing the execu-
tion times) or less energy consuming. Interesting openings
exist in this context with work done recently in the context
of Models@runtime [11].

This study suggests the need for an evolution in terms of
services offered by hardware providers. Today, they provide
compilers optimized for the hardware architecture that they
are building. In the future, we feel this should evolve toward
providing, as well as optimized compilers, (parametrized)
optimized code generators. This would naturally demand a
larger adoption of a language such as the one we introduce
in this paper HPCML, maybe through some standardization
attempts such as in the case of OpenCL [34,58].

Another direction that this work could be taken con-
cerns collaborative and co-evolutive modeling. One of the
motivations of this work was to enable the separation of con-
cerns during the development of scientific applications. We
achieved this through the definition of a multi-layered DSL.
The various domain experts involved in the development of
scientific applications interact with various parts of the DSL,
and thus, the integration of the various aspects is achieved
by means of composition by construction. An alternative
approach, worth being investigated, would consist in defining
DSLs for the various domain experts, so that each language
can live its own life (that would be useful in terms of main-
tenance and to alleviate tool support). However, this would
require some mechanisms for composing the various DSLs
and could benefit from existing work such as GEMOC.4

An interesting opening offered by this study would benefit
the modeling community. Indeed, one of the areas of current
interest concerns the scalability of the modeling techniques to

4 http://gemoc.org/.

big models from large-scale systems. The high-performance
computing field does have some experience in handling large-
size data. We could take advantage of the techniques currently
used in HPC and apply them to more effectively handle large-
scale models, thus leading to new research in our domain that
has still to be invented, a kind of High-Performance Model-
ing.

Last but not least, introducing the use of models in a field
such as HPC would open the way to apply other model analy-
sis tools specific to MBSD. While in this project we only
targeted code generation, we can naturally envisage apply-
ing verification and validation techniques, or tailoring the
existing verification approaches to the specificity of this field.
One may think that the classical space explosion problem fac-
ing model-checking tools would make them inapplicable in
this field. However, in several HPC applications the need for
large computing capabilities is due to the size of data rather
than to the complexity of the algorithms. Here, raising the
level of abstraction and applying verification techniques at
the algorithms level may allow early detection of some errors
before actually deploying algorithms on concrete hardware
platforms or applying them to big data.

References

1. Intel math kernel library (intel mkl) v11.0. http://software.intel.
com/en-us/intel-mkl/

2. Allan, B.A., Armstrong, R., Bernholdt, D.E., Bertrand, F., Chiu,
K., Dahlgren, T.L., Damevski, K., Elwasif, W.R., Epperly, T.G.W.,
Govindaraju, M., Katz, D.S., Kohl, J.A., Krishnan, M., Kumfert,
G., Larson, J.W., Lefantzi, S., Lewis, M.J., Malony, A.D., Mclnnes,
L.C., Nieplocha, J., Norris, B., Parker, S.G., Ray, J., Shende,
S., Windus, T.L., Zhou, S.: A component architecture for high-
performance scientific computing. Int. J. High Perform. Comput.
Appl. 20(2), 163–202 (2006)

3. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-
W., Ryu, S., Steele, G. L. Jr., Tobin-Hochstadt, S.: The Fortress
Language Specification. Technical report, Sun Microsystems
Inc, (2007). http://research.sun.com/projects/plrg/Publications/
fortress1.0beta.pdf

4. Aranda, J., Damian, D., Borici, A.: Transition to model-driven
engineering—What is revolutionary, what remains the same? In:
15th International Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 2012, pages 692–708 (2012)

5. Arkin, E., Tekinerdogan, B., Imre, K.M.: Model-driven approach
for supporting the mapping of parallel algorithms to parallel com-
puting platforms. In: MoDELS, pages 757–773, (2013)

6. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures. Concurr. Comput. Pract. Exp. 23(2), 187–198 (2011)

7. Bauer, M., Treichler, S., Aiken, A.: Singe: Leveraging warp special-
ization for high performance on gpus. In: Proceedings of the 19th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 119–130, New York, NY, USA.
ACM (2014)

8. Bigot, J., Pérez, C.: High performance composition operators in
component models. In: Foster, I., Grandinetti, L., Joubert, G.R.,
Gentzsch, W. (eds.) High Performance Computing: From Grids and

Clouds to Exascale, Volume 20 of Advances in Parallel Computing,
pp. 182–201. Amsterdam, IOS Press (2011)

9. Bodin, F.: Keynote: compilers in the manycore era. In: HiPEAC
’09: Proceedings of the 4th International Conference on High Per-
formance Embedded Architectures and Compilers, pp. 2–3, Berlin,
Heidelberg. Springer (2009)

10. Bourgoin, M., Chailloux, E., Lamotte, J.L.: Efficient abstractions
for GPGPU programming. Int. J. Parallel Program. 42(4), 583–600
(2014)

11. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner,
M., Innerhofer-Oberperfler, F.: Living models-ten principles for
change-driven software engineering. Int. J. Softw. Inform. 5(1–2),
267–290 (2011)

12. Cantonnet, F., Yao, Y., Zahran, M.M., El-Ghazawi, T.A.: Produc-
tivity analysis of the UPC language. In: IPDPS (2004)

13. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability
and the Chapel language. Int. J. High Perform. Comput. Appl.
21(3), 291–312 (2007)

14. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,
Ebcioglu, K., von Praun, C., Sarkar, V.: X10: an object-oriented
approach to non-uniform cluster computing. In: Proceedings of
the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’05,
pp. 519–538. ACM (2005)

15. Clark, T., France, R.B., Gogolla, M., Selic, B.V.: Meta-
modeling model-based engineering tools (Dagstuhl Seminar
13182). Dagstuhl Rep. 3(4), 188–226 (2013)

16. Clark, T., Muller, P.: Exploiting model driven technology: a tale of
two startups. Softw. Syst. Model. 11(4), 481–493 (2012)

17. Clayberg, E., Rubel, D.: Eclipse: Building Commercial-Quality
Plug-ins (2nd Edn) (Eclipse). Addison-Wesley Professional,
Boston (2006)

18. Colton, D.L., Kress, R.: Integral Equation Methods in Scattering
Theory. Wiley, New York (1983)

19. Dagum, L., Menon, R.: OpenMP: an industry-standard API
for shared-memory programming. Comput. Sci. Eng. 5, 46–55
(1998)

20. DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Bar-
rientos, M., Elsen, E., Ham, F., Aiken, A., Duraisamy, K., Darve,
E., Alonso, J., Hanrahan, P.: Liszt: a domain specific language for
building portable mesh-based pde solvers. In: Proceedings of 2011
International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’11, pp. 9:1–9:12. ACM (2011)

21. Dongarra, J.J.: Performance of various computers using standard
linear equations software. SIGARCH Comput. Archit. News 20(3),
22–44 (2014)

22. Foxy, G., Hawick, K., White, A.: Characteristics of hpc scientific
and engineering applications. In: Second Pasadena Workshop on
System Software on Tools for High Performance Computing Envi-
ronments (1996)

23. Gamatié, A., Le Beux, S., Piel, E., Ben Atitallah, R., Etien, A.,
Marquet, P., Dekeyser, J.-L.: A model-driven design framework
for massively parallel embedded systems. ACM Trans. Embed.
Comput. Syst 10(4), 39:1–39:36 (2011)

24. Gonnord, J., Leca, P., Robin, F.: Au delà de 50 mille milliards
d’opérations par seconde! La Recherche 393, 39–44 (2006)

25. Grospellier, G., Lelandais, B.: The Arcane development frame-
work. In: POOSC ’09. ACM (2009)

26. Group, O.M.: Corba component model 4.0 specification. Technical
report, Object Management Group (2006)

27. Group, O.M.: MOF 2.4 Specification. Technical report (2011).
http://www.omg.org/spec/MOF/2.4/

28. Hanson, R., Tacy, A.: GWT in Action: Easy Ajax with the Google
Web Toolkit. Manning Publications Co., Greenwich (2007)

29. Harrington, R.: Time-harmonic electromagnetic fields. In: IEEE
Press Series on Electromagnetic Wave Theory. Wiley (2001)

30. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment of MDE in industry. In: Proceedings of the
33rd International Conference on Software Engineering, ICSE, pp.
471-480 (2011)

31. Kalliamvakou, E., Palyart, M., Murphy, G., Damian, D.: A field
study of modellers at work. In: 2015 IEEFJACM 7th International
Workshop on Modeling in Software Engineering (MiSE) (2015)

32. Kepner, J.: HPC productivity: an overarching view. lot. J. High
Perform. Comput. Appl. 18(4), 393-397 (2004)

33. Keutzer, K., Massingill, B.L., Mattson, T.G., Sanders, B.A.: A
design pattern Janguage for engineering (parallel) software: merg
ing the PLPP and OPL projects. In: Proceedings of the 2010
Workshop on Parallel Programming Patterns, ParaPLoP '1 O. ACM
(2010)

34. KhronosGroup. The OpenCL specification vl.2. Technical report
(2011). http://www.khronos.org/registry/cl/specs/opencl-l.2.pdf

35. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., Irwin, J.: Aspect-Oriented Programming.
Springer, New York (1997)

36. Kirk, D.: NVIDIA CUDA software and GPU parallel computing
architecture. In: ISMM, pp. 103-104 (2007)

37. Kuhn, A., Murphy, G.C., Thompson, C.A.: An exploratory study
of forces and frictions affecting Jarge-scale model-driven devel
opment. In: 15th International Conference on Mode) Driven
Engineering Languages and Systems, MODELS, pp. 352-367
(2012)

38. Larus, J.R.: Spending Moore's dividend. Commun. ACM 52(5),
62-69 (2009)

39. Luk, C.-K., Hong, S., Kim, H.: Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping. In: Pro
ceedings of the 42nd Annual IEEFJ ACM International Symposium
on Microarchitecture, MICRO 42, pp. 45-55. ACM (2009)

40. Merali, Z.: Computational science: ... error. Nature 467, 775-777
(2010)

41. Miller, J., Mukerji, J.: Mda guide version 1.0.1. omg/2003-06-01.
Technical report, OMG, (2003)

42. Mohagheghi, P., Dehlen, V.: Where is the proofl - a review of expe
riences from applying mde in industry. In: Proceedings of the 4th
European Conference on Mode! Driven Architecture: Foundations
and Applications, ECMDA-FA '08, (2008)

43. Moody, D.L.: The "physics" of notations: Toward a scientific basis
for constructing visual notations in software engineering. IEEE
Trans. Software Eog. 35, 756-779 (2009)

44. Moore, G.E.: Cramming more components onto integrated circuits.
Electronics 38(8), 114-117 (1965)

45. Nanthaamornphong, A., Morris, K., Filippone, S.: Extracting umJ
class diagrams from object-oriented fortran: Forum!. In: Proceed
ings of the 1st International Workshop on Software Engineering
for High Performance Computing in Computational Science and
Engineering, SE-HPCCSE '13, pages 9-16, New York, NY, USA.
ACM (2013)

46. Nassiet, D., Livet, Y., Palyart, M., Lugato, D.: Paprika: rapid UI
development of scientific dataset editors for high -performance
computing. In: Proceedings of the 15th international conference
on lntegrating System and Software Modeling, SOL' 11, pages 69-
78. Springer-Verlag, (2011)

47. Northover, S., Wilson, M.: SWT: the standard widget toolkit.
Addison-Wesley, The Eclipse series (2004)

48. Oudin, H.: Méthode des éléments finis. http://cel.archives
ouvertes.fr/cel-00341772/PDF/bouquin.pdf, (Sept. 2008)

49. Palyart, M.: Une approche basée sur les modèles pour Je développe
ment d'applications de simulation numérique haute-performance.
PhD thesis, Université Paul Sabatier - Toulouse m, (2012)

50. Palyart, M., Lugato, D., Ober, 1., Bruel, J.-M.: Improving scala
bility and maintenance of software for high-performance scientific
computing by combining MDE and frameworks. In: Proceedings

of the 14th international conference on Mode) driven engineering
Janguages and systems, MODELS' 11, pages 213-227. Springer
Verlag, (2011)

51. Palyart, M., Lugato, D., Ober, 1., Bruel, J.-M.: MDE4HPC:
An approach for using Model-Driven Engineering in High
Performance Computing. In: 15th System Design Languages
Forum (SOL 2011), (2011)

52. Palyart, M., Lugato, D., Ober, 1., Bruel, J.-M.: HPCML: A Mod
eling Language Dedicated to High-Performance Scientific. In: 1st
International Workshop on Model-Driven Engineering for High
Performance and CLoud computing (MDHPCL). ACM, (October
2012)

53. Reid, J.: Coarrays in the next fortran standard. SIGPLAN Fortran
Forum, 29(2), 2010

54. Shan, H., Singh, J.P.: A Comparison of MPI, SHMEM and
Cache-Coherent Shared Address Space Programming Models on a
Ttghtly-Coupled Multiprocessors. lot. J. Parallel Program. 29(3),
283-318 (2001)

55. Shankland, S.: In newest tally, supercomputing progress tapers off.
CNET, november, (2014). http://www.cnet.com/news/in-newest
taJJy-supercomputing-progress-tapers-off/

56. Soir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra,
J.: MPI: The complete reference. MIT Press, Cambridge, MA
(1996)

57. Steinberg, D., Budinsl-y, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework 2.0. Addison-Wesley Professional,
(2009)

58. Stone, J., Gohara, D., Shi, G.: Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in sci
ence & engineering 12(3), 66 (2010)

59. UPC Consortium. UPC Language Specifications, v l.2. Tech
Report LBNL-59208, Lawrence Berkeley National Lab, (2005).
http://www.gwu.edu/upc/publications/LBNL-59208.pdf

60. Weiland, M.: Chape), Fortress and XlO: Novel Languages for
HPC. Technical report, The University of Edinburgh, (Octo
ber 2007). http://www.hpcx.ac.uk/research/hpc/technical_reports/
HPCxTR0706.pdf

Ileana Ober is associate profes
sor at the University of Toulouse
and researcher at IRIT, France.
She holds a PhD from the Poly
technic Institute of Toulouse in
2001 and a Habilitation from
the University of Toulouse since
2010. She was research engineer
at Telelogic, where she worked
on several research projects and
was actively involved in the
UML action semantis definition
at the OMG and with the defini
tion of SOL 2000 at ITU. After a
postdoc at VERIMAG studying

model-driven validation of real-time systems using UML timing con
straints in the context of the 1ST project OMEGA, she joined IRIT
as associate professor, where she works on developing techniques to
include domain-specific Janguage-based development in a mode) driven
engineering framework and on applying modeling techniques on high
performance computing. She co-chaired MODELS 2008 and SDL2011,
she initiated the Modeling Wizards International Master Class on MDE
and she organized several workshops at MODELS. She regularly serves
as expert for H2020 project proposai evaluations.

Marc Palyart is a postdoctoraJ
researcher in the Software Prac
tices Lab from the University of
British Columbia. He received
bis PhD and MSc in Computer
Science from the University of
Toulouse. He also holds a BSc
(Hons) from the Dundalk Insti
tute of Technology. His research
interests include software engi
neering and software evolution.

David Lugato is a research
engineer at the Comrnisariat à

!'Energie Atomique (CEA). He
obtained bis Habilitation (HDR)
from the University of Bor
deaux in 2015. He developed the
AGATHA software (Automatic
test generation with symbolic
execution) at CEA Saclay from
2000 to 2004. To tackle the com
binatoriaJ explosion limitations,
the spectrum of research was
broad and developments required
the assembly of complex and
disparate software components

rewriting machine, constraint solver and graph theory. From 2004 to
2012, he bas Jead a project of an operations research simulation soft
ware. The development of this complex software due to its size and
the multitude of modeled physicaJ domains requires raising the Jevel
of abstraction to ensure greater sustainability and facilitate the acces
sibility to physicists. Since 2012, he is software architect of a large
simulation software for atmospheric reentry with speciaJ focus on solu
tions for coupling multi physics and multi-scaJe problems and study of
a DSL definition for future exascaJe supercomputers.

Jean-Michel Bruel received bis
Ph.D. from the University Paul
Sabatier (Toulouse) in December
1996. From September 1997 to
August 2008, he was associate
prof essor at the University of
Pau and Member of the LIUPPA
(Laboratoire d'Informatique de
l'Universitè de Pau et des Pays
de l'Adour) from 2000 to 2008.
He bas defended bis "Habilita
tion à Diriger des Recherches" in
December 2006 and is since 2008
full professor at the University of
Toulouse. He bas been head of

the Computer Science departrnent of the TechnicaJ Institute of Blagnac
from 2009 to 2012. Currently, he is the head of theMACAOteam (Mod
els, Architectures, Components, Agility and prOcesses) of the IRIT
(Institut de Recherche en Informatique de Toulouse) CNRS Jaboratory.
His research areas include Model-Based System Engineering (MBSE)
and more precisely formaJ requirements, model and method integration.

