
HAL Id: hal-02640582
https://hal.science/hal-02640582

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trusted mobile computing: An overview of existing
solutions

Mohamed Amine Bouazzouni, Emmanuel Conchon, Fabrice Peyrard

To cite this version:
Mohamed Amine Bouazzouni, Emmanuel Conchon, Fabrice Peyrard. Trusted mobile computing:
An overview of existing solutions. Future Generation Computer Systems, 2018, 80, pp.596-612.
�10.1016/j.future.2016.05.033�. �hal-02640582�

https://hal.science/hal-02640582
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/2 2029

To cite this version:

Bouazzouni, Mohamed Amine and Conchon, Emmanuel and Peyrard, Fabrice

 Trusted mobile computing: An overview of existing solutions. (2018) Future
Generation Computer Systems, 80. 596-612. ISSN 0167-739X.

Official URL:

https://doi.org/10.1016/j.future.2016.05.033

Open Archive Toulouse Archive Ouverte

Trusted mobile computing: An overview of existing solutions

Mohamed Amine Bouazzouni a,b,c,*, Emmanuel Conchon d, Fabrice Peyrard a,b,c

• University ofToulouse, 2 Rue Camidlel, Toulouse, France

• /NP, 2 Rue Camîche� Toulouse, France

'/RIT UMR 5505, 2 Rue Camîche� Toulouse, France

d University of Limoges, XllM, UMR CNRS 7252, 123 avenue Albert Thomas, 87060 Limoges, France

ABSTRACT

Keywords:
Mobile Truste<! Computing
Truste<! Execution Environmem (TEE)
Secure Elemem (SE)

Nowadays, smartphones are able to process large amounts of data enabling the use of applications for
persona(or professional use. ln these contexts, the smartphone needs to process, store and transfer
sensitive data in a secure way. Encryption is a commonly used solution to enforce security but the
encryption keys it relies on have also to be securely processed and stored. Severa(research works
have investigated these issues and different solutions have been proposed. They can be dassified
into two main categories: hardware-based solutions (Secure Elements, Trusted Platform Module and
Trusted Execution Environments) and software-based solutions (Virtualization Environments). This paper
overviews/surveys these two categories highlighting their pros and cons. Examples of trusted computing
applications are then provided for each category. Finally, a discussion is provided about trends and
perspectives for trusted mobile computing. Truste<! Platform Module (TPM)

Virrualization
User Cemric Mode!
1. Introduction

Over the past years, smartphones have become an important
part of our everyday life. According to recent statistics [1), the
smartphone market has grown from 20% in 2014 and recently
10% in 2015. Moreover, smartphones usage has changed in recent
years with their increase of computing and storage capabilities.
Mobile applications used on smartphones become more and more
sophisticated targeting new fields of application such as health,
entertainment, business productivity and social interactions for
instance. These applications can sometimes process sensitive

* Corresponding author at: IRIT UMR 5505, 2 Rue Camichel, Toulouse, France.
E-mail addresses: mohame<lamine.bouazzouni@enseeiht.fr (MA. Bouazzouni),

emmanue1.conch0n@unilim.fr (E. Conchon), fabrice.peyrard@enseeiht.fr
(F. Peyrard).
or persona! data that require a high level of security and
confidentiality. Indeed, applications targeting banking, ticketing,
health monitoring applications or even Digital Rights Management
(DRM) for multimedia applications have to be secured so that
the user confidence will increase. Therefore a need for mobile
trusted computing arose as data security has not been considered
as mandatory in existing mobile operating systems (OS). For
instance, Fahl et al. (2) have proposed in 2012 a study of SSL-based
applications in the Android market showing that nearly 8% of them
are vulnerable to a well-known Man in the Middle attack.

To address this need of trusted mobile computing, several
technical solutions have been provided in the past few years
among which are hardware-based solutions like Secure Element
(SE), Trusted Platform Module (TPM) and Trusted Execution
Environment (TEE). More recently, thanks to the performance of
embedded multi-core processors, software-based solutions appear
especially for Virtualization Environments (VE).

Secure Element is a popular solution that has been widely
deployed in recent smartphones. It is a dedicated component that
enables the secure execution and storage of applications with
cryptographic capabilities. It can be viewed as a smartcard which
executes JavaCard applications in a smartphone. A SE can be
embedded into a SIM card issued by a telecom service provider,
into an embedded chip issued by the phone manufacturer or even
into a removable micro SD card. As a SE can be viewed as an
embedded smartcard, it suffers from the same limitations such as
the issuance of application. Indeed, to store a new application on
the SE, an agreement has to be made with the SE issuer. Moreover,
the storage capacity and processing are limitedwhich is a handicap
for large-scale deployment.

Another hardware solution is the Trusted PlatformModule that
has been originally designed for laptop environment. TPM consists
of a regular micro-controller with additional cryptographic
capabilities that can perform complex cryptographic operations
easily. However, the storage capacity is very limited so that only
these cryptographic operations can be performed whereas SE can
perform every possible operations of an application.

Trusted Execution Environment is another proposition to over-
come the deployment issues encountered in SE-based solutions.
The TEE is an environment of secure storage and processing with
greater storage and processing capacities than the SE. TEE can be
split into a hardware part and a software part. The hardware part
consists of a processorwhich isolates the execution of sensitive ap-
plications from the regular ones. The software part consists of two
separate OS: a Rich OS and a Secure OS isolated from each other.
The Secure OS uses a limited instructions set that allows its veri-
fication and validation from a security standpoint. The advantage
of this solution is that this processor is present on almost all mod-
ern smartphones. Since 2009, GlobalPlatform [3] is in charge of the
TEE standardization. Based on these standards, ARM, one of the
major mobile processor manufacturer, has integrated TEE on most
of existing smartphones and enabled its usage. However, several
challenges have to be addressed by TEE solutions amongwhich are
their ability to deal with physical attacks, the necessity to provide
a secure boot to avoid rootkit as well as a secure channel that pro-
tects the interactions between the user and the smartphone.

The last solution is Virtualization Environment. It consists
of running multiple virtual OS on a single physical phone. The
isolation between applications and the secure storage are themain
challenges. Adding minimum overhead to the execution is also a
major criteria to evaluate the quality of this solution.

Most of these solutions are proprietary and follow the Issuer
Centric smart card Owner Model (ICOM) which restricts the
access to such technology. To get access to these technologies,
the developers have to sign agreements with the hardware
manufacturer. This constraint has hindered the development and
dissemination of these technologies. For this reason, the need for
technologies following the User Centric smart card Owner Model
(UCOM) has become a priority. This model allows users to have the
full control of their environment. Virtualization seems to be a good
candidate for a UCOMmodel adoption.

In this paper an overview of existing trusted mobile computing
solutions will be provided. Complementary to the major surveys
proposed by Asokan et al. in [4] and by Vinh et al. in [5], this paper
will provide an extended presentation of SE, TEE and VE attempts,
and will compare them for trusted mobile computing.

This overview is intended to describe all the hardware and
software bricks to consider in the development of secure mobile
applications such asmobile payment, transport ticketing, DRMand
building secure access for instance. Indeed, many access control
systems are now based on RFID technology despite well known
cloning weakness [6,7]. These access controls (packing, buildings,
offices, hotel, . . .) do not always check authentication of the holders
of RFID tags. NFC technology which is a more secure evolution of
RFID and is increasingly implemented on smartphones has led to
design new access control systems. These new systems are based
on the concept of a virtual card where a smartphone can be used
as a substitute to a regular smart card. Such operation is called
dematerialization.1 This requires more security solutions such as
encryption andmutual authentication. Applications and data from
these systems must be carried and stored in secure and trusted
environments.

In Section 2, a short overview of applications provisioning
models will be given. In Section 3, several fields of application of
the secure mobile computing will be highlighted. In Section 4, the
characteristics of secure environments are presented as well as
the three attacker models chosen in this work. Sections 5 and 6
highlight respectively hardware-based and software-solutions
for trusted mobile computing before exposing main existing
approaches based on these solutions in Section 7. The Section 8 is
a comparative analysis of the robustness of Secure Environments
against attacker models, then a comparison of Trusted Mobile
Computing approach for user-centric solutions. Finally, potential
solutions for the upcoming years will be discussed in Section 9.

2. Application provisioning models

Flexibility in application provisioning has become an important
factor for the proper development of some technologies. The most
spread model is Issuer Centric Smart Card Owner (ICOM). A new
model, called UCOM, centered on the user, is discussed in [8,9].
UCOM allows the card issuer to delegate the ownership of the card
to the user.

2.1. ICOM model

This model gives the full power to the issuer [10] allowing
him to pre-install, install, remove and manage the applications on
the device. This model is service oriented. Indeed, every service
provider installs its own application(s) on the device and does
not share its secure environments with other issuers or with the
users. This reason leads to limit the development of such solutions.
This model is the most common because it provides the following
advantages:

• The card is controlled by the issuer. He handles the applications
and their life cycle. This centralized management led to the
robust reputation of this model.

• The centralized management is an asset to achieve a high level
of security. The issuer is the only one able to enforce the suitable
security level for his applications. This applications’ code is
checked by the issuer allowing the limitation of the spread of
malwares.

• Changes on the card are only handled by the issuer. A user
cannot modify, install or remove any application on the
smartcard without the issuer intervention.

• The card communications are controlled by the issuer. Different
protocols can be used such as TLS or SSL. Depending on
the sensitivity of the application, a communication model is
selected by the issuer.

Fig. 1 shows the usage of smartcards and their life-cycle.
These characteristics enabled smartcard to become a key

security element mainly used for the most sensitive services such
as bank payments. However this issuer full control leads to many

1 In the remaining of the paper, the word dematerialization will mean replacing
a physical card with a virtual one saved on a smartphone.

Fig. 1. Smartcard usage and lifecycle.
drawbacks and slows the expansion of this technology. These
drawbacks are:

• A card can be used by a single service. With the proliferation of
services, the number of cards used in everyday life is growing
which is a drawback from the user stand point.

• User access to the card is restricted. All operations including ser-
vices and applicationmanagement are the sole responsibility of
the manufacturer.

• Deployingnewservices requires the issuance of a newcard. This
constraint generates costs and significant delays that penalize
the development of these technologies.

The main argument that led to this model is the problem of the
card ownership. In the ICOM model, as the issuer owns the card,
he is legally responsible for it and for the security of applications
and data used on this card. However, with the increase in the
number of services offered, it became necessary to find a solution
that allows the user to install as many applications as needed.
A User Centric Smart Card Ownership Model (UCOM) emerged
[10,11]. Fig. 2 shows the UCOMmodel characteristics.

2.2. UCOM model

In this model, users have the full control of their cards
management. Indeed, they are able to install any applications they
want on their smartphone. The ownership of the card is transferred
from the issuer to the userwho is responsible for the operations the
card makes.

Moreover with the increased use of the Near Field Communica-
tion technology [12], many services appeared to facilitate the life
of clients by allowing different smartphones usages including con-
tactless payment for instance. For these services, storing data se-
curely and ensuring the integrity of the execution has become an
unavoidable challenge to provide quality services with a high level
of security. The most intuitive solution is to exploit the capacity of
the Secure Element present on the smartphone. Nevertheless, for
now, this technology is not accessible for developers and users. In-
deed, chip manufacturer signs agreements with major companies
granting them the use of their chip. But for developers and users,
getting such agreements is almost impossible. This major limita-
tion has slowed the development of NFC-based services such as
secure card emulation for building access control applications.

3. Fields of application and attacker models

In the first part of this section, we will answer the question:
In what field do we process secure data in everyday life? We will
show that many use cases need secure storage and processing.
Finally, we will expose some attackers profiles that can be
encountered in the mobile world and what kind of damages they
can cause.

3.1. Fields of application

Many applications need to store and process secure data
which leads to the development of secure environments. The
growing use of these secure applications is linked to smartcards
dematerialization. Indeed, the classical contactless cards can now
be dematerialized on a NFC-based third party hardware like a
smartphone. This dematerialization process has straighten the
need for secure processing and storage environments. For instance
several solutions may be concerned by this dematerialization
process such as:

• Mobile payment: In recent years, every bank has developed
its banking application for mobile platform. These applications
process sensitive data which require secure environments. The
data are transmitted from the smartphone to the payment
terminal via the NFC technology. The smartphone has to store
the card data to perform the EMV transactions [13]. The storage
and the processing are performed in the secure environment to
minimize the security flaws [14].

• Transport ticketing: This kind of applications are widely
disseminated because they eliminate the classical plastic card.
Economically, this solution is very cost effective because it
allows to save money by replacing the cards by a smartphone
application. The subscription is hold by the smartphone and
the user taps his smartphone on the access reader to allow
him use public transport. The data transmission uses NFC

Fig. 2. UCOM model.
technology. Also, the dematerialization allows developers to
improve the security level of the deployed solutions. Actually,
the computation power of the smartphones facilitates the
development of more reliable security mechanisms as those
deployed on ordinary cards. The card data must be stored and
processed securely in the secure environment to avoid fraud.
This technique has also a big advantage which is to facilitate
the recovery of access to public transport after the loss of the
phone [15].

• Buildings secure access: Some sensitive buildings may need ac-
cess control. This process can be performed by the classical con-
tactless cards. Some of these cards can have security breaches.
For these reasons and others, people prefer to use dematerial-
ized cards in smartphones. Indeed, these smartphones use NFC
technology to communicatewith the reader. The authentication
data must be stored and processed securely.

• DRM: Several Data Right Management solutions exist on com-
puters. Nowadays, DRM emerged on mobile phone platforms.
These DRMs need secure storage and secure data processing.
Firstly, the License and the cipher key must be stored securely
on the phone. On the other hand, the stream is routed to the se-
cure hardware to be processed there. By using TEE, the ciphered
stream and the keys are in the secure component and all the
process is performed securely. This solution guarantees no data
leaks [16].

3.2. Attacker models in mobile computing

In [17], Cooijmans et al. exposed three kinds of attacker that
can target a mobile device: Malicious App Attacker, Root Attacker
and Intercepting Root Attacker. In this paper, it has been chosen
to consider the same three attackers models for the evaluation of
trusted mobile computing solutions.
• Malicious app attacker: The attack is performed by a

malicious installed application. Indeed, the attacker designs
the application to intercept sensitive information transmission
and processing. The application is able to use all the declared
permission to spy on other applications.
• Root attacker: This kind of attacker have root credentials and
are able to run applications with root permissions. It allows
them to inspect the file system. This scenario is increasingly
common. Indeed, millions of Android users have rooted their
phone.

• Intercepting root attacker: This kind of attacker has the same
abilities of the root attacker with an access to the input/output
operations and the capacity to inspect the device memory.

4. Secure execution environment: Definition and characteris-
tics

A secure environment is an environment that allows the secure
storage and execution of applications. This feature is guaranteed
by the following requirements:

• Isolated execution: Every application should run independently
of other applications. This ensures that a malicious application
cannot access sensitive data manipulated by an other secure
application. This also implies that the malicious application
cannot access the code or data of an application while it is
running and also cannot alter the execution.

• Secure storage: This characteristic ensures the integrity and
secrecy of all data including the binaries representing the
applications to be run. The same security properties should
be guaranteed to the application data and cache. The most
sensitive data to protect prove to be the passwords, encryption
keys and certificates.

• Secure provisioning: This property guarantees the capability to
send data to a specific software in the secure environment of a
specific device while ensuring the integrity and secrecy of the
data exchanged. This feature includes the ability to remotely
install sensitive applications and transfer encryption keys or
certificates.

An application running in an environment which guarantees
these three characteristics is called a secure application in the
remaining of the paper.

Fig. 3. Types of Secure Elements.
At this point, a legitimate question arises: Does encryption
address the security issues in the mobile world? The answer is no.
The reason is that encryption is a processwhich needs an algorithm
and a key. The storage of the encryption key is the principal
challenge we face. Two of the three attacker models exposed
in Section 3.2 are able to either inspect the storage memory or
intercept the key during the execution process. The environments
presented in next sections provide secure storage and execution
solutions to address the issues of secure storage and execution in
the mobile world. Moreover, the resistance of these solutions to
the attacker models is better than the resistance of encryption.

In this paper, two kinds of secure environments are consid-
ered: hardware-based and software-based environments. In the
next section, the hardware-based solutions are presented: Secure
Elements, Trusted Platform Module and Trusted Execution Envi-
ronment. In Section 6, software-based solutions are exposed.

5. Hardware-based solutions

Among the existing solutions, the hardware-based ones are
the most deployed by manufacturers. Indeed hardware security
solutions have the advantage of greatly reducing intrusions and
attacks. In addition, low engineering and manufacturing costs of
silicon components allow integration in large public terminals. The
massive deployment of SIM card incorporating a Secure Element,
is the origin of the hardware-based solutions. In this section, SE,
TPM and TEE solutions which are three different kind of hardware-
based solutions are presented.

5.1. Secure Element (SE)

SE are chips with the same features as a regular smartcard.
Indeed, the SE applications are JavaCard applications. These chips
are tamper resistant and provide a high level of security [5,18]. We
can distinguish three kinds of SE as depicted in Fig. 3: Embedded
SE, UICC SE and Micro SD SE [19].

5.1.1. The embedded SE
In this type of SE, the chip is wired to the motherboard of

the phone. It is not removable or transferable to another phone.
Security in this case is equivalent to the security of a conventional
smartcard. Indeed, on an Android phone with NFC, the embedded
SE is onlywiredwith NFC controller and cannot communicatewith
any other part of the phone.

The drawback of this solution is the difficulty to define coherent
access rights to the chip. These rights are defined by the chip
manufacturer. They can be restrictive and do not allow developers
to install their application on the chip. This restriction makes this
solution difficult to implement.

5.1.2. The UICC SE
The SIM cards delivered by the telecom service providers can

contain a secure environment to store sensitive data and execute
secure applications. The advantage of this proposition is that all
smartphones can use SIM cards unlike embedded SEs that are not
present on all the phones.

The main drawback of this solution is that agreements with
telecom service providers are needed. Indeed, secure applications
cannot be installed without these agreements. More specifically,
secure applications have to be signed by the telecom service
providers. Signatures can be verifiedwith the certificate emitted by
the telecom service providers. It has to be noted that this signature
process is very constraining for applications developers.

5.1.3. The micro SD card SE
This kind of SE has the same security level as the previous SE.

Unlike the previous types of SE, thismicro SD card is notwiredwith
themotherboard of the phone and does not depend on the telecom
service providers. These cards are removable and transportable
from one phone to another. This property is simultaneously an
advantage and a disadvantage in terms of security. Removability
of this card responds to a need for mobility. Indeed, if the user
often changes his mobile phone, then it is interesting to keep his
sensitive data on a removable media even if there is a risk of card
theft.

5.1.4. Comparative analysis
The three kinds of secure elements have the same native

security level. However, the manner in which they are connected
to the smartphone may induce some differences. The embedded

secure element is connected to themotherboard of the smartphone
and is directlywiredwith themain input/output peripherals. In the
other hand, UICC SE and micro SD card SE are external devices and
the communication between these peripherals and I/O peripherals
is achieved through the OS.

The provisioning model for the SE is based on an ICOM
approach which makes this solution reliable for secure application
developers due to manufacturers restrictions. Indeed, only the
applications signed by the manufacturer are allowed to run in a
SE which limits the possibilities of a malicious app attacker and
of a root attacker. On the other hand, this is a big restriction for
developers and the main reason that hindered the development of
this technology.

Google sets up a Secure Element Evaluation Kit for the
Android platform called SEEK [20] for Android. This kit provides
a standardized smartcard API to access the SE on Android devices.

5.2. Trusted Platform Module (TPM)

Aspreviouslymentioned, the TPMconsists of amicro-controller
with additional cryptographic capabilities. In 1999, the Trusted
Computing Group (TCG) [21] was charged, in collaboration with
several industry companies to elaborate specifications for a
new computing platform in the aim to ensure privacy and
enhance security for laptops. Their security mainly relied on data
encryption, login with username and passwords and using tokens
for authentication like biometrics. However, these elements were
subject to many weaknesses: data theft, unauthorized access to
laptops, unauthorized access to the network.

• Data theft: Due to the mobility of notebooks, the probability
that the terminal is stolen is higher than a desktop one. To avoid
theft of sensitive data on the device, the solutionwas to encrypt
them. This solution implies a bigweakness: The keys used in the
encryption process are stored on the hard disk and are sensitive
to tampering attacks. To address this problem, TPM proposes to
store securely the encryption keys on the hardware (notebook).

• Unauthorized access to laptops: If anyone can get access to
the platform, it should be necessary to limit the impact of at-
tacks that can be perpetrated by malicious users. To limit the
accesses, many solutions were implemented including user-
name/password and biometrics authentication. These solutions
are still weak to several attacks. The first attack is a dictionary
and brute force attacks on passwords [22]. Next, biometrics can
be spoofed to mislead the authentication mechanism [23]. The
last and major drawback of these solutions is that the creden-
tials are not bound to the platform. To address these drawbacks
TPM propose to bind the authentication credentials to the plat-
form and to secure their storage.

• Unauthorized access to the network: A stolen notebook with
the right credentials could access the company network and
steal sensitive data. Several solutions were deployed to ensure
the security of the network access. Among these solutions we
can list: Windows network logon and IEEE 802.1x [24]. These
solutions have weaknesses [25] which allow the attacker to
bypass these security mechanisms. Moreover, the certificates
used to perform authentication can be spoofed. To address
these problems, the TPM proposes to implement a PKI based
method for platform authentication and to perform a hardware
protection of the authentication data.

The TPM is a hardware implementation of the TCG specifica-
tions designed to provide solutions for the above weaknesses.

5.2.1. TPM architecture and features
The TPM is a secure micro-controller with the addition of

cryptographic features [26]. The TPM can be bound to the device
using a Low Pin Count (LPC) bus. The TPM is able to perform very
complex cryptographic operations from the symmetric encryption
to RSA asymmetric encryption [27]. The advantage of using a
TPM is that the developer has not to know anything about the
implementation of these algorithms. Indeed, these features are
integrated to the TPM providing an Application Programming
interface (API).

The cryptographic features of a TPM are the following:

• RSA accelerator: An engine module performs RSA encryp-
tion/decryption with a maximum key length of 2048 bits. A
built-in RSA engine is used during digital signing and keywrap-
ping operations.

• The TPM is capable of computing hash values of pieces of data.
The TPM storage and computing capabilities are not sufficient
to hash large pieces of data. The main purpose of TPM is the
processing of small sensitive data such as encryption keys and
certificates.

• Generating pseudo random numbers: The TPM is able to gen-
erate pseudo-random number. This feature is very important
and useful to generate encryption keys especially for RSA for
instance.

5.2.2. TPM platform architecture
Fig. 4 shows the main elements of a TPM platform: The

Endorsement Key (EK), Attestation Identity Keys, Certificates and
Platform Configuration Registers (PCRs).

1. The Endorsement Key (EK): It consists of a public/private key pair.
The size of this pair is 2048 bits. The private key is generated
into the TPM and is never used externally. This feature makes
the recovery of the key impossible for an attacker. This key is
unique for every platform and TPM. The EK generation process
differs from a manufacturer to another. The first way to gener-
ate the key is the use of a specific TPM command. The second
way is to generate the key outside the TPM. The manufacturer
seals the key in the TPM during the manufacturing process.

2. Attestation Identity Keys: The main purpose of these keys is to
perform an authenticationwith a service provider. This authen-
tication affects the platform and differs from the user authenti-
cation.

3. Certificates: The TPM stores three kinds of certificates: Endorse-
ment Certificate, Platform Certificate and Conformance Certifi-
cate.
• Endorsement certificate: The main purpose of this certifi-

cate is to ensure the integrity of the Endorsement Key. This
certificate can be provided by the same issuer as the EK but
it is not mandatory. The trust on the TPM is based on the fact
that the EK is unique for each TPM and the certificate protects
the key from identity theft at all time.

• Platform certificate: This certificate is provided by the plat-
form vendor. The main purpose of this certificate is to ensure
that all the security components provided with the platform
are genuine. This certificate enables the platform trust.

• Conformance certificate: This certificate is provided by a
third party evaluation lab or by the platform vendor itself. It
certifies that the security properties claimed by themanufac-
turer are genuine.

4. Platform Configuration Registers (PCR): PCRs are used to bind
a critical data to a specific device. This binding process that
disables the data reuse on another device relies on the au-
thentication of the device. Specific hardware and/or software
configuration information is used by the TPM to calculate a par-
ticular value stored in the PCRs. This value is strongly linked to a
unique device and is used to authenticate it while an entity tries
to access the data. If the authentication failed, the data cannot
be accessed.

Fig. 4. TPM architecture.

5.2.3. Binding critical data to a platform with TPM
Binding critical data to a device is equivalent to make this data

unusable by another platform. This binding is implemented by
using specific hardware/software configuration information about
the platform. PCRs are used to store the measurements calculated
by the TPM.

The critical data are merged with a number of PCR. The result
of this operation is encrypted and stored on the TPM. Later, if any
critical data has to be accessed, the encrypted data are decrypted
and the platform calculates the value of the data and the value
of the measurements used in the binding process. This operation
allows to extract the critical data from the whole information
decrypted.

As a use case, a TPM can be used as a PKI that provides the re-
quired keys and certificates for establishing secure communica-
tions and signing documents. In the mobile context, TPM can be
very useful to ensure the security of a system with heterogeneous
stakeholders (device manufacturer, mobile operators, users). In-
deed, with TPM mobile specifications, it is possible to have more
than one active instance of a TPM in a device.

5.3. Trusted Execution Environment (TEE)

This solution was developed to address the compatibility and
performance issues raised by the use of SE. In this section,
a detailed description of the TEE technology highlighting its
advantages and disadvantages will be provided before making a
comparison with the SE.

5.3.1. General architecture
TEEs [3,28,29] are a combination of a hardware and a software

parts. Moreover, the system is divided into two execution
environments.
Fig. 5. TEE components overview.

• The first environment is the Rich Execution Environment (REE)
also called Normal World Execution Environment. This first
environment represents the standard OS of the smartphone
such as Android for instance. The term Rich describes the
extensive features of the OS such as camera management,
telephony capabilities and so on. These features significantly
increase the attack surface.

• The second environment is the Trusted Execution Environment.
It represents the Secure OS responsible for performing sensitive
operation such as cryptographic operations. It also has the
capability to secure the display and the input by using a
secure mode of the buses connecting the processor to the I/O
peripherals. OP-TEE and OPEN-TEE presented in Section 5.3.3
are examples of Secure OS.

5.3.2. TEE components and characteristics
The TEE provides a processor zone with a secure OS and other

mechanisms to enhance the security of sensitive data processing
as depicted in 5. Indeed, the TEE splits the processor in two zones:
Normal World for the classical OS applications and the Secure
World for the sensitive applications.

The other essential feature is the secure storage. Indeed, in the
case of cryptographic operations, the key generation and storage
must be secure. The key has to be on the phone but isolated from
the user data to enhance its security.

In opposition to the SE, the TEE provides a secure communi-
cation channel between the processor and the external peripheral
especially input and display. The TEE uses a secure channel for the

Input/Output operations while the SE is relying on the default op-
erations provided by the Rich OS. It is a very important feature be-
cause if a malicious application can intercept the input, it can have
access to sensitive data like pass phrase. The secure display is also
primordial because the user has to be sure that what he sees on the
screen is really sent by the secure world. We will discuss how this
is implemented in a next section.

A simple example to illustrate the difference between SE and
TEE capabilities is the user PIN code input. Indeed, the SE relies
on the Android platform to get such sensitive information. Many
attacks [30,31] make an attacker able to collect and record the user
provided PIN code. For its part, the TEE uses secure I/O operations
which makes these attacks unsuccessful.

A secure boot process is also needed. It enables Rich OS and
Secure OS integrity checking. The secure process follows the steps
below:

1. Read a trusted ROM (locked at manufacturing),
2. Signature and integrity checking of the Secure OS,
3. Setting up the Secure OS which takes the control.

In the TEE world, two heterogeneous systems coexist and
therefore it is necessary to set isolation rules between them to
avoid data leak. Thus, we need a third mode called Monitor
mode. This mode is used to perform context saving and switching
between the Rich OS and the Secure OS. This mode is only accessed
by the Secure OS to request a context switching when all the
operations are performed.

The Secure OS is a limited instruction set OS. This constraint
is necessary to reduce the attack surface. It schedules sensitive
applications running on it. These applications are called trustlets.
Trustlets execute secure instructions like cryptographic opera-
tions: key generation, encryption and decryption. The Secure OS
manages the resources between all the trustlets. A trustlet is a se-
cure application which runs on the TEE. It must be signed by the
chip manufacturer and signature verification is performed before
loading on the TEE. Some APIs can be added to manage extra fea-
tures but it has to be ensured that these features will not introduce
security breaches.

So far, the majority of Secure OS used for TEE are proprietary
which makes it difficult to get access to test your trustlet. In fact, if
a third party wants to get access to a TEE to test its application,
this application has to be signed with the private key of the
manufacturer. The manufacturers are reluctant to sign third party
applications. This is the biggest drawback for TEE expansions.
Developers continue to advocate for change access rights to TEE
to deploy their applications.

5.3.3. Secure OS overview
At the time of writing, several implementations of Secure OS for

TEE are available.We can list Sierra TEE, Genode, Trusted Language
Runtime, OP-TEE and TrustKernel T6.

• Sierra TEE: According to the OS maker [32], the Sierra TEE OS
performs an integritymanagement process and several scanner
checks. Among these scanners, Sierra TEE checks the integrity
of the Android file system, the Android OS, processes running
and the interrupt table. These checks are performed to ensure
the security of the Android execution. It also allows to perform
keymanagement, devicemanagement, DRM and I/O operations
securisation. Indeed, for secure input/output, the peripherals
communicate directly with the TEE. In this case, the Android OS
cannot intercept passwords and sensitive information from I/O
operations.

• Genode: Genode is a secure OSwith a very low complexity [33].
Its source code is approximately 10,000 lines. This feature is
Table 1
Comparison between the hardware solutions.

Criteria SE TEE TPM

Tamper resistance ✓ ✓

Secure input and display ✓

High computation power ✓ ✓

High storage capacity ✓

Dependency to manufacturer ✓ ✓ ✓

Proven security level ✓ ✓ ✓

very important as it allows a simple security verification of the
OS. Moreover, Genode manages the execution of touchscreen
driver and hardware as well as the frame buffer driver.
These executions are run in the secure world ensuring secure
interactions between the TEE and the user. Genode also controls
the textboxes used to collect user passwords and screen used to
display secure information from the TEE. This OS ensures that
no information leakage occurs.

• Trusted language runtime: This OS [34], based on a.NET plat-
form, relies on a multiple trustboxes2 system. Each trustbox is
like a container isolated from the others. The device manufac-
turer initializes a pair of key (public/private) in a trustbox to
allow remote verification and attestation. For now, TLR is not
able to communicate securely with users. This allows attack-
ers to intercept, modify and alter the data flowing between the
users and the TEE. The I/O operations are managed by the REE.

• OP-TEE project: OP-TEE [35] is a secure OS for TEE developed
by STMicroelectronics in collaboration with LINARO [36] that is
fully compatible with the GlobalPlatform specifications [3]. OP-
TEE consists of a client API, a Linux kernel driver and a Secure
OS. Asmentioned previously in this section, the switch between
the Rich OS and the Secure OS is managed by a monitor mode.
It has also a multi-core capability. The unique constraint is that
only one core can be in the secure world at the same time.

• TrustKernel T6: T6 is a secure OS for ARM processors with
TrustZone capability. It can run simultaneously the secure OS
with one of the multiple Rich OS supported (Android, Linux,
etc.) [37]. It provides strong security properties and enhances
the ease use. The TrustKernel team provides all the source code
and the support. T6 is provided with multiple libraries like LibC
and OpenSSL to facilitate the user application development. Fi-
nally, T6 is fully compatible with the GlobalPlatform specifica-
tions [3].

Like the SE, the TEE is based on an ICOM model since most
Secure OS are proprietary. But unlike the SE, we observe an
emergence of open sources TEE like OP-TEE. This is a great
opportunity to extend the use of this technology and to allow
developers to design new architectures based on TEE like those
exposed in Section 7.

5.3.4. Comparison between SE, TEE and TPM
Table 1 shows themain differences between SE, TEE and TPM. It

can be noted that the SE and the TPM have more physical security
features than TEE. However, TEE provides a bigger computation
power which enables more complex security models.

6. Software-based solutions

In the previous sections, several trusted mobile computing
approaches have been presented. These approaches have in
common to rely on a hardware component to ensure trust and

2 A trustbox is a runtime environment which protects the confidentiality and the
integrity of code and datas.

Fig. 6. Virtualization types 1 and 2.
security. Unfortunately, most of these components are proprietary
limiting their usage to an ICOM model. For a user-centric
perspective and in order to fit to the UCOM deployment model,
open approaches are required. One of them consists of using
software components instead of hardware ones. More precisely,
it consists of virtualizing OSs in order to provide a trusted and
secure operating system that enforces the requirements described
in Section 6.1. Indeed, the new generation of smartphones is now
able to run several virtual OSs on the same device. Each virtual
OS has a new and parallel stack with all features of a regular OS.
Furthermore, to prevent malicious applications installed on a Rich
OS from stealing data in a Secure OS for instance, an isolation has
to be set up between the different OSs. As presented in Fig. 6,
there are two different kinds of virtualization process at the time
of writing. For type 1 virtualization, the Rich OS and the Secure
OS are physically independent while in type 2, the Rich OS acts
as a host to the Secure OS (which can be viewed as a guest).
To achieve this partitioning (this isolation) and to guarantee the
security of both host and guest, a dedicated software component is
needed: the hypervisor. In the remaining of the section, the overall
virtualization process and several existing solutions for trusted
mobile computing will be presented.

6.1. Virtualization mechanism design

The aim of such a mechanism is to provide a complete
smartphone stack by virtualizing the system at the hardware
or software level. To execute the guest OS, a virtual machine
is provided. To fulfill its mission, the hypervisor must meet the
following requirements:

• Portability: The hypervisor has to work on large variety of
mobile devices. Someparts of the smartphone aremore difficult
to virtualize because they may contain specific elements such
as dedicated processors or memory for the GSM part. Each
processor has its own architecture and several cores. Also, each
smartphone has its own set of interfaces and programming
model. This implies that the location of the hypervisor is very
important. To be compatible with most smartphones, many
constraints must be taken into account.

• Compatibility: The aim of a hypervisor is to create an
abstraction layer between the hardware and the system when
the virtual machine is running. The hypervisor has also to
provide a solution against compatibility issue. Indeed, many
applications are dependent of a specific OS system or a specific
library. It is also important to allow the reuse of already
developed applications and ecosystem.

• Security: To address security issues, the hypervisor must be
designed to allow secure application provisioning on the guest
OS. The main security mechanism is also a perfect isolation
between the virtualized OS and the host.

• Low complexity: The hypervisor must be reliable. To ensure
this characteristic, we need to reduce the complexity of the
hypervisor. This feature allows to have a better safety and also
ensures a better maintainability.

• Performance: The applications executed in the guest OS should
keep the same level of performance as applications in the host
OS. For mobile devices, the battery is the only source of energy.
In order to monetize the virtualization process, the battery life
should not be unreasonably affected.

• Manageability: In the virtualized system, it is necessary to be
able to install applications, delete, erase the memory including
remotely if needed. If a company provides a virtualized
smartphone to workers, the IT department should be able to
manage the virtualized secure OS remotely.

6.2. Architecture of a virtualized system: VMware proposition

To provide a powerful system with a minimum overhead,
VMware proposed a type 2 or hosted hypervisor [38]. This
hypervisor is installed on the Android system and can execute
an additional virtualized system alongside the host. A hosted
hypervisor is also a powerful solution to address the problem of
hardware diversity. Indeed, a minimum overhead is needed to be
compatible with a large variety of hardware. A user can use its own
device with an hypervisor to execute the hosted OS. This solution
does not interfere in the smartphone development cycle.

The processor uses the multiplexing time paradigm3 between
the host and the virtual machine. To toggle between the two OS,
the processor performs a context switching by giving the control

3 This paradigm allows the host and the virtual machines to share a physical
processor during their execution.

to one of the two machines. For the host, the guest OS execution
is similar to a thread execution. The main challenge is to virtualize
the processor cores including the specific instructions set for each
brand (TI, ARM, Intel), type and the memory management and
sharing between the host and the guest. Barr et al. in [38] also
identified major issues related to virtualization: the compatibility
with instruction sets issue, thememory sharing issue, the platform
virtualization issue, the storage issue, the network access issue,
the multiple telephony lines issues and the security issues. In the
remaining of the section, these different issues will be detailed as
well as their respective solutions.

6.2.1. Compatibility with instruction sets issue
The main purpose of this solution is to avoid any changes in

the guest code for applications and middleware and to minimize
changes in the hardware definition. The complexity of the system
is reduced and the portability of the different guests is improved.

6.2.2. Memory sharing issue
The host and the guest share the same memory. On a smart-

phone, there is two kinds of memory: volatile memory (RAM) and
persistent memory (intern storage or SD cards). To address the
memory sharing issue, two sub-layer components have to be virtu-
alized:MemoryManagementUnit (MMU) and the physical SDRAM
memory on the device. The virtualization of the MMU provides an
abstraction of the addressed memory space. This virtualization in-
cludes the processor address translation and memory protection.
The Virtual Machine Monitor maintains a mapping between guest
physical addresses and host physical addresses. As the guest is run-
ning in usermode, a protection is set up to avoid attempts to access
privileged registers results. Shadow copies of these privileged reg-
isters are maintained and are used as backup copies.

6.2.3. Platform virtualization issue
To virtualize a smartphone with keeping all of its capabilities, it

is necessary to virtualize the mobile platform. Indeed, to allow the
guest to access the network and several other applications (GPS,
VoIP), the guest has to get an access to the physical antennas and
hardware.

6.2.4. Storage issue
The host memory is used to store at the same time the

hypervisor and the VM images. VM images are too large to be
stored on the flashmemory, then the best solution is tomove them
on the SD card. The hypervisor is installed on the built-in flash
memory. The challenge is to guarantee a high performance level
with integrity checking.

6.2.5. Network access issue
Smartphones use the TCP/IP stack to communicate over wire-

less networks. In the virtualized device, this stack is emulated by a
high level framework called para-virtualized TCP. This framework
is acting at the socket system level in opposition to the device inter-
face level. This approach is interesting because it minimizes virtu-
alization overhead and allows more flexibility in the deployment
process. This architecture is divided into two modules: the client
module and the offload engine. The client module is running on
the guest and intercepts at runtime all the network requests made
by the guest. The offload engine runs on the host and receives the
intercepted requests on the guest. This traffic is tunneled to satisfy
the security model requirements in the guest side.

6.2.6. Multiple telephony lines issues
The main feature of a smartphone is to allow people making

calls. For a secure virtualized system,wemust distinguish between
the virtualized phone and the native phone. A first basic solution
is to have smartphone supporting two SIM cards. This kind
of smartphone exists but it is not the most spread model.
Alternatively, we can use SIM cards supporting different lines.
Indeed, we can have two phone numbers over one SIM. Another
approach consists of providingmultiple IMSI (InternationalMobile
Subscriber Identities) to a single SIM card allowing the mobile to
appear as a set of devices to the network. Therefore, each virtual
machine can hold its own phone number.

6.2.7. Security issues
Designing such a virtualization process has to take in account

some security properties. Indeed, the isolation between the
two environments, the sensitive data protection and secure
communications must reach a high level of security. Moreover,
physical threats issues have to be addressed to avoid sensitive data
leaks if the smartphone is lost or stolen.

Another significant threat is untrusted downloadable applica-
tions and malwares. They can induce undesirable behaviors and
may introduce some vulnerabilities exploitable by attackers. With
a system based on permissions like Android, the user is an impor-
tant part of the overall security system. He has the power to accept
or deny any rights for an application installation. But users may
not be aware about the risks incurred by according some sensitive
permissions to applications.

For these reasons, themanagement of applications on the guest
OS has to deal with software attacks. In order to achieve this, good
practices are needed such as:

• Restriction of the host application scope. Indeed, host applications
cannot gain access to the guest data including address book,
SMS and all data stored on the guest. The guest network access
and telephonic capabilities are also protected.

• Protecting the guest traffic from interception. A tunneled traffic is
a reasonable solution to address this issue. In order to achieve
this, the negotiation phase should not be intercepted by the
host.

• Protecting the data on the SD card. Data hosted on a SD card can
be accessed by any application on the host device as well as
by potential attackers. Moreover these SD cards are removable
from the host so that physical theft has to be dealt with.
Using encryption is a solution to make the data unreadable by
unauthorized applications and attackers. However, the security
of this solution relies on the privacy of the used encryption
key. Once again, the question of the key storage arises. Several
solutions have been proposed to address this issue among
which is the solution proposed by Cooijmans et al. in [17]
presented in Section 7.2.

• Switching between the two environments should be protected. A
basic solution consists of using passwords. If the guest is idle
for a certain period of time corresponding to the session time
defined, it should be deactivated.

6.3. KVM/ARM: exploit the virtualization extension of ARM processors

KVM/ARM is the first full system ARM virtualization. It can
run an unmodified guest OS on an ARM architecture. Since the
version V7 of the ARM architecture, the virtualization support is
an optional extension [39]. Thus, the virtualization process can
rely on these extensions to build a new kind of hypervisors. ARM
introduced a newmode called HYPmode. This HYPmode is strictly
more privileged than the other CPU modes. It is invoked for the
most sensitive system calls. For these reasons, the hypervisormust
at least partially reside in this mode.

The virtual machines (VM) run in the user land or in the kernel
land. When these VMs need to execute a sensitive operation, the

HYP mode is invoked and takes the control. Once the operation is
finished, a switch back context is performed to return in the caller
mode.

To minimize the context switching time and therefore to limit
the impact on the system performances, not every system call and
memory page fault are managed by the HYP mode. This option
contributes to limit the virtualization overhead.

To facilitate hypervisor development process, ARM wanted to
reduce control registers available on theHYPmode.Wewill expose
in the following the ARM virtualization extension capabilities.

• Memory virtualization: When a VM is running, the physical
addresses managed in the VM are called Intermediate Physical
Addresses. They are also called guest physical addresses. They
need to be translated into physical addresses also called host
physical addresses. This translation is performed to make the
guest operation executable by the physical processor. The HYP
mode is responsible for managing this translation process.

• Interrupt virtualization: A Generic Interrupt Controller (GIC)
was defined to route the interruptions from devices to CPU and
discover the source of the interrupt.

• Timer virtualization: A counterwas introduced tomeasure the
time passed in real time and a timer for each processor. This
counter and timers are used to raise an interrupt to the CPU
after a certain period of time. To ensure the isolation between
the VMs, the timers used by the hypervisor cannot be managed
by any guest OS. Based on the ARM Virtualization extension,
Dall et al. proposed an hypervisor in [40]. The specificity of their
hypervisor is that it is split into two modes the HYP mode and
Kernel mode.

6.3.1. Split-mode virtualization
Running the hypervisor on the HYP mode is both attractive and

problematic. Indeed, significant changes had to be made on the
Linux Kernel to run it in the HYP mode. Secondly, this hypothesis
may affect the native performances of the system. To address this
issue, Dall et al. in [40] proposed a split-mode virtualization. The
hypervisor can run in different CPU modes which make it able to
benefit from every mode advantages. The KVM/ARM hypervisor
takes advantage from ARM virtualization support and leverages
at the same time existing Linux services in kernel mode. This
approachminimizes the changes on the Linux Kernel which allows
greater community acceptance.

The hypervisor is split into two components: Lowvisor and
Highvisor. The lowvisor exploits the ARM virtualization extension
available in HYP mode. It is responsible for the following
operations:

• The lowvisor loads the correct execution context by setting up
the right system configuration.

• The lowvisor switches between the VMs and the host. Its
execution in the HYP mode makes it able to perform such
switching.

• The lowvisor handles interruptions and system exceptions.

The high visor runs in the kernelmode of the Linux kernel. It can
use the standard Linux kernel functions like processes scheduling,
memory allocation etc.

6.3.2. CPU virtualization
The KVM/ARM model gives an interface to the VM which is

essentially identical to the hardware CPU including a persistent
access to state registers of the physical CPU. The processorwill stay
in the VM context until an event occurs which triggers the context
switching via HYP mode.
• Memory virtualization: The memory virtualization is per-
formed by translating the virtual addresses4 used in the VM
for all the memory accesses requested by the VM. The address
translation can be only configured in theHYPmode. The high vi-
sor manages the accesses to the memory specifically allocated
to VM. Any other entity that tries to access other memory zone
will cause a page fault. This fault will be managed by the hyper-
visor. This mechanism ensures the isolation between the VM
themselves and between the VM and the host.

• SierraVisor: SierraVisor [41] is a flexible and reliable hypervi-
sor for ARM processors. It supports three modes of operation:
Paravirtualization for ARM TrustZone enabled devices, paravir-
tualization for ARM 11 and Cortex A9 and a hardware virtual-
ization for Cortex-A15. These three separate modes allow the
equipment manufacturer to choose the best virtualization so-
lution according to the processor they use.

6.4. Xen project hypervisor

Xen [42] exploited the ARM virtualization extension to build
its own hypervisor for ARM processors. This hypervisor resides
entirely in the HYP mode which minimizes the context switching
costs. It also uses a virtual memory assigned to the virtual machine
and a translation is needed to get the physical memory addresses.
The Xen hypervisor provides also timer and interruptmanagement
to harmonize the scheduling between the virtualmachines and the
host.

6.5. Hybrid model for virtualization

Virtualization is based on a hybrid approach. Indeed, in the
host side, a UCOM model is adopted while an ICOM model
is used for the guest side. This approach is very interesting.
It allows the smartphone’s owner to get all applications and
functionalities he wants in the host side without interfering with
the sensitive data on the guest. This solution is ideal for getting
rid of themanufacturers constraints that occur on purely hardware
solutions.

7. Existing solutions based on trusted platforms

The paradigm of trusted computing has attracted many
researchers. In order to illustrate the usefulness of each technology,
we expose architectures exploiting secure environments on
smartphones to ensure secure storage and execution. The On
board Credentials (ObC) solution is a TEE architecture designed to
open TEE for application developers and the Secure key storage
on Android addresses the secure key storage issue presented in
Section 4. The two solutions use a TEE to ensure the security of
the credentials in two different OSs: Windows 8 and Android.
SGX is a distributed TEE architecture developed by Intel for x86
processors that is promising for the future of trusted mobile
computing. The fourth solution, Cells, is an implementation of a
type 2 hypervisor (see Section 6.2) with some specificities like the
deployment process. The fifth solution consists of a cloud based
TPM platform that illustrates the concept of Section 5.2. Finally
the two last studies aim to provide examples of open source or
virtualized TEE solutions like OP-TEE that we installed and tested.

7.1. On board Credentials (ObC)

ObC [16] is a project that was developed by the Nokia
research center aiming to ease the use of hardware TEE with the

4 Virtual addresses have to be translated into physical addresses to execute data
on the processor.

introduction of a new provisioning system for trusted applications.
With ObC, an application developer will only need the mobile
phone user’s agreement to provision a trusted application in the
TEE instead of requesting the device manufacturer or the OS
provider authorization. Moreover, an API is defined allowing the
developer of application to easily develop both the REEpart and the
TEE part of his application. To achieve this, ObC’s TEE architecture
relies on two parts: The ObC interpreter and the ObC scheduler.

• The ObC interpreter (aka ObC VM) is a small virtual machine
that provides a runtime environment for trusted application
that can be viewed as a lightweight OS. This interpreter can run
either as a trusted operating system on top of an hardware TEE
or as a trusted application in an existing trusted OS of a TEE.
In the latter case, the interpreter increases the features of the
underlying trusted OS with additional provisioning capabilities
and enforced trusted applications executions’ isolation. As a
counterpart, it can be noted that these additional features
reduce the implementation minimality of the trusted OS which
could increase its overall attack surface.

• The ObC scheduler is running in the REE (aka the phone’s native
OS). It aims to manage the trusted application life-cycle and
interacts with the ObC interpreter to do so. More specifically,
the scheduler is in charge of providing the ObC interpreter the
encrypted trusted applications as well as their inputs or their
previous states. It must be noted that the trusted applications
managed by the scheduler are always encrypted. Finally, the
scheduler can also be used to access the cryptographic features
offered by the TEE via the interpreter.

ObC can be viewed as an interesting attempt to open proprietary
implementations of TEE to application developers and can be
viewed as a good solution for the UCOMmodel. Nonetheless, it has
been developed with a focus on Trustzone TEE recommendations
that may limit its usage to this architecture and is only available
for Nokia devices which is not fully compliant with a user-centric
approach. Another limiting point is the overhead induced by
the communication between the scheduler and the interpreter.
Indeed, this context switching between REE and TEE as well as the
trusted applications’ encryption/decryption operations performed
by the provider in the TEE are costly.

7.2. Secure key storage on Android

In [17], Cooijmans et al. discussed the secure key storage issue
on Android. They exposed some attacks scenarios and evaluated
the proposed solutions to store the cryptographic key in a secure
way. First, they introduced a purely software solution that consists
of an Android library existing since the API 1: The Bouncy Castle.
Second is the Android keystore available since API 18. They
tested this keystore with two processors with TEE capabilities: A
Qualcomm and a Texas Instrument MShield.

Their experiments show that no solution is able to totally secure
the encryption keys storage. However, solutions with the use of
TEE aremore reliable and provide a better storage solution. Indeed,
they grant a protection against attacks that the purely software
solutions cannot fight against.

To conclude, Cooijmans et al. provide some recommendations
to increase the security level of the keystores. These recommenda-
tions are summarized here:

• Encrypt all the keystore files with a generated key or a user
provided key.

• Include the user ID of the application that generated the key pair
in the integrity checking of the keystore.

These recommendations do not require any system nor
architectural changes.
7.3. Software Guard eXtensions (SGX)

SGX (SoftwareGuard eXtensions) [43–45] is a set of instructions
proposed by Intel for its x86 processors that allows the execution
of applications (or parts of an application) in a secure container
called an Enclave. An Enclave provides a protection against
other applications or privileged system software such as the OS,
hypervisor or even BIOS. Indeed, SGX holds amemory region called
the Processor ReservedMemory (PRM) that holds the Enclave Page
Cache (EPC). The EPC stores enclave pages that embed sensitive
data as well as SGX data structures. The EPC region is encrypted so
that only the associated Enclave is able to access the stored data.
The Enclave Page CacheMap (EPCM) that is stored in the processor
maintains this association.

The main difference with TPM is that in SGX the whole
application does not have to be stored securely. Only private data
and the applications code that operates on it has to be stored in
the Enclave. To upload these sensitive data, a software attestation
mechanism is provided that relies on a cryptographic signature
based on a SHA-256 digest. This digest certifies that the identity
of the software is verified, before the codes execution, against the
identity enforced by a trusted third-party authority.

For prototyping purposes, OpenSGX [46] that is an open source
emulator based on QEmu like OP-TEE has been proposed. It can
be used to test a secure application before being deployed on
a distributed architecture. Indeed, SGX also provides a remote
attestation feature that allows an Enclave to check the identity of
another Enclave running on a remote host. This original feature
allows to consider SGX architecture as a distributed one where
several distributed enclaves can cooperate.

But, regards to trusted mobile computing it must be noted that
at the time of writing, SGX is still not available on smartphones
processors.

7.4. Cells: A virtual mobile smartphone architecture

Cells, proposed by Andrus et al. in [47], is a virtualized platform
that allows several virtual Android smartphones to run on the
same physical device. Cells guarantees the isolation between the
physical smartphone and the virtual phones and between the
virtual phones themselves with performances close to native.

Cells does not runmultiple instances of the Android OS. Indeed,
it is able to run multiple Virtual Phone (VP) on a single instance of
the OS. It maximizes the sharing of common read-only code and
data to the VP. This approach minimizes the memory usage and
therefore minimizes the overhead of running virtual phones on a
physical smartphone.

To provide an individual phone service to each virtual phone,
Cells uses a VoIP service to overcome the constraint of having
as many SIM cards as VP. However, incoming and outgoing calls
when using the cellular network are routed to the VoIP service
which shift the communication to the right caller ID. Indeed, the
VoIP service acts as a proxy between the caller ID and the cellular
network.

Andrus et al. claim that they were able to run five virtual
phones on the physical smartphone with minimum performance
overhead. They also report that Cells is fully compatible with
hardware devices with native performance including sensors,
cameras, touchscreens, etc. The applications using these devices
are run transparently and no modifications are needed.

In order to add a VP to a smartphone, the creation and the con-
figuration are done on a computer. The resulting VP is transferred
to the device via a USB port.

An important security mechanism implemented in Cells
prevents an attacker who has achieved an exploit to perform a
privilege escalation to do the same on the other VP and the physical

Fig. 7. Communication with a cloud of TPM.

smartphone. This is guaranteed by the complete isolation between
the two environments.

Cells leverages the intern memory to allow sharing the
memory between the VPs. This mechanism includes read-only
and read–write zones. The results of the experiments show that
a minimum overhead is added by the deployment of VPs on Nexus
1 and Nexus S. This solution is promising for the deployment
of business phones on a personal phone while guaranteeing the
security of processing and storage of data.

7.5. A cloud architecture of virtual trusted modules

Liu et al. in [48] proposed a cloud of TPMwhich can be used by a
remote device. It consists of a cluster of physical TPMs. Each service
is represented by a virtual port on the cloud. A request/response
protocol is deployed to communicate between users and the cloud.

Secure communication protocol is necessary to exchange data
securely between users and cloud. Each user and the cloud
have a unique public/private key pair. Fig. 7 represents the
communication scheme between users and the cloud.

As described in Fig. 7, the user builds a request for the cloud that
is an aggregation of the operations’ set to execute in the cloud and
of his public key. The request is encrypted with the cloud public
key and sent on the network. Upon reception, the cloud processes
the user operations and generates the corresponding results. These
results are encapsulated into a response message encrypted with
the received public key. Finally, the encrypted responsemessage is
sent back to the user. The overall system performance makes the
user believe that a local TPM is under use instead of a cloud of TPM
allowing its usage for smartphones that are lacking of a TPM chip.

This cloud-based solution is a good solution to extend the usage
of TPM. A similar approach has been proposed by Urien in [49] for
a cloud of SE. But, these solutions are only available if the mobile
devices have a full connectivity to the cloud which is not always
possible neither suitable. Another limitation pointed out by Vinh
et al. in [5] is that the cloud has also to be secured in addition to the
mobile device. Therefore, the number of potential vulnerabilities is
growing with cloud-based solutions.

7.6. OPEN-TEE an open virtual trusted execution environment

OPEN-TEE [50,51], is a complete virtual TEE conforming
with the GlobalPlatform specifications. It allows to write TEE
applications and to test them on a full software platform without
a physical access to a hardware TEE. The objective of the authors
was to elaborate an SDK and framework granting the development
and the test of trusted applications. This SDK must require the
minimum configuration and maintenance as possible.

The authors choose to design their framework as a set of
components. The main ones are:
• Base: It consists of a daemon process in the user mode

responsible for the configuration and the preparation of the
system.

• Manager: It can be considered as the OS of the OPEN-TEE. Its
main responsibilities are to manage the connections between
applications, to monitor trusted applications states, to share
memory between the applications and to provide a secure
storage area.

• Launcher: The main purpose of this component is to create and
launch trusted applications.

Other components are used such as: Trusted applications pro-
cess, GlobalPlatform TEE APIs and IPC communication component.

The OPEN-TEE SDK and framework are currently under tests by
several organizations in order to validate the results obtained in
the study.

7.7. Virtualizing the trusted execution environment

Vahidi et al. in [52] propose to design and implement a
hypervisor for the U8500 NovaThor platform [53] which operates
in the Secure World inside the CPU (i.e. with TEE capabilities). The
main purpose of this proposition is to ensure the isolation between
the trustlets themselves and between the trustlets and the Rich OS
Applications.

This solution is based on the concept of the virtualization
including the TEE part. For their platform, the authors choose to
implement a type 1 hypervisor with a very small code and very
high performances.

Fig. 8 shows the selected architecture and the identified data
flows. Flow number (1) is the invocation by a client application
of an API function in the TEE. Flow number (2) represents a call
from the TEE secure OS to a Trusted application that performs a
specific processing. Finally, flow number (3) is the communication
between the Secure OS and the hypervisor that allows the use
hardware components when needed.

The security of the overall solutions mainly relies on the
security of the hypervisor which is expected to be high. But, as
stated by the authors this security has still to be formally verified
before formal validation.

7.8. OP-TEE solution

OP-TEE is a Linaro and STMicroelectronics project with the
objective to release a totally virtualized and open source TEE.
Indeed, in OP-TEE the platform is either virtualized by using
Qemu5 [54] or FVP6 [55] or consists of a physical development
card of ARM called JUNO. For the virtualized platform, a Debian
based OS is needed to download and install OP-TEE. The OP-
TEE implementation follows the GlobalPlatform standards.We can
execute a trusted application on OP-TEE by loading the application
in the Rich OS side first. When the application needs to perform
a sensitive operation, it uses the API to invoke this operation in
the Secure World side (TEE). The TEE sends the response to the
REE side for display or other purposes. A debug and web interface
are provided to facilitate the management of the platform. Fig. 9
represents our architecture of OP-TEE.We use FVP to virtualize OP-
TEE which can be run on the top of a Debian OS.

Fig. 10 represents an execution of a trusted application which
requests the hash of ‘abc’ with the SHA-1 and SHA-256 algorithm

5 Qemu is a generic and open source machine emulator and virtualizer.
6 Fixed Virtual Platform.

Fig. 8. TEE virtualization architecture and data flows.
Fig. 9. OP-TEE architecture.

to the TEE. We observe that the REE establishes a communication
with the TEE and sends the data and the operation for processing.
After that, the TEE answers by sending the result to the REE world
to display.

The sequence diagram represented by Fig. 11 gives us more
details about the interaction between the Rich OS and the Secure
OS in the precedent example.

The OP-TEE platform allows developers to deploy their
applications following the UCOM model when the hardware TEE
is following an ICOMmodel.

8. Comparative analysis

8.1. Analysis of the robustness of the secure environments against
attacker models

Following the general presentation of existing hardware and
software solutions, a comparison of their behavior for each attacker
model defined in Section 3.2 will be made. The main results of this
comparison are presented in Table 2.

It can be noted that the SE and the TPM have exactly the
same behavior against the attacker models. Indeed, the chips are
independent from the applications that run on the smartphone. For
this reason, the Malicious App Attacker and Root Attacker models
are neither able to corrupt nor to intercept the data with these
two hardware solutions. On the other hand, the Intercepting Root
Attacker controls the smartphone Input/Output mechanisms. In
this case, the interaction between the SE or TPM and the user
creates a security hole as data sent or received by the user can be
intercepted by the attacker.

Themain difference between the TEE and the SE and TPM is that
the Input/Output process is secured. Then, no data leak can happen
by sending or receiving data as explained in Section 5.3. The TEE is
able to resist the three attackers.

The virtualization is sensitive to root attacker and intercepting
root attacker. Indeed, the guest OS and the host OS are sharing the
same physical device. Therefore, if an attacker can be root on the
host OS, he can be able to intercept the data sent to the guest.
Hence, a data leak is possible and can have consequences on the
security and privacy on the guest.

After analyzing these solutions, we can observe that only
the TEE is able to resist to all the three attacker models. The
physical and the logical environment combinedwith the secure I/O
operations is the best of the four discussed solutions.

8.2. Comparison of trusted mobile computing approach for user-
centric solutions

Our study has led us to propose in Table 3 a synthesis of the
main differences between the trusted mobile computing solutions
presented in the previous sections. It can be noted that the
hardware solutions are not sensitive to physical attacks (PA) or
logical attacks (LA) while the hybrid solution or pure software
are. ICOM provisioning model prevails with an exception for
virtualization. This model limits the growth of these technologies.
The issuers are not willing to free the access to their security
elements to developers.

The overhead induced by the security components is an
interesting criteria to classify and prioritize the security solutions.
The physical solution (SE, TPM, TEE) does not cause any overhead
because they use their own hardware. In the other hand, the
virtualization can induce an overhead which is due to the fact
that the guest OS and the host OS are sharing the same hardware.
Hence, if the performances of the system is an important criteria in
the deployment of a secure solution, the hardware-based solutions
are more suitable. Another important criteria is the computing
and storage capacity. For the SE and TPM, this capacity is limited
because the chip does not have a large memory. For the TEE and
virtualization, they can have the full power of the smartphone.

We observe that almost all presented technologies follow the
ICOM model. It is motivated by the high security level guaranteed

Fig. 10. TEE SHA-1 and SHA-256 hash of ‘abc ’.
Fig. 11. Trusted application example execution.
Table 2
Resistance of the solutions against the attacker models.

Technologies/attacker model Malicious app attacker Root attacker Intercepting root attacker

Secure Elements (SE) ✓ ✓

Trusted Platform Module (TPM) ✓ ✓

Trusted Environment Execution (TEE) ✓ ✓ ✓

Virtualization ✓
Table 3
Comparison of existing secure storage and execution environments.

Solution Type Resistance to P. attacks Resistance to L. attacks Provisioning model Overhead Computing cap. Storage cap.

Secure elements Physical chip No No ICOM 0 Limited Limited
TEE Both Yes Yes ICOM 0 High High
TPM Physical chip No No – 0 Low Low
Virtualization Purely software Yes Yes ICOM/UCOM Minimal High High
by the manufacturers. This restriction is harmful for the spread
of these technologies and do not consider the user implication
in the security process. Therefore, a UCOM approach offering a
compromise between the security level and the needs of the users
is highly recommended. The virtualization is a very interesting
example of a UCOM approach for secure mobile computing with a
high level of security and a gooduser consideration. In addition, the
capabilities of embeddedmulti-core processors will help to ensure
a satisfactory level of virtualization both in terms of security and
processing speed.

9. Discussion and conclusion

The mobile security and trust paradigms have become very
important since the massive use of smartphones for personal
and professional activities. In this context, solutions for a secure
storage and processing based on above mentioned technologies
have emerged but none is fully suitable for user-centric approach.
TEE seems to be the most promising in a UCOM perspective as
several attempts exist to bypass chip manufacturers’ control. The
ObC [16] project developed by Nokia research lab and presented
in Section 7.1 is a very interesting first attempt for trusted mobile
computing that tries to open TEE for application developers.
KNOX [56] is a similar security solution developed by Samsung
that tries to open Trustzone to ease the trusted applications
provisioning through a cloud application market. But, as they are
limited to specific phones, they still cannot be viewed as fully user-
centric. Indeed, the user still relies on the phone manufacturer’s
closed ecosystem.

At the time of writing, every trusted mobile computing
solution operates in a closed ecosystem. Even the cloud-based
solutions presented in Section 7.5 are dependent on a specific
technology (TPM or SE for instance). But, as every technology can
address a part of the overall security problem on mobile devices,
an interoperability framework should be suitable. This lack of
interoperability standard is problematic but may be overcome in
the upcoming years. For instance, GlobalPlatform [57] is working
on a secure routing protocol allowing communication between TEE
and SE. It represents an excellent combination to benefit from the
high resistance to attacks of the SE and from the high processing
capabilities of the TEE.

The communication between TEE and SE (or even TPM) is
promising to improve the overall security but is still not fully
satisfactory from a user standpoint. Indeed, these solutions are
still dependent on devices. Credentials and data may be stored
securely but in the event that the device is lost or stolen, data
are no more usable. The use of a secure cloud as a backup of
credentials and data is then suitable but it has then to propose the
same level of security as the device. The secure cloud can also be
viewed as a good support for security architectures. Indeed a full
user-centric architecture thatmakes the assumption that the user’s
device has a SE, a TPM or a TEE in it may limit the overall adoption
as not every device on the market disposes of this technology. A
cloud based alternative of TPM, SE or TEE is therefore interesting.
Moreover, with cloud-based solutions, new secure computing
technologiesmay become available for smartphones allowing even
more versatile secure computing architectures. An example of such
technology is SGX [43] which is developed by Intel for its x86
processors. As OP-TEE for the TEE, OpenSGX is an open source
SGX emulator implemented based on qemu virtualization allowing
developers to test their SGX applications. Finally, a protocol suite
similar to Transport Layer Security (TLS) [58] that enables the
selection of relevant secure computing solutions for a specific
trusted application should be investigated.

This survey work led us to the following conclusion; most of
these trusted mobile computing solutions focus on virtualization
and/or cloud-based implementations to overcome hardware
limitations introduced by SE, TPM and TEE. These solutions
range from new fully virtualized TEE in a smartphone to cloud-
based TPM that can be accessed by smartphones over wireless
communications. Nevertheless, at the time of writing, none of
these solutions provides a fully satisfactory solution for secure
application provisioning in ICOM model as they only focus on a
piece of the security threats that can target a secure application.
Therefore, they can be considered as useful parts of an overall
generic solution that has still to be defined. Indeed, this generic
solution will have to mix existing secure execution environments
and cloud to enforce the user confidence.
References

[1] Smartphone use growth statistics, March 2016. URL http://www.idc.com/
getdoc.jsp?containerId=prUS25641615.

[2] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, M. Smith,
Why eve and mallory love android: An analysis of android SSL (in)
security, in: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ACM, 2012, pp. 50–61.

[3] GlobalPlatform, TEE System Architecture, Technical Report, GlobalPlatform
(2011). URL http://www.globalplatform.org/specificationsdevice.asp.

[4] N. Asokan, J.-E. Ekberg, K. Kostiainen, A. Rajan, C.V. Rozas, A.-R. Sadeghi, S.
Schulz, C. Wachsmann, Mobile trusted computing, Proc. IEEE 102 (8) (2014)
1189–1206.

[5] T.L. Vinh, S. Bouzefrane, Trusted platforms to secure mobile cloud computing,
in: The 16th IEEE International Conference on High Performance Computing
and Communications, 2014, pp. 1096–1103.

[6] A. Mitrokotsa, M.R. Rieback, A.S. Tanenbaum, Classifying RFID attacks and
defenses, Inf. Syst. Front. 12 (5) (2010) 491–505.

[7] A. Mitrokotsa, M. Beye, P. Peris-Lopez, Security primitive classification of RFID
attacks, in: Unique Radio Innovation for the 21st Century, Springer, 2011,
pp. 39–63. (Chapter).

[8] R.N. Akram, K. Markantonakis, K. Mayes, A paradigm shift in smart card
ownership model, in: International Conference on Computational Science and
Its Applications, ICCSA, IEEE, 2010, pp. 191–200.

[9] R.N. Akram, K. Markantonakis, K. Mayes, Trusted platform module for smart
cards, in: 6th International Conference on New Technologies, Mobility and
Security, NTMS, IEEE, 2014, pp. 1–5.

[10] R.N. Akram, K. Markantonakis, K. Mayes, User centric security model for
tamper-resistant devices, in: IEEE 8th International Conference on e-Business
Engineering, ICEBE, 2011, pp. 168–177.

[11] R.N. Akram, K. Markantonakis, D. Sauveron, A novel consumer-centric card
management architecture andpotential security issues, Inform. Sci. 321 (2015)
150–161.

[12] ISO/IEC, NFC Technology Full specification, March 2015. URL https://www.iso.
org/obp/ui/#iso:std:53424:en.

[13] EMV, EMV Transactions Full specification, March 2015. URL http://www.
emvco.com/specifications.aspx?id=223.

[14] J.-E. Ekberg, K. Kostiainen, N. Asokan, Trusted execution environments on
mobile devices, in: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, ACM, 2013, pp. 1497–1498.

[15] S. Tamrakar, J.-E. Ekberg, N. Asokan, Identity verification schemes for public
transport ticketing with NFC phones, in: Proceedings of the Sixth ACM
Workshop on Scalable Trusted Computing, ACM, 2011, pp. 37–48.

[16] J.E. Ekberg, K. Kostiainen, N. Asokan, The untapped potential of trusted
execution environments on mobile devices, IEEE Secur. Privacy 12 (4) (2014)
29–37. http://dx.doi.org/10.1109/MSP.2014.38.

[17] T. Cooijmans, J. de Ruiter, E. Poll, Analysis of secure key storage solutions on
Android, in: Proceedings of the 4th ACMWorkshop on Security and Privacy in
Smartphones & Mobile Devices, ACM, 2014, pp. 11–20.

[18] Trusted Labs, EAL7 Certification for a Gemalto smartcard embedded
embedded software, March 2015. URL http://trusted-labs.com/trusted-
labs-achieves-the-first-security-eal7-certificate-for-gemalto-smart-card-
embedded-software/.

[19] Mastercard: Secure Elements, kinds and certification. URL https://mobile.
mastercard.com/Partner/MobilePayPass/SefcureElements.

[20] Secure Element Evaluation Kit for the Android platform. URL http://seek-for-
android.github.io/.

[21] Trusted Computing Group official website. URL http://www.
trustedcomputinggroup.org/.

[22] A.-D. Vu, J.-I. Han, H.-A. Nguyen, Y.-M. Kim, E.-J. Im, A homogeneous parallel
brute force cracking algorithm on the GPU, in: 2011 International Conference
on ICT Convergence, ICTC, IEEE, 2011, pp. 561–564.

[23] A.K.J. Salil Prabhakar, Sharath Pankanti, Biometric recognition: Se-
curity and privacy concerns, IEEE Secur. Priv. 1 (2003) 33–42.
http://dx.doi.org/10.1109/MSECP.2003.1193209.

[24] RFC 3580: IEEE 802.1X Remote Authentication Dial In User Service, RADIUS.
URL https://tools.ietf.org/html/rfc3580.

[25] Microsoft, How to protect your network frompass the hash attack. URL https://
www.microsoft.com/security/sir/strategy/default.aspx#!password_hashes.

[26] T. Nyman, J.-E. Ekberg, N. Asokan, Citizen electronic identities using TPM 2.0,
in: Proceedings of the 4th International Workshop on Trustworthy Embedded
Devices, ACM, 2014, pp. 37–48.

[27] S. Bajikar, Trusted Platform Module (TPM) Based Security on Notebook pcs-
White Paper, Tech. Rep., 2002, URL http://www.ogobin.org/TCPA/Trusted_
Platform_Module_White_Paper.pdf.

[28] ARM, ARM Security Technology. Building a Secure System Using TrustZone
Technology, Tech. Rep. 2009. URL http://infocenter.arm.com/help/topic/com.
arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf.

[29] M-Shield Mobile Security Technology, Tech. Rep. 2008. URL http://focus.ti.
com/pdfs/wtbu/ti_mshield_whitepaper.pdf.

[30] E. Owusu, J. Han, S. Das, A. Perrig, J. Zhang, Accessory: password inference using
accelerometers on smartphones, in: Proceedings of the Twelfth Workshop on
Mobile Computing Systems & Applications, ACM, 2012, p. 9.

[31] L. Gomez, I. Neamtiu, T. Azim, T. Millstein, Reran: Timing-and touch-sensitive
record and replay for Android, in: 2013 35th International Conference on
Software Engineering (ICSE), IEEE, 2013, pp. 72–81.

612 M.A. Bouazzouni et al. / Future Generation Computer Systems 80 (2018) 596–612
[32] Sierra TEE virtualization system for TrustZone. URL http://www.sierraware.
com/open-source-ARM-TrustZone.html.

[33] Genode operating system framework. URL http://genode.org/documentation/
articles/trustzone.

[34] N. Santos, H. Raj, S. Saroiu, A. Wolman, Trusted language runtime (TLR):
enabling trusted applications on smartphones, in: Proceedings of the 12th
Workshop on Mobile Computing Systems and Applications, ACM, 2011,
pp. 21–26.

[35] OP-TEE official wiki page. URL https://wiki.linaro.org/WorkingGroups/
Security/OP-TEE.

[36] LINARO security working group official website. URL https://wiki.linaro.org/
WorkingGroups/Security.

[37] T6: The TrustedKernel secure OS for TrustZone processors. URL http://
trustkernel.org/wp-content/uploads/2015/03/T6_TEE_datasheet.pdf.

[38] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch, B. Zoppis,
The VMware mobile virtualization platform: is that a hypervisor in your
pocket? ACM SIGOPS Oper. Syst. Rev. 44 (4) (2010) 124–135.

[39] ARM Virtulization Extensions. URL http://www.arm.com/products/
processors/technologies/virtualization-extensions.php.

[40] C. Dall, J. Nieh, KVM/ARM: The design and implementation of the Linux
ARM Hypervisor, in: Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems,
ACM, 2014, pp. 333–348.

[41] Sierra Hypervisor for ARM processors. URL http://www.sierraware.com/arm_
hypervisor.html.

[42] Xen ARM Hypervisor Project. URL http://www.xenproject.org/developers/
teams/arm-hypervisor.html.

[43] F. McKeen, I. Alexandrovich, A. Berenzon, C.V. Rozas, H. Shafi, V. Shanbhogue,
U.R. Savagaonkar, Innovative instructions and software model for isolated
execution, in: Proceedings of the 2Nd International Workshop on Hardware
and Architectural Support for Security and Privacy, HASP, HASP’13, ACM,
New York, NY, USA, 2013, pp. 10:1–10:1. http://dx.doi.org/10.1145/2487726.
2488368, URL http://doi.acm.org/10.1145/2487726.2488368.

[44] V. Costan, S. Devadas, Intel SGX explained, Vol. 2016, 2016, p. 86. URL
http://eprint.iacr.org/2016/086.

[45] I. Anati, S. Gueron, S. Johnson, V. Scarlata, Innovative Technology for CPU Based
Attestation and Sealing, in: Proceedings of the 2nd InternationalWorkshop on
Hardware andArchitectural Support for Security and Privacy, HASP, ACM,New
York, NY, USA, 2013.

[46] P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi, Y. Shin, T. Kim, B.B. Kang,
D. Han, OpenSGX: An Open Platform for SGX Research, in: Proceedings of the
Network and Distributed System Security Symposium, 2016.

[47] J. Andrus, C. Dall, A.V. Hof, O. Laadan, J. Nieh, Cells: a virtualmobile smartphone
architecture, in: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, ACM, 2011, pp. 173–187.

[48] D. Liu, J. Lee, J. Jang, S. Nepal, J. Zic, A cloud architecture of vir-
tual trusted platform modules, in: 2010 IEEE/IFIP 8th International Con-
ference on Embedded and Ubiquitous Computing, EUC, IEEE, 2010, pp.
804–811.

[49] P. Urien, Cloud of Secure Elements(CoSE), Internet Draft, 2014. URL
http://tools.ietf.org/html/draft-urien-cfrg-cose-00.html.

[50] B. McGillion, T. Dettenborn, T. Nyman, N. Asokan, Open-tee—an open virtual
trusted execution environment, in: Trustcom/BigDataSE/ISPA, 2015 IEEE,
Vol. 1, 2015, pp. 400–407. http://dx.doi.org/10.1109/Trustcom.2015.400.

[51] OpenTEE official github page. URL https://github.com/Open-TEE.
[52] A. Vahidi, P. Ekdahl, VETE: Virtualizing the Trusted Execution Environment,
Tech. Rep., 2013, URL http://soda.swedish-ict.se/5456/2/20130305b_VETE_
final_report.pdf.

[53] U8500 NovaThor specifications and usages. URL http://system-on-a-chip.
specout.com/l/352/ST-Ericsson-NovaThor-U8500.

[54] Qemu, Qemu, a generic and open source machine emulator and virtualizer.
URL http://wiki.qemu.org/Main_Page.

[55] ARM, Fixed Virtual Platforms, ARM. URL http://www.arm.com/products/tools/
models/fast-models/foundation-model.php.

[56] SAMSUNG, Samsung KNOX Security Solution. URL https://www.
samsungknox.com/en/system/files/whitepaper/files/Samsung_KNOX_
Security_Solution_V1_10_0.pdf.

[57] GlobalPlatform, TEE Secure Element API v1.0 Specification, Tech. Rep., July
2013. URL https://www.globalplatform.org/specificationsdevice.asp.

[58] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version
1.2, RFC 5246, Proposed Standard, August 2008. URL http://www.ietf.org/rfc/
rfc5246.txt.

Mohamed Amine Bouazzouni received the M.S. degree
in Information security and cryptology from Limoges
university in France. In October 2014, he joined the INP-
IRIT laboratory for a 3 years Ph.D. on security and privacy
in themobileworld. His research interests include security
solutions for dematerialized smartcards on smartphones
and secure execution environments on mobile platforms.

Emmanuel Conchon received the M.S. and Ph.D. degrees
in Wireless Communication from the ‘‘Institut National
Polytechnique de Toulouse’’ (INPT), Toulouse, France in
2002 and 2006, respectively. In September 2008, he joined
the Champollion University as an Associate Professor and
IRIT (Institut de Recherche en Informatique de Toulouse)
as a researcher. Since September 2015, he is an Associate
Professor in the University of Limoges. His research
interests include security solutions for wireless networks,
context-aware systems and middleware solutions for
health applications.

Fabrice Peyrard received the Ph.D. degree in Computer
Science in 1998 and an accreditation to supervise research
in 2008. Currently, he is Associate Professor of computer
science and network communications at the University
of Toulouse (France). His main research topics of interest
are security, privacy and quality of services for ubiquitous
computing.

