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This paper introduces generalized possibilistic logic (GPL), a logic for epistemic reasoning
based on possibility theory. Formulas in GPL correspond to propositional combinations of
assertions such as “it is certain to degree λ that the propositional formula α is true”. As
its name suggests, the logic generalizes possibilistic logic (PL), which at the syntactic level
only allows conjunctions of the aforementioned type of assertions. At the semantic level,
PL can only encode sets of epistemic states encompassed by a single least informed one,
whereas GPL can encode any set of epistemic states. This feature makes GPL particularly
suitable for reasoning about what an agent knows about the beliefs of another agent, e.g.,
allowing the former to draw conclusions about what the other agent does not know. We
introduce an axiomatization for GPL and show its soundness and completeness w.r.t. possi-
bilistic semantics. Subsequently, we highlight the usefulness of GPL as a powerful unifying
framework for various knowledge representation formalisms. Among others, we show how
comparative uncertainty and ignorance can be modelled in GPL. We also exhibit a close
connection between GPL and various existing formalisms, including possibilistic logic with
partially ordered formulas, a logic of conditional assertions in the style of Kraus, Lehmann
and Magidor, answer set programming and a fragment of the logic of minimal belief and
negation as failure. Finally, we analyse the computational complexity of reasoning in GPL,
identifying decision problems at the first, second, third and fourth level of the polynomial
hierarchy.

1. Introduction

Possibilistic logic [1] (PL) is a logic for reasoning with uncertain propositional formulas. Formulas in PL take the form 
(α, λ) where α is a propositional formula and λ is a certainty degree taken from the unit interval, or from another linear 
scale. Contrary to probabilistic logics, possibilistic logic models accepted beliefs in the sense that if two propositions are 
believed to a certain level, so is their conjunction. In many applications, a PL knowledge base encodes the epistemic state 
of an agent. We then assume that all the agent knows are the formulas contained in the knowledge base and their logical 
consequences, with the weights referring to the degree of epistemic entrenchment [2] or the strength of belief. However, in 
its standard form, possibilistic logic has limitations as a tool for epistemic reasoning, i.e., reasoning about uncertainty, in at 
least two respects.

* Corresponding author.
E-mail addresses: dubois@irit.fr (D. Dubois), prade@irit.fr (H. Prade), schockaerts1@cardiff.ac.uk (S. Schockaert).



First, given that a knowledge base encodes a single epistemic state, PL does not allow us to encode incomplete infor-
mation about the epistemic state of an agent. For example, assume that this agent privately flips a coin and looks at the 
result without revealing it. Then either the agent knows that the result was tails, which could be encoded as {(tails, 1)}, 
where 1 indicates complete certainty, or the agent knows that the result was heads, which could be encoded as {(¬tails, 1)}. 
However, all an outside agent knows is that one of these two situations holds, and in particular this other agent knows that 
the first agent is not ignorant about the outcome of the coin flip. To express this situation in PL, we would need to write 
a disjunction (tails, 1) ∨ (¬tails, 1) which is not allowed in the language. In this paper, we propose a generalized possibilis-
tic logic (GPL) in which such disjunctions can be expressed. This brings PL syntax closer to the one of modal logics for 
epistemic reasoning, and, to emphasize this, we will use a slightly different notation and write N1(tails) ∨ N1(¬tails) instead.

Second, PL does not allow us to explicitly encode information about the absence of knowledge. Instead, in practice, we 
must rely on a kind of closed-world assumption, i.e., assume that the agent does not know whether α is true if neither 
α nor its negation can be derived from the given knowledge base representing what is known about this agent’s beliefs. 
When reasoning about beliefs as revealed by an agent, this assumption is hard to keep and we need to distinguish between 
situations where we (the outside agent) know that the agent is ignorant about α and situations where we do not know 
whether the agent knows α or not. In GPL, this can be achieved by putting a negation in front of PL formulas: ¬N1(α)

expresses that we know that the agent does not believe in the truth of α,1 whereas situations where we have no such 
knowledge are encoded by GPL theories which have models in which N1(α) is true and models in which N1(α) is false.

GPL is closely related to modal logics for epistemic reasoning such as KD45 and S5. However, it is essentially a two-
tiered propositional logic, and, instead of using Kripke frames, the semantics we propose for GPL is based on possibility 
distributions, which explicitly represent epistemic states. Our ability to directly interpret the modality N as a constraint on 
a necessity measure results from the fact that we do not allow the modality N to be nested. Furthermore, by not allowing 
objective formulas, we can naturally interpret each GPL formula as a constraint on the possible epistemic states (i.e., possi-
bility distributions) of an agent. Compared to existing epistemic modal logics [3], we thus trade some expressiveness for a 
more intuitive way of capturing revealed beliefs. Among others, the use of possibility distributions has the advantage that 
(strength of) belief can be naturally encoded as a graded notion and that existing concepts from possibility theory such as 
minimal specificity and guaranteed possibility can be exploited to model ignorance in a natural way. This will enable us to 
encode various forms of non-monotonic reasoning in GPL. For instance, we will show how GPL can be used to model the 
semantics of answer set programming [4] (ASP) without relying on a fixpoint construction, unlike most existing characteri-
zations of ASP, and how default rules in the sense of System P [5] can be modelled by taking advantage of the fact that GPL 
can express comparative uncertainty.

The paper is structured as follows. First, we recall some basic notions from possibility theory and possibilistic logic. 
In Section 3 we define the language of GPL and a corresponding semantics in terms of possibility distributions. We then 
provide an axiomatization which is sound and complete w.r.t. this latter semantics. In Section 4 we analyze how GPL can 
be used to reason about the ignorance of another agent, focusing on the role of minimal specificity and an extension 
to the language of GPL related to the notion of “only knowing” [6]. In Section 5 we then focus on the ability of GPL 
to model comparative uncertainty (e.g., α is more certain than β), showing how GPL can be used to encode a variant 
of possibilistic logic with partially ordered formulas [7], and how, as a result, a conditional logic based on System P [5]
can be embedded in GPL. Subsequently, in Section 6 we explain in more detail how GPL relates to a number of existing 
formalisms for non-monotonic reasoning that are based on the notion of negation as failure. Section 7 discusses a number 
of computational issues, including the complexity of the main reasoning tasks. We also propose a reduction to SAT, allowing 
for a straightforward implementation of the reasoning tasks at the first level of the polynomial hierarchy. Finally, we present 
our conclusions.

This paper aggregates and significantly extends parts of [8] and [9]. In particular, in [8] we introduced the syntax, 
semantics and axiomatization of GPL, whereas in [9] we studied methods for modelling ignorance in GPL, introduced a new 
proof of the completeness of the axiomatization, and discussed some of the complexity results from Section 7. The results 
in Sections 5 and 6 are entirely new (although the encodings in Section 6 are similar in spirit to the encoding of equilibrium 
logic in [8]).

2. Preliminaries from possibility theory

Consider a variable X which has an unknown value from some finite universe U . In possibility theory [10–12], available
knowledge about the value of X is encoded as a mapping π : U → [0, 1], which is called a possibility distribution. The 
intended interpretation of π(u) = 1 is that X = u is fully compatible with all available information, while π(u) = 0 means 
that X = u can be excluded based on available information. Note that the special case where we have no information 
about X is encoded using the vacuous possibility distribution, defined as π(u) = 1 for all u ∈ U . Usually, we require that 
π(u) = 1 for some u ∈ U , which corresponds to the assumption that the available information is consistent. If the possibility 
distribution π satisfies this condition, it is called normalized.

1 It means the agent either believes its negation or ignores the truth status of α.



In general, the value of π(u) can be interpreted in terms of degrees of potential surprise: the smaller the value of π(u), 
the more we would be surprised to find out that X = u. This interpretation goes back to Shackle [13] and supports a purely 
qualitative interpretation of the possibility degrees π(u). In such a case, we could replace the unit interval [0, 1] by another 
linear scale (although an involutive order-reversing mapping is also needed). Other interpretations of possibility degrees 
relate a possibility distribution to a family of probability distributions [14], to a family of likelihood functions [15], to Shafer 
belief functions [16], or to Spohn ordinal conditional functions [2,17] and thus to infinitesimal probabilities [18], among 
others.

2.1. Set functions in possibility theory

A possibility distribution π induces a possibility measure �, defined for A ⊆ U as [10]:

�(A) = max
u∈A

π(u).

A dual measure N , called the necessity measure, is defined for A ⊆ U as [11]:

N(A) = 1 − �(U \ A) = min
u /∈A

(1 − π(u)).

Intuitively, �(A) reflects to what extent it is possible, given the available knowledge, that the value of X is among those 
in A, while N(A) reflects to what extent the available knowledge entails that the value of X must necessarily be among 
those in A. Two other measures that can be introduced are the guaranteed possibility measure � and the potential necessity 
measure ∇ , defined for A ⊆ U as [12]:

�(A) = min
u∈A

π(u);
∇(A) = 1 − �(U \ A) = max

u∈A
(1 − π(u)).

Intuitively, �(A) reflects the extent to which all values in A are considered possible, while ∇(A) reflects the extent to which 
some value outside A is impossible. Note that for all A �= ∅

�(A) ≤ �(A); N(A) ≤ ∇(A).

If π is normalized, we have �(A) = 1 or N(A) = 0, and thus in particular:

N(A) ≤ �(A).

If π(u) = 0 for some u ∈ U , we have �(A) = 0 or ∇(A) = 1, and thus:

�(A) ≤ ∇(A).

Finally, note that � and N are monotone w.r.t. set inclusion while � and ∇ are antitone, i.e., for A ⊆ B we have

�(A) ≤ �(B); N(A) ≤ N(B); �(A) ≥ �(B); ∇(A) ≥ ∇(B).

2.2. Possibilistic logic

A formula in propositional possibilistic logic [1] (PL for short) is an expression of the form (α, λ), where λ ∈]0, 1] is a 
certainty degree and α is a propositional formula, built from a set of atomic formulas At using the connectives conjunc-
tion ∧, negation ¬, disjunction ∨, implication →, and equivalence ≡ in the usual way. Let � be the set of all interpretations 
of At and let L be the set of all propositional formulas built from At. The semantics of possibilistic logic is defined in terms 
of possibility distributions over �. Specifically, a possibility distribution π over � satisfies the formula (α, λ) iff N(�α�) ≥ λ, 
where �α� denotes the set of all (classical) models of α. As π represents an epistemic state (it is a fuzzy set of classical 
models), we call it an epistemic model of (α, λ), or an e-model for short. For the ease of presentation, we will write N(α)

instead of N(�α�) throughout this paper.
A possibility distribution π is an e-model of a set of PL formulas K iff π is an e-model of every formula in K . K generally 

has multiple e-models, but they can be partially ordered by the specificity ordering, whereby π1 is less specific than π2, 
written π1 � π2, if π1(ω) ≥ π2(ω) for every ω ∈ �. It can be shown that the set of e-models of a set of PL formulas K has 
a unique least element πK w.r.t. �, which is called the least specific e-model of K . It can be expressed, for all ω ∈ � as [1]:

πK (ω) = 1 − max{λ | (α,λ) ∈ K ,ω �|= α}
where we assume max ∅ = 0. Intuitively, the more certain the formulas that are violated by ω, the less plausible ω is 
considered to be.



The following inference rules are valid in PL:

if (α,λ) ∈ K then K�P L(α,λ) (1)

if � α then K �P L (α,1) (2)

if λ1 ≥ λ2 and K�P L(α,λ1) then K�P L(α,λ2) (3)

if K�P L(α ∨ β,λ1) and K�P L(¬α ∨ γ ,λ2) then K�P L(β ∨ γ ,min(λ1, λ2)) (4)

Let us write K |=P L(α, λ) if every e-model of K is an e-model of (α, λ). If there is no cause for confusion we also write |=P L

as |= and �P L as �. It is possible to show that the following statements are all equivalent for a set of PL formulas K (see 
e.g., [19]):

1. K�P L(α, λ) can be derived from (1)–(4).
2. K |=P L(α, λ).
3. The least specific e-model πK of K is an e-model of (α, λ).

Inference in possibilistic logic thus remains close to inference in propositional logic. In particular, let the c-cut Kc of K be the 
propositional theory Kc = {α | (α, λ) ∈ K and λ ≥ c}. Then we have that K |=P L(α, λ) iff Kλ ∪ {¬α} is unsatisfiable. It follows 
that entailment checking in possibilistic logic is coNP-complete and that efficient reasoners can easily be implemented on 
top of off-the-shelf SAT solvers.

Possibilistic logic can be seen as a tool for specifying a ranking on propositional formulas. As such, it is closely related to 
the notion of epistemic entrenchment [20], as has been pointed out in [2]. This makes PL a natural vehicle for implementing 
strategies for belief revision [21] and managing inconsistency [22]. Along similar lines, there are close connections between 
PL and default reasoning in the sense of System P [5], which can be exploited to implement several forms of reasoning 
about rules with exceptions [23].

Syntactically, propositional possibilistic logic is similar to the propositional fragment of Markov logic [24]. Semanti-
cally, however, the certainty weights in Markov logic are interpreted probabilistically. In particular, a set M = {(α1, w1), ...,
(αn, wn)} of (propositional) Markov logic formulas defines the probability distribution pM defined as follows (ω ∈ �):

pM(ω) = 1

Z
exp

(
n∑

i=1

{wi |ω |= αi}
)

(5)

where Z is a normalization constant. This probabilistic semantics makes Markov logic particularly useful in machine learning 
settings. Note that we can equivalently define pM as follows

pM(ω) = 1

Z ′ exp

(
n∑

i=1

{−wi |ω �|= αi}
)

(6)

where the new normalization constant Z ′ is given by Z ′ = Z
exp(

∑
i wi)

. This alternative formulation highlights the close rela-

tionship between the propositional fragment of Markov logic and the so-called penalty logic [25]. The two main differences 
are that negative weights are not considered in penalty logic2 and that the penalty associated with an interpretation is 
not normalized. This lack of normalization makes penalty logic somewhat closer in spirit to possibilistic logic. Attaching a 
positive weight w to a formula α in penalty logic is similar to attaching a degree of necessity 1 − exp(−w) to this formula 
in possibilistic logic. Thus the main difference between penalty logic and possibilistic logic is that in the former case the 
product is used to combine certainty degrees while in the latter case the minimum is used.3

However, we can also view Markov logic, penalty logic and possibilistic logic as equivalent frameworks for defining 
rankings of possible worlds. Indeed, as was shown in [27], given a Markov logic knowledge base M , we can always construct 
a possibilistic logic knowledge base K such that M and K define the same ranking of possible worlds, and vice versa. In 
fact, any ranking of interpretations can be represented by a possibilistic knowledge base.

3. Generalized possibilistic logic

While PL is useful to encode a single epistemic state, our aim is to develop GPL as a logic for reasoning about the
epistemic state of an agent from its revealed beliefs. A GPL knowledge base then encodes the set of epistemic states that are 
compatible with these revealed beliefs. The aim of this section is to define the syntax and semantics of GPL, and to introduce 

2 Note however that in Markov logic, we can replace (α, w) by (¬α, −w) thanks to the use of the normalization constant, so allowing negative weights
does not increase the expressivity of propositional Markov logic.

3 Moreover, it is worth noticing that (6) defines the probability of an interpretation by using a possibility distribution which is renormalized by dividing
each possibility degree by their sum. See [26] for a discussion of this type of possibility–probability transformation.



an axiomatization for this logic. We will use α, β , etc. to denote propositions in standard propositional logic, formed with 
the connectives, ∧ and ¬. As usual, we will also use the abbreviations α ∨ β = ¬(¬α ∧ ¬β), α → β = ¬(α ∧ ¬β) and 
α ≡ β = (α → β) ∧ (β → α). Let L be the language of all propositional formulas over a finite set of atomic propositions At. 
Unless stated otherwise, we restrict the set of certainty degrees to the finite subset �k = {0, 1k , 2k , ..., 1} of the unit interval, 
with k ∈N \ {0} and let �+

k = �k \ {0}.

3.1. Syntax

We define the language Lk
G P L of generalized possibilistic logic with k + 1 certainty levels as follows:

• If α ∈L and λ ∈ �+
k , then Nλ(α) ∈Lk

G P L .
• If � ∈Lk

G P L and  ∈Lk
G P L , then ¬� and � ∧  are also in Lk

G P L .

The corresponding logic will be referred to as GPLk . When k is clear from the context we will also refer to this logic as 
GPL, and to the corresponding language as LG P L . Note that GPL is a graded version of the logic called MEL (Meta-Epistemic, 
or yet Minimal Epistemic, Logic), which was introduced in [28]. The MEL language is a special case of GPL where k = 1. 
Whereas MEL uses a standard modal logic syntax (� = N1), we use a modality which refers to the necessity measure N to 
emphasize the link with possibility theory. Furthermore note that we view Lk

G P L as a language with k different modalities 
N 1

k
, ..., N1, rather than a language with a single modality and constants denoting certainty degrees.

In the following, we will also use the following abbreviation:

�λ(α) = ¬Nν(λ)(¬α) (7)

where we write ν(λ) as an abbreviation for 1 − λ + 1
k . Semantically the modality �λ will correspond to a lower bound on 

a possibility measure, namely (7) is the counterpart of the duality between a possibility and a necessity measure on a finite 
scale, where we have to shift from one level for moving from a strict inequality to an inequality in the broad sense.

Let us define a meta-atom as an expression of the form Nλ(α), and a meta-literal as an expression of the form Nλ(α) or 
¬Nλ(α). A meta-clause is an expression of the form �1 ∨ ... ∨ �n with each �i a meta-literal. A meta-term is an expression 
of the form �1 ∧ ... ∧ �n with each �i a meta-literal.

3.2. Semantics

The semantics of GPL are defined in terms of normalized possibility distributions over propositional interpretations, 
encoding epistemic states, where possibility degrees are, by duality, of the form 1 − λ, ∀λ ∈ �k .4 Let Pk be the set of all 
such possibility distributions. An e-model of a GPL formula is any possibility distribution π from Pk , namely:

• π is an e-model of Nλ(α) iff N(α) ≥ λ;
• π is an e-model of �1 ∧ �2 iff π is an e-model of �1 and of �2;
• π is an e-model of ¬�1 iff π is not an e-model of �1;

where N is the necessity measure induced by π . As usual, π is called an e-model of a set of GPL formulas K , written 
π |=k

G P L K , if it is an e-model of each formula in K . It is called a minimally specific e-model of K if there is no e-model 
π ′ �= π of K such that π ′(ω) ≥ π(ω) for each possible world ω. We write K |=k

G P Lφ, for K a set of GPL formulas and φ a 
GPL formula, if every e-model of K is also an e-model of φ. When k is clear from the context, we will sometimes write 
|=k

G P L as |=G P L ; furthermore, if there is no cause for confusion, we will also write |=k
G P L as |=.

Intuitively, N1(α) means that it is completely certain that α is true, whereas Nλ(α) with λ < 1 means that there is 
evidence which suggests that α is true, and none that suggests that it is false. Note that we can distinguish between 
complete and partial certainty only if k ≥ 2. Formally, an agent asserting Nλ(α) has an epistemic state π such that N(α) ≥
λ > 0. Hence ¬Nλ(α) stands for N(α) < λ, which means �(¬α) ≥ 1 − λ + 1

k . The abbreviation introduced in (7) thus 
corresponds to a syntactic counterpart of the duality between necessity and possibility measures. Note how the use of 
a finite scale makes it possible to express strict inequalities, even though we only use inequalities in the wide sense in 
the interpretation of graded modalities. Intuitively �1(α) means that α is fully compatible with our available beliefs (i.e., 
nothing prevents α from being true), while �λ(α) with λ < 1 means that α cannot be fully excluded (�(α) ≥ λ).

This formalism is similar to an autoepistemic logic [29,6]. However the latter aims to capture how an agent reasons 
about its own beliefs. One crucial difference, which has been pointed out in [30], is that when reasoning about one’s own 
beliefs, it should not be possible to state N1(α) ∨ N1(β) without either stating N1(α) or N1(β). Indeed, if we accept that 
an agent is aware of its epistemic state, the agent can tell, for each propositional formula, whether or not it is believed. 
Accordingly, in standard possibilistic logic, we cannot encode N1(α) ∨ N1(β). We can just encode N1(α) or N1(β), or their 

4 In our conventions, it comes down to using �k as both a certainty and a possibility scale.



conjunction. However, we will be able to overcome this limitation in GPL. More generally, in a graded setting, if the agent is 
aware of its epistemic state, it can tell which of two propositional formulas it considers to be most certain. This is again in 
accordance with possibilistic logic, whereas in GPL we will be able to encode the case where we are ignorant about which 
of two formulas is most certain for an external agent. This suggests that while standard possibilistic logic offers a natural 
setting for reasoning with one’s own beliefs, GPL naturally lends itself to reasoning about another agent’s beliefs. For this 
reason, we could say that GPL is an “alter-epistemic” logic.

As to the possible kinds of conclusions that can be inferred from a GPL base K regarding a propositional formula α, if 
k = 2, one can distinguish between the following five cases:

• K |= N1(α) means that we know that the agent knows that α is true.
• K |= N1(¬α) means that we know that the agent knows that α is false.
• K |= N1(α) ∨ N1(¬α), K �|= N1(α) and K �|= N1(¬α) means that we know that the agent knows whether α is true or

false, but we do not know which it is.
• K |= �1(α) ∧ �1(¬α) means that we know that the agent is ignorant about whether α is true or false.
• K �|= N1(α) ∨ N1(¬α) and K �|= �1(α) ∧ �1(¬α) means that we are ignorant about whether the agent is ignorant

about α.

This is in contrast with the only three situations that can be distinguished in classical logic (and in PL), i.e., we know that 
α is true, we know that α is false, or we do not know whether α is true or false. When k > 2, we can consider graded 
counterparts of the five aforementioned cases. Moreover, a GPL base can then also express comparative uncertainty. For 
example:

• K |= ∨k
i=1 N i

k
(α) ∧ ¬N i

k
(β): we know that the agent is more certain that α holds than that β holds, noticing that it is 

equivalent to ∃i, N(α) ≥ i
k > N(β).

• K |= ∨k
i=1 � i

k
(α) ∧ ¬� i

k
(β): we know that the agent would be less surprised to learn that α is true than to learn that 

β is true, noticing that it is equivalent to ∃i . �(α) ≥ i
k > �(β).

• K |= ∨k
i=1(N i

k
(α) ∨ N i

k
(¬α)) ∧ ¬N i

k
(β) ∧ ¬N i

k
(¬β): we know that the agent is more certain about the truth or the 

falsity of α than about β , but we may not know with which certainty degree the agent knows the truth value of α, nor 
to what extent this certainty degree is greater than the certainty degree about the truth or the falsity of β .

• K |= ∨k
i=1(N i

k
(α) ∧ ¬N i

k
(β)) ∨ (N i

k
(β) ∧ ¬N i

k
(α)): we know that the agent considers one of α, β more certain than the 

other, but we may not know which.
• K |= ∧k

i=1(N i
k
(α) → N i

k
(β)) expresses that the agent is at least as certain about β as about α.

Example 1. The six nations championship is a rugby competition consisting of 5 rounds. In each round, every team plays 
against one of the other 5 teams, so that over 5 rounds all teams have played once against each other. Let us write 
playsi(x, y) to denote that x and y have played against each other in round i, and woni(x) to denote that team x has 
won its game in round i. Let T = {eng, fra, ire, ita, sco, wal}. To express that an agent knows the rules of the championship, 
we can consider formulas such as, among others:

N1(
∨

{playsi(x, u) | u �= x, u ∈ T }) (8)

where x ∈ T . A formula such as N 3
4
(won1(wal)) means that the agent strongly believes, but is not fully certain, that Wales 

(wal) has won its first round game, while � 3
4
(won1(wal)) means that the agent does not exclude that Wales has won its 

first round game, without evidence as to the contrary. The following formula expresses that the agent considers it more 
plausible that Wales has won its first game than that England (eng) has won its first game

k∨
i=1

� i
k
(won1(wal)) ∧ ¬� i

k
(won1(eng)) (9)

Recall that the certainty degrees in GPL are typically only assumed to have an ordinal meaning. Saying that the necessity 
of a formula is 3

4 then does not have any intrinsic meaning, other than the fact that this formula is considered e.g., more 
certain than a formula with necessity 1

2 and less certain than a formula with necessity 7
8 . The above example illustrates two 

alternative ways in which applications can deal with such ordinal certainty degrees. One idea is to use a small number of 
categories that are meaningful to a user, such as e.g., ‘completely certain’, ‘very certain’, ‘quite certain’, ‘somewhat certain’, 
and map these categories to the available elements from �k (e.g., ‘very certain’ could correspond to a necessity of 3

4 ). The 
second idea would be to avoid assigning certainty degrees, and only express certainty in a comparative way, as is illustrated 
in (9). This second approach will be discussed in more detail in Section 5.



3.3. Axiomatization

We consider the following axiomatization, which closely parallels the one of MEL [28]:

(PL) The axioms of classical logic for meta-formulas.
(K) Nλ(α → β) → (Nλ(α) → Nλ(β)).
(N) N1(α) whenever α ∈L is a classical tautology.
(D) Nλ(α) → �1(α).

(W) Nλ1 (α) → Nλ2 (α), if λ1 ≥ λ2.

If � can be derived from a set of GPL formulas K using the axioms (PL), (K), (N), (D), (W) and modus ponens, we write 
K �G P L �; if there is no cause for confusion we also write K � �. Note in particular that when λ is fixed we get a fragment 
of the modal logic KD. In particular, the axioms entail that Nλ(α∧β) is equivalent to Nλ(α) ∧Nλ(β). It is easy to see that if α
and β are logically equivalent formulas, then Nλ(α) and Nλ(β) are also equivalent. Indeed, in that case, (α → β) ∧ (β → α)

holds, and by applying (N), (W), (K), (D) we get both Nλ(α) → Nλ(β) and Nλ(β) → Nλ(α). Also note that from (N) and (W)
we can derive a graded version of the necessitation rule, i.e., if � α then �G P L Nλ(α) for any λ ∈ �k . Finally note that in the 
case where k = 1, GPL coincides with the logic MEL. In this latter case, we have �1(α) = ¬N1(¬α) whereas in general we 
only have �1(α) = ¬N 1

k
(¬α). As we will see in Section 6, the ability to differentiate between full possibility for α and the

lack of full certainty for ¬α is crucial when using GPL to provide a semantics for negation as failure.

Proposition 1 (Soundness and completeness). Let K be a set of GPL formulas and � a GPL formula. It holds that K |=G P L � iff 
K �G P L �.

Proof. The proof is presented in Appendix A. �
The main idea behind the proof is that we can see formulas in GPL as propositional formulas which are built from the 

set of atomic formulas of Lk
G P L . Given a knowledge base K in GPL, we construct a propositional base K ∗ made of formulas 

of K plus axioms of GPL, viewed as propositional formulas as well. We then show that there exists a bijection between 
the set of propositional models of K ∗ (seen as a propositional logic knowledge base) and the set of e-models of K (seen 
as a GPL knowledge base). A very similar strategy has been used, among others, in [31], [32] and [33,34], in the context of 
multi-valued modal logics for reasoning about necessity (see Section 3.4).

Proposition 1 remains valid even if the set At of atomic propositions is countably infinite. On the other hand, the com-
pleteness result no longer holds if infinitely many certainty degrees are allowed in the language, as e.g. {Nλ(a) | λ < 1

2 } |=GPL

N 1
2
(a), for a ∈ At but {Nλ(a) | λ < 1

2 } �GPL N 1
2
(a). This is not a real restriction, since knowledge bases only have finitely many

formulas in practice, which means that only finitely many certainty levels actually need to be used, and since the semantics 
of GPL is based on the relative ordering of the certainty degrees, we can then always map these certainty degrees to �k
for some k. In Section 5, however, we will discuss an extension of GPL in which we can express comparative uncertainty 
statements, where it will be desirable to allow an unbounded number of certainty degrees at the semantic level.

Using Proposition 1, and some well-known properties on necessity and possibility measures, it follows that the following 
formulas are theorems in GPL:

Nλ(α) ∧ Nλ(β) ≡ Nλ(α ∧ β)

�λ(α ∧ β) → �λ(α) ∧ �λ(β)

Nλ(α) ∨ Nλ(β) → Nλ(α ∨ β)

�λ(α) ∨ �λ(β) ≡ �λ(α ∨ β)

Next is a counterpart to the modus ponens rule in PL (4):

Nλ1(α) ∧ Nλ2(α → β) → Nmin(λ1,λ2)(β) (10)

To show that this is a theorem in GPL, thanks to Proposition 1, it suffices to note that every necessity measure N satisfying 
N(α) ≥ λ1 and N(¬α ∨ β) ≥ λ2 also satisfies N(β) ≥ min(λ1, λ2), which is equivalent to the usual modus ponens in PL, 
a special case of (4). To see how (10) can be derived from the axioms of GPL, note that the deduction theorem is valid in 
GPL, and it thus suffices to show that Nmin(λ1,λ2)(β) can be derived from {Nλ1 (α), Nλ2 (α → β)}. Starting from this latter 
set of premises, we apply (W) to obtain Nmin(λ1,λ2)(α) and Nmin(λ1,λ2)(α → β). Applying modus ponens on axiom (K) and 
Nmin(λ1,λ2)(α → β), we obtain Nmin(λ1,λ2)(α) → Nmin(λ1,λ2)(β). Using modus ponens on the latter formula and Nmin(λ1,λ2)(α)

we obtain Nmin(λ1,λ2)(β).
The following theorem is the counterpart of a hybrid modus ponens rule introduced in [35]:

�λ1(α) ∧ Nλ2(α → β) → �λ1(β), if λ2 > 1 − λ1 (11)



Again a direct proof can be given, using the deduction theorem, by proving Nν(λ1)(¬α) from Nλ2 (α → β) and Nν(λ1)(¬β) in 
the same way (just rewriting α → β as ¬β → ¬α). However, we need to assume ν(λ1) ≤ λ2 in order to weaken Nλ2(α → β)

into Nν(λ1)(α → β). And ν(λ1) ≤ λ2 is equivalent to 1 − λ1 + 1
k ≤ λ2, i.e., λ2 > 1 − λ1.5

Resolution rules in possibilistic logic [35], extending (10) and (11), can be proved likewise in GPL or, alternatively, by 
using the decomposability of Nλ(·) w.r.t. conjunction.

3.4. Related work

Although possibility theory has been the basis of an original theory of approximate reasoning [36], it was not introduced 
as a logical setting for epistemic reasoning, strictly speaking. Nonetheless, in the setting of his representation language 
PRUF [37], Zadeh discusses the representation of statements of the form “X is A” (meaning that the possible values of 
the single-valued variable X are fuzzily restricted by fuzzy set A), linguistically qualified in terms of truth, probability, or 
possibility. Interestingly, the representation of possibility-qualified statements led to possibility distributions over possibility 
distributions, but certainty-qualified statements, first considered in [38] (see also [11]), and used as the basic building blocks 
of possibilistic logic, were not considered at all, just because necessity measures as the dual of possibility measures were 
playing almost no role in Zadeh’s view (with the exception of half a page in [39]). Possibility-qualified statements were 
exploited in [35] in relation with a weighted resolution principle extending the inference rule (11), whose formal analogy 
with an inference rule existing in modal logic was stressed.

The similarity between possibility theory (including necessity measures) and modal logic should not come as a surprise 
since the analogy between the duality property N(A) = 1 −�(� \ A) in possibility theory and the definition of �p as ¬�¬p
is striking, and has been known for a long time [40]. Likewise, the axiom �p → �p (axiom D in modal logic systems) 
may encode the inequality N(A) ≤ �(A), and the characteristic axiom of necessity measures N(A ∩ B) = min(N(A), N(B))

corresponds to the theorem (�p ∧ �q) ↔ �(p ∧ q) which is valid in modal system K. Nevertheless, no formally established 
connection between modal logic and possibility theory existed until the late 1980s.

This striking parallel between possibility theory and modal logic eventually led to proposals for a modal analysis and 
encoding of possibility theory. For instance, L. Fariñas and A. Herzig [41] proposed such an encoding by heavily relying 
on Lewis’ conditional logics of comparative possibility [42], as indeed the only numerical counterparts of Lewis possibility 
relations are possibility measures [43]. Another attempt was later made by Boutilier [44], in the scope of non-monotonic 
inference based on a plausibility relation over possible worlds. The idea was to use this ordinal counterpart of a possibility 
distribution as an accessibility relation and to construct modalities from it. Another, more semantically-oriented trend was 
to build specific accessibility relations agreeing with possibility theory [45,46].

A major difference with GPL is that the semantics of the above logics relies on accessibility relations. GPL can be em-
bedded into a multimodal logic, but it is actually just a two-level propositional logic since its semantics is based on graded 
epistemic states, viewed as higher-order interpretations, not relying on accessibility relations. This point was discussed 
in [47]: relational semantics of epistemic logics may make sense in the scope of introspective reasoning, but appears more 
difficult to justify for modelling partial knowledge about the epistemic state of an external agent. In GPL, any agent is sup-
posed to be aware of its own epistemic state, so it can model its own beliefs using a complete GPL base (see Section 4 on 
this point). Also, formally, GPL is a complexification of propositional logic, adding weighted modalities in front of proposi-
tional formulas only, and, at the semantic level, moving from usual interpretations to sets thereof, while simple epistemic 
logics like S5 or KD45 are constructed as a simplification of a complex logic allowing nested modalities naturally inter-
preted via accessibility relations, and need introspection axioms to simplify complex formulas into equivalent ones of depth 
at most 1. So beyond the formal analogies between modal logic and GPL, the motivations and the construction method are 
radically different.

A proposal closer to GPL is the one of Hájek [31], where possibility theory is cast into a many-valued logic setting, using 
many-valued modal formulas. The main difference with GPL, from a formal point of view, is that necessity is expressed as 
a single multi-valued modality, rather than a set of classical modalities in GPL. This implies that necessity statements need 
to be combined using a fuzzy logic, rather than classical propositional logic in GPL. A number of related logics are studied 
in [33,34], which are using variants of Łukasiewicz logic both for the formulas inside the modalities and for combining the 
multi-valued modalities. In case these variants of Łukasiewicz are finite-valued (or e.g., include the Baaz � connective [48]), 
it is easy to see that GPL can be framed as a fragment of such a multi-valued modal logic. A general completeness result 
for such two-tiered (multi-valued) model logics has been introduced in [32]. Liau and Lin [49] have also studied a modal 
logic which is very similar to GPL, albeit using [0, 1] as a possibility scale (which forces them to introduce additional 
multimodal formulas to deal with strict inequalities). Their tableau-based proof methods could be of interest to develop 
inference techniques for GPL.

While from a formal point of view, GPL is close to some of these aforementioned logics, our focus in this paper is rather 
different. Specifically, our main aim is to study what is gained, in terms of the kinds of epistemic reasoning scenarios that 
can be modelled, from the increase in syntactic freedom compared to standard possibilistic logic. Among others, we will 
analyse several ways in which partial ignorance can be modelled, study the relation between GPL and logics of comparative 

5 If ν(λ1) > λ2, the weakening axiom (W) leads us to derive Nλ2 (¬α), whose negation is weaker than the premise �λ1 (α).



uncertainty, and show how different forms of non-monotonic reasoning can naturally be modelled using GPL. To the best 
of our knowledge, these links with possibilistic logic (or the related multi-valued modal logics) have not been studied in 
previous work.

4. Reasoning about ignorance in GPL

Possibility theory offers a number of tools for modelling limitations on what is known. These tools can be used in GPL
to explicitly model what we know that an external agent does not know. In particular, Section 4.1 proposes a method based 
on the guaranteed possibility measure, which is subsequently refined in Section 4.2. In Section 4.3, we then analyse how 
the principle of minimal specificity can be applied to reason about what an external agent does not know.

4.1. Ignorance as guaranteed possibility

Using the modalities N and � we can model constraints of the form N(α) ≥ λ, N(α) ≤ λ, �(α) ≥ λ and �(α) ≤ λ. So far, 
however, we have not considered the guaranteed possibility measure � and potential necessity measure ∇ . Counterparts 
of these measures can be introduced as abbreviations in the language, by noting that �(α) = minω∈�α� �({ω}). For a
propositional interpretation ω let us write conjω for the conjunction of all literals made true by ω, i.e., conjω = ∧

ω|=a a ∧∧
ω|=¬a ¬a. Then we define:

�λ(α) =
∧

ω∈�α�

�λ(conjω) ∇λ(α) = ¬�ν(λ)(¬α) (12)

In fact, since �(α) = maxω∈�α� �({ω}), another strategy we could have taken is to axiomatize a logic based on guaranteed 
possibility, and to define the modality N as an abbreviation. In particular, such a logic could be axiomatized by using the 
following graded version of the data logic of Dubois, Hájek and Prade [50]:

(PL) The axioms of classical logic for meta-formulas.
(K�) �λ(α ∧ ¬β) → (�λ(¬α) → �λ(¬β)).

(�) �1(α) whenever ¬α ∈L is a tautology.
(D�) �λ(α) → ∇1(α).

(W�) �λ1 (α) → �λ2 (α), if λ1 ≥ λ2;

and the modus ponens rule. We could then also introduce the following abbreviations:

�λ(α) =
∨

ω∈�α�

�λ(conjω) (13)

Nλ(α) = ¬�ν(λ)(¬α) (14)

The resulting logic is very similar to GPL. However, for (D�) to be sound, we need to restrict e-models to possibility distri-
butions π for which π(ω) = 0 for at least one propositional interpretation ω. Similarly, for these axioms to be complete, 
we need to drop the requirement that π(ω) = 1 for at least one interpretation. In fact, the soundness and completeness 
result from Proposition 1 can straightforwardly be adapted to a logic centered on the � modality, by taking advantage of 
the following duality:

π |= Nλ(α) iff π |= �λ(¬α) (15)

where the possibility distribution π is defined as π(ω) = 1 − π(ω) for all ω ∈ �. This duality can be readily verified using 
the definitions of the N and � measures in possibility theory (see Section 2.1).

However it is straightforward to show that (K�), (�) and (W�) are valid in GPL. We can furthermore show that the 
following formulas are valid in GPL:

�λ(α) ∧ �λ(β) ≡ �λ(α ∨ β) ∇λ(α ∨ β) → ∇λ(α) ∧ ∇λ(β)

�λ(α) ∨ �λ(β) → �λ(α ∧ β) ∇λ(α) ∨ ∇λ(β) ≡ ∇λ(α ∧ β)

and

�λ1(α ∧ β) ∧ �λ2(¬α ∧ γ ) → �min(λ1,λ2)(β ∧ γ ) (16)

∇λ1(α ∧ β) ∧ �λ2(¬α ∧ γ ) → ∇λ1(β ∧ γ ), if λ2 ≥ ν(λ1) (17)

Note that (16) is the counterpart of a basic inference rule of the logic of accumulated data [50].
For any possibility distribution π over �, we can easily define a GPL knowledge base which has π as its only e-model, 

using the modality �. In particular, let α1, ..., αk be propositional formulas such that �αi � = {ω | π(ω) ≥ i
k }. Then we define 

the knowledge base �π as:



�π =
k∧

i=1

Nν( i
k )

(αi) ∧ � i
k
(αi). (18)

A formula of the form �π defines a GPL base which is complete in the following sense.

Proposition 2. ∀α ∈L, λ ∈ �, �π � Nλ(α) or �π � ¬Nλ(α).

Proof. In Equation (18), the degree of possibility of each ω ∈ �αi � is defined by inequalities from above and from below. 
Indeed, � i

k
(αi) means that π(ω) ≥ i

k for all ω ∈ �αi �, whereas, Nν( i
k )

(αi) means π(ω) ≤ i−1
k for all ω /∈ �αi �. It follows that

π(ω) = 0 if ω /∈ �α1 �, π(ω) = i
k if ω ∈ �αi � \ �αi+1 � (for i < k) and π(ω) = 1 if ω ∈ �αk �. In other words, π is indeed the 

only e-model of �π . Since we clearly have N(α) ≥ λ or ¬(N(α) ≥ λ) for any necessity measure, it follows that �π � Nλ(α)

or �π � ¬Nλ(α). �
If we view the epistemic state of an agent as a possibility distribution, this means that every epistemic state can be 

modelled using a GPL knowledge base. Conceptually, the construction of �π relates to the notion of “only knowing” from 
Levesque [6]. For example, assume that we want to model that all the agent knows is that β is true with certainty j

k . Then 
we have π(ω) = 1 for ω ∈ �β� and π(ω) = k− j

k for ω /∈ �β�. This means that in the notation of (18), αk− j+1 = ...αk = β and 
we obtain �π=�1(β) ∧ N

ν(
k− j+1

k )
(β) ∧ � k− j

k
(�). In the case when k = 1, Equation (18) reads N1(α) ∧ �1(α) and isolates a 

single crisp e-model corresponding to the set of classical models of α as already pointed out in [28]. It expresses that we 
precisely know the epistemic state of the external agent, namely that (s)he only knows that α is true.

In practice, we will often have incomplete knowledge about the epistemic state of this agent. Suppose we only know 
that the epistemic state is among those in S ⊆ Pk . This can be encoded as a GPL knowledge base �S = ∨

π∈S �π with �π

defined as above. As a consequence, any GPL knowledge base is semantically equivalent to a formula of the form �S , and 
any subset of epistemic states can be captured by a GPL knowledge base.

Since the modality � was introduced as an abbreviation, allowing this modality has no impact on the expressiveness 
of the language or on the completeness of the axiomatization. However, the formula �λ(α) abbreviates a GPL formula 
which may be of exponential size, and allowing the modality � in the language is thus essential if we want to capture our 
knowledge about an agent’s epistemic state in a compact way. As we will see in Section 7, this is reflected in an increase in 
computational complexity.

4.2. Contextual ignorance as restricted guaranteed possibility

The modality � allows us to express limitations on what an agent knows. However, it does not readily allow us to 
explicitly encode the ignorance of an agent on a particular topic.

Example 2. Consider again the scenario from Example 1 and suppose we want to encode that “all the agent knows about 
the games in round 3 is that Wales has won its game”. We cannot represent this as N1(won3(wal)) ∧ �1(won3(wal)), as 
that would entail e.g., ¬N1(won2(wal)), which is not warranted.

To encode limitations on the knowledge of the agent on a particular topic, understood as a set of propositional variables 
X ⊆ At, we propose the following variant of the � modality:

�X
λ (α) =

∧
ω∈�α�

�λ(conjXω )

where conjXω is the restriction of conjω to those literals about variables in X , i.e., conjXω = ∧{x | x ∈ X , ω |= x} ∧∧{¬x | x ∈ X , ω |= ¬x}. Note that |=G P L�λ(α) ≡ �At
λ (α). For example, in the scenario from Example 2, instead of assert-

ing �1(won3(wal)), we can assert �X
1 (won3(wal)), with X = {plays3(x, y) | x, y ∈ T } ∪ {won3(x) | x ∈ T } the set of all atomic

formulas about round 3 of the championship. As we will see in Section 7, allowing this refinement of the � modality leads 
to a further increase in computational complexity.

4.3. Ignorance as minimal specificity

The less specific than relation � defines a partial order on the set of e-models of a GPL knowledge base K in a natural 
way, which allows us to introduce two non-monotonic entailment relations:

• We say that � is a brave consequence of K , written K |=b � iff � is satisfied by a minimally specific e-model of K .
• We say that � is a cautious consequence of K , written K |=c � iff � is satisfied by all minimally specific e-models

of K .



Table 1
Overview of the considered variants of GPL.

Logic Meta-atoms Axioms e-Models

GPL Nλ(α) (PL), (K), (N), (D), (W) possibility degrees from �k

GPLcore� α � β (PL), (Ax1)–(Ax5) possibility degrees from [0,1] ∩Q

GPL� Nλ(α), α � β (PL), (W), (Ax1)–(Ax8) possibility degrees from [0,1] ∩Q

GPLc c(α|∼β) (PL), (RE), (LLE), (RW), (OR),
(CM), (CUT), (WRM), (INC)

possibility degrees from [0,1] ∩Q

In standard possibilistic logic, every knowledge base K has a least specific e-model πK . As a result, in standard possibilistic 
logic, the entailment relations |=, |=b and |=c coincide. In GPL, this is no longer the case.

Example 3. Let u, v, w ∈ At. The formula N1(u) ∨ N1(v) has two minimally specific e-models πu and πv defined as:

πu(ω) =
{

0 if ω |= ¬u

1 otherwise
πv(ω) =

{
0 if ω |= ¬v

1 otherwise
(19)

This already shows that |= and |=b do not coincide, as e.g., N1(u) ∨ N1(v) |=b N1(u) while clearly N1(u) ∨ N1(v) �|= N1(u). 
To see why |= and |=c do not coincide, note that since u, v and w are logically independent, N1(u) ∨ N1(v) |=c �1(w) ∧
�1(¬w) while N1(u) ∨ N1(v) �|= �1(w) ∧ �1(¬w).

Reasoning about what is true in all minimally specific e-models, as opposed to all e-models, is similar to making a kind
of meta-closed-world assumption. Intuitively, it amounts to assuming that the agent is ignorant about a formula α unless 
it has been asserted that the agent knows whether α is true or false. For example, in the scenario from Example 2, we can 
simply assert N1(won3(wal)), as the knowledge that the agent is ignorant about anything else related to round 3 is implicit 
in the fact that no other knowledge has been asserted. However, even under this assumption, there may be situations in 
which we are ignorant about whether the agent knows whether α is true, as illustrated in the next example.

Example 4. Consider again the formula N1(u) ∨ N1(v) and its minimally specific e-models πu and πv from Example 3. It 
holds that N1(u) ∨ N1(v) �|=c N1(u) ∨ N1(¬u) (since πv �|= N1(u) and πv �|= N1(¬u)), i.e., we cannot conclude that the agent 
knows about u. However, we also have N1(u) ∨ N1(v) �|=c �1(u) ∧ �1(¬u) (since πu |= N1(u)), i.e., we cannot conclude that 
the agent is ignorant about u either.

In [30], it is argued that the epistemic state of an agent can be modelled as a propositional formula α, although through 
introspection the agent knows more than what is encoded by α directly. For example, if α �|= β , the agent knows that it 
does not know β in this setting. In GPL, we can characterize what the agent knows (with full certainty) as the consequences 
of N1(α) under the inference relation |=c , which coincides with |=b in this case, since N1(α) has a unique least specific 
e-model. In particular, the argument of [30], translated to the terminology of this paper, is that theories which model
the epistemic state of an agent should have such a unique least specific e-model. Formulas for which this is not the case
(e.g., N1(a) ∨ N1(b)) are called dishonest by [30]. In our setting, however, we should not exclude GPL formulas which have
multiple minimally specific e-models, if our aim is to reason about the revealed beliefs of another agent. Indeed, such
situations can easily arise if we have incomplete information about the epistemic state of an external agent. For example,
we may know that this agent has received and read the notification email on a submitted conference paper, while not
knowing whether the paper has been accepted or rejected. In that case we know N1(accept) ∨ N1(¬accept), i.e., all we know
is that the external agent knows the result with certainty.

5. Reasoning about comparative uncertainty

In this section, we analyze in more detail how GPL can be used for reasoning about comparative uncertainty. First, in Sec-
tion 5.1, we introduce the logic GPL� , which extends GPL with formulas of the form α � β , expressing that α is strictly more 
certain than β . We will also consider a fragment GPLcore� of this logic, in which only (propositional combinations of) such 
comparative certainty assertions are allowed. In Section 5.2 we then propose an axiomatization of GPLcore� , by extending the 
axiomatization of a logic for reasoning about partially ordered formulas [7]. This axiomatization is subsequently extended 
to an axiomatization of GPL� in Section 5.3. Finally, in Section 5.4 we show how the ability of GPL to capture comparative 
uncertainty can be used to reason about propositional combinations of default rules in the sense of System P [5], and we 
introduce a variant of GPLcore� , called GPLc , which is aimed specifically at reasoning about propositional combinations of 
default rules.

Table 1 presents an overview of the considered logics. Like GPL itself, each of the logics introduced in this section 
is two-tiered, in the sense that formulas correspond to propositional combinations of meta-atoms, and each meta-atom 
corresponds to a modal operator applied to one or two propositional formulas. From a syntactic point of view, the only 



difference between the different logics lies in the considered modal operators. From a semantic point of view, an important 
difference between GPL and the variants considered in this section is that here we will allow infinitely many possibility 
degrees.

5.1. A logic for comparative uncertainty

Rather than expressing absolute degrees of certainty in the logic, one may find it more natural to simply express the 
fact that a proposition α is at least as (resp. more) certain than another one β . In possibility theory, this can be expressed 
as N(α) ≥ N(β) (resp. N(α) > N(β)). The statement N(α) ≥ N(β) is equivalent to ∀λ ∈ �+

k , N(β) ≥ λ implies N(α) ≥ λ. In 
GPL, as already pointed out in Section 3.2, the latter expression can be syntactically described as

k∧
i=1

N i
k
(α) ∨ ¬N i

k
(β).

The statement N(α) > N(β) is the negation of N(β) ≥ N(α), hence it can be encoded by

k∨
i=1

N i
k
(α) ∧ ¬N i

k
(β)

as was already illustrated in Example 1.
So far, we have assumed that the number of certainty levels k is fixed in advance. If k is not chosen sufficiently 

large, however, this can lead to some unwanted results. For example, if k = 2, the following statement, expressing 
N(α1) > N(α2) > N(α3) > N(α4) is not satisfiable:

( k∨
i=1

N i
k
(α1) ∧ ¬N i

k
(α2)

) ∧ ( k∨
i=1

N i
k
(α2) ∧ ¬N i

k
(α3)

) ∧ ( k∨
i=1

N i
k
(α3) ∧ ¬N i

k
(α4)

)

In a purely ordinal setting, however, we would not expect a formula asserting N(α1) > N(α2) > N(α3) > N(α4) to be 
always unsatisfiable. To address this issue, we introduce GPL� , a logic for reasoning about comparative uncertainty in which 
an unbounded number of certainty levels can be used at the semantic level. The language L� of the logic GPL� is defined 
as follows:

• If α ∈L and λ ∈ �+
k , then Nλ(α) belongs to L�;

• if α, β ∈L then α � β belongs to L�;
• if � and  belong to L� , then ¬� and � ∧  are also in L� .

At the semantic level, e-models will be allowed to take arbitrary values from �∗ = [0, 1] ∩ Q. As a result, �λ(α) cannot 
be defined as an abbreviation in GPL� . We will use α ∼ β as an abbreviation for ¬(α � β) ∧ ¬(β � α) and α � β as an 
abbreviation of ¬(β � α). Note that this reflects the fact that at the semantic level, � will be a complete preordering with 
∼ as its equivalence part. Intuitively, α � β means that α is strictly more certain than β , α � β means that α is at least as
certain as β , and α ∼ β means that α is equally certain as β .

Let π be a normalized possibility distribution over � such that π(ω) ∈ �∗ for every ω ∈ �, and let N be the necessity 
measure induced by π . The notion of e-model for formulas from L� is defined as follows:

• π is an e-model of Nλ(α) if N(α) ≥ λ;
• π is an e-model of α � β iff N(α) > N(β);
• π is an e-model of �1 ∧ �2 iff π is an e-model of �1 and of �2;
• π is an e-model of ¬�1 iff π is not an e-model of �1.

If π is an e-model of � we write π |=� �, and if every e-model of a set of GPL� formulas K is also an e-model of �,
we write K |=� �. If there is no cause for confusion, we also write |=� as |=.

In the following, we will also consider the fragment GPLcore� of GPL� , which is restricted to the language Lcore� , defined 
as follows:

• if α, β ∈L then α � β belongs to Lcore� ;
• if � and  belong to Lcore� , then ¬� and � ∧  are also in Lcore� .

In other words, GPLcore� is concerned only with propositional combinations of comparative certainty statements, while in 
GPL� we also allow statements such as N 1 (α) ∨ (α � β).
2



5.2. Axiomatizing GPLcore�

In this section, we introduce an axiomatization for the logic GPLcore� . To this end, we start from the axiomatization of 
the relative certainty logic that was studied by Touazi et al. [7]. A knowledge base in this latter logic is a conjunction of 
statements of the form α � β , i.e., the language they considered is the disjunction- and negation-free fragment of Lcore� . 
In [7] axiomatization for the resulting logic was introduced, inspired by an earlier axiomatization that was proposed in [51]. 
It contains one axiom:

(Ax1) α � ⊥ if α is a tautology

and three inference rules:

(RI1) If β � α ∧ χ and α � β ∧ χ then β ∧ α � χ
(RI2) If α � β , α � α′ and β ′ � β then α′ � β ′
(RI3) If α � β and β � α then ⊥
Note that the reason why (RI1)–(RI3) were formulated as inference rules in [7], rather than axioms, is because proposi-
tional combinations of comparative certainty statements were not considered in [7]. (RI1) is the so-called qualitativeness 
axiom [51] that ensures that if both α and β are more certain than χ then so is α∧β , which is only compatible with neces-
sity measures in the totally ordered case. (RI2) is a natural monotonicity assumption in agreement with logical entailment.

The axiom and inference rules are sufficient to ensure that � is a strict partial order. Indeed, (RI3) encodes asymmetry, 
while the transitivity of � was established in [7], i.e., the following inference rule can be derived from (Ax1) and (RI1)–(RI3):

If α � β and β � γ then α � γ (20)

A soundness and completeness result was also established in [7] with respect to a semantics in terms of partial orders 
between sets of models �α� and �β� verifying obvious semantic counterparts of the axioms. Note in particular that, unlike 
in GPLcore� , the semantics considered in [7] is not based on necessity measures.

Clearly, the axiom (Ax1) and inference rules (RI1)–(RI3) are also sound for GPLcore� . Note, however, that (RI1)–(RI3) can 
be formulated as axioms in GPLcore� :

(Ax2) (β � α ∧ χ) ∧ (α � β ∧ χ) → (β ∧ α � χ)

(Ax3) (α � β) → (α′ � β ′) if α → α′ and β ′ → β are tautologies
(Ax4) ¬((α � β) ∧ (β � α))

Further axioms are needed to capture the fact that arbitrary propositional combinations of comparative certainty statements 
are allowed in GPLcore� . Furthermore, to capture the fact that our semantics is based on necessity measures, we will need 
to impose that � is the complement of a weak order. Recall that α ∼ β stands for ¬(α � β) ∨ (β � α). It is then obvious 
that the following formulas can be derived from (Ax1)–(Ax4) together with the axioms from propositional logic and modus 
ponens:

(S1) (α � β) ∨ (β � α) ∨ (α ∼ β)

(S2) ¬((α � β) ∧ (α ∼ β))

(S3) (α ∼ β) → (β ∼ α)

To ensure that ∼ is transitive, we augment the relative certainty logic from [7] with the following additional axiom:

(Ax5) (α � β) ∧ (α ∼ α′) → (α′ � β)

For K a set of GPLcore� formulas and � a GPLcore� formula, we write K �core� � to denote that � can be derived from K using
(Ax1)–(Ax5), modus ponens and the axioms of classical logic. When there is no cause for confusion, we also write �core�
as �. We now show some properties of � and ∼ that follow from the proposed axioms and inference rules, and which will 
be useful for showing the soundness and completeness result.

Proposition 3. The following theorems hold:

�core� (α ∼ β) ∧ (β ∼ γ ) → (α ∼ γ ) (21)

�core� α ∼ α (22)

�core� (α ∼ β) → (α′ ∼ β) if α ≡ α′ is a tautology (23)

�core� (α � β) ∧ (β ∼ β ′) → (α � β ′) (24)

�core� (α � β ∧ χ) → (α � β) ∨ (α � χ) (25)



Proof.

Eq. (21) From (S1) we know that α ∼ γ holds unless α � γ or γ � α holds. However, from α � γ and α ∼ β , we derive 
β � γ using (Ax5), which leads to a contradiction with β ∼ γ when using (S2). Similarly, from γ � α and β ∼ γ , 
we derive β � α using (S3) and (Ax5), leading to a contradiction with α ∼ β using (S3) and (S2).

Eq. (22) From (S1) and the irreflexivity of � we immediately obtain (22).
Eq. (23) Note that from (S1) we know that α′ ∼ β holds unless α′ � β or β � α′ holds. From α′ � β and |=α ≡ α′ , we can 

derive α � β using (Ax3), which leads to a contradiction with α ∼ β when using (S2). Similarly, from β � α′ and 
|=α ≡ α′ , we can derive β � α using (Ax3), which leads to a contradiction with α ∼ β when using (S3) and (S2).

Eq. (24) From (S1) we know that α � β ′ holds unless α ∼ β ′ or β ′ � α holds. From α ∼ β ′ and β ∼ β ′ , we can derive α ∼ β

using (S3) and (21), which leads to a contradiction with α � β when using (S2). From β ′ � α and β ∼ β ′ , we can 
derive β � α using (S3) and (Ax5), which leads to a contradiction with α � β using (Ax4).

Eq. (25) Suppose ¬(α � β) ∧ ¬(α � χ) holds. Then by (S1) we have

((β � α) ∨ (β ∼ α)) ∧ ((χ � α) ∨ (χ ∼ α))

Now suppose that α � β ∧ χ were also the case. From either β � α or β ∼ α we can then derive β � β ∧ χ , using 
respectively (20) and (Ax5). Similarly, from either χ � α or χ ∼ α we can derive χ � β ∧ χ . Using (Ax3) we can 
derive β � χ ∧ β ∧ χ and χ � β ∧ β ∧ χ , which using (Ax2) gives us β ∧ χ � β ∧ χ . Using (Ax3) we derive a 
contradiction, and thus we can conclude ¬(α � β ∧ χ). �

Note that it follows that ∼ is an equivalence relation. Indeed, the symmetry of ∼ is expressed in (S3), while its transi-
tivity and reflexivity are expressed in (21) and (22) respectively. It follows that the relation � corresponds to a complete 
preorder (or weak order) on the language L. In contrast, when using the partial order semantics of [7], the relation ∼ is 
not transitive, and property (25) does not hold, namely we do not have that α > β ∧ γ implies one of α > β or α > γ
in the comparative certainty logic of [7]. This clearly illustrates the difference with the relative certainty logic from [7]. 
Axiom (Ax5) is not derivable from (Ax1)–(Ax4), since the latter only ensure that � is a partial order, hence in that case ∼
also covers incomparability and is generally not transitive.

We can show the following soundness and completeness result for this extended set of axioms w.r.t. the GPLcore� seman-
tics.

Proposition 4. Let � and  be formulas in Lcore� . It holds that � |=�  iff � �core�  .

Proof. The proof is given in Appendix B. �
Finally, note that while we have focused on comparative necessity, in a similar way we could develop a logic for reasoning 

about comparative guaranteed possibility. Among other applications, it seems that such a logic could be useful for modelling 
and reasoning about desires [52].

5.3. Axiomatizing GPL�

In GPL� we can express formulas such as Nλ(α) ∧ (β � α). Clearly, this formula entails Nλ(β). To capture such inferences 
at the syntactic level, we extend the axiomatization of GPLcore� with the following axioms:

(Ax6) Nλ(α) ∧ ¬Nλ(β) → (α � β)

(Ax7) N1(α) ≡ (α ∼ �)

(Ax8) Nλ(α) → (α � ⊥)

Note that (Ax6) is equivalent to Nλ(α) ∧ (β � α) → Nλ(β). In addition to these axioms, we will also use the GPL axioms
(PL) (i.e. the axioms of classical logic) and (W). In particular, for K a set of GPL� formulas and � a GPL� formula (or set of 
GPL� formulas), we write K �� � to denote that � can be derived from K using (Ax1)–(Ax8), (PL), (W) and modus ponens.

Note (K), (N) and (D), which are axioms in GPL but not in GPL�, can be derived as theorems in GPL� . To show this for (K), 
we prove that Nλ(α → β) ∧ Nλ(α) ∧ ¬Nλ(β) is inconsistent. By applying (Ax6) twice, we can derive (α → β � β) ∧ (α � β). 
This can be weakened to (α → β � α ∧ β) ∧ (α � (α → β) ∧ β) using (Ax3), from which we can derive α ∧ (α → β) � β

using (Ax2). The latter formula can be weakened to β � β by applying (Ax3) again, which is inconsistent with (Ax4). The 
GPL axiom (N) can straightforwardly be derived from (Ax7) and (22). Finally, (D) has to be expressed as Nλ(α) → ¬N 1

k
(¬α),

since the abbreviation �1(α) is not used in GPL� . We show that Nλ(α) ∧ N 1
k
(¬α) is inconsistent. To this end, we can derive

N 1
k
(⊥) using (K), (N), (W) and (PL). Using (Ax8), this leads to ⊥ � ⊥, which is inconsistent with (Ax4).

We can show the following soundness and completeness result.

Proposition 5. Let � and  be formulas in L� . It holds that � |=�  iff � ��  .

Proof. The proof is given in Appendix C. �



5.4. Reasoning about conditionals

There are two rather distinct traditions in the field of non-monotonic reasoning. On the one hand, formalisms such as 
answer set programming, Reiter’s default logic [53], and Moore’s autoepistemic logic [29] allow us to explicitly make default 
assumptions of the form “unless there is evidence to the contrary, assume X”. We will discuss such forms of non-monotonic 
reasoning in more detail in Section 6. On the other hand, there is a large class of approaches to reason about rules with 
exceptions, based on the view that in the case of a conflict, priority should be given to more specific rules: from the 
information that birds generally fly, penguins generally cannot fly, and all penguins are birds, these approaches allow us to 
derive that Tweety, who is a penguin, cannot fly. In this section we show that we can encode such exception-tolerant rules 
in GPLcore� .

Let us write α|∼β to encode the conditional “if α then generally β”. Several approaches have been proposed to reason 
about such exception-tainted rules [54–56,23]. One of the most important results in this field is that despite the different 
intuitions underlying these approaches, there is a consensus shared with virtually all of them about the minimal set of 
conditionals of the form α|∼β that should be entailed by a given rule base R = {α1|∼β1, ..., αn|∼βn}. This common core of 
conclusions is captured by the inference rules of System P [5]:

α|∼α (Reflexivity)

If |=α ≡ α′ and α|∼β then α′|∼β (Left logical equivalence)

If β |= β ′ and α|∼β then α|∼β ′ (Right weakening)

If α|∼γ and β|∼γ then α ∨ β|∼γ (OR)

If α|∼β and α|∼γ then α ∧ β|∼γ (Weak monotony)

If α ∧ β|∼γ and α|∼β then α|∼γ (CUT)

The last two inference rules correspond to the idea of cumulativity, whereby α ∧ β|∼γ and α|∼γ are equivalent if α|∼β is 
taken for granted. If we only consider conditionals α|∼β for which α �|= ⊥, the conclusions that System P allows us to derive 
from the rule base R can be characterized using possibility theory. Specifically, let PR be the set of all possibility measures 
� for which �(αi ∧ βi) > �(αi ∧ ¬βi) for every i ∈ {1, ..., n}. It can then be shown [57] that α|∼β can be derived from R
using the axioms of System P iff �(α∧β) > �(α∧¬β) for every � ∈PR . Moreover, it holds that �(α∧β) > �(α∧¬β) for 
the unique least specific possibility measure (i.e., the possibility measure induced by the least specific possibility distribution 
relative to a finite but sufficiently large set of certainty levels) in PR iff α|∼β is in the rational closure of R [55], the latter 
being a well-known refinement of System P.

This means that both System P and the rational closure can naturally be characterized using GPLcore� . In particular, we 
associate with each conditional α|∼β the GPLcore� formula c(α|∼β), stating that �(α ∧ β) > �(α ∧ ¬β), or equivalently 
N(α → β) > N(α → ¬β):

c(α|∼β) = (α → β) � (α → ¬β)

Similar as before, we find that we can interpret � as an abbreviation in the language of GPLk , provided that k is sufficiently 
large. In particular, we have the following proposition.

Proposition 6. Let c(R) = {c(αi |∼βi) | (αi |∼βi) ∈ R}. Assume that α,α1, ...,αn are consistent. It holds that:

• c(R)|=k
G P Lc(α|∼β) iff α|∼β can be derived from R using the axioms of System P, provided that k ≥ |R| + 1.

• α|∼β is in the rational closure of R iff c(α|∼β) is satisfied by the (unique) least specific GPLk e-model of c(R), provided that
k ≥ |R|.

Proof. If k ≥ |R| +1, it follows from Proposition 18 that c(R) ∧¬c(α|∼β) is inconsistent, or equivalently that c(R)|=�c(α|∼β), 
iff every e-model of c(R) also satisfies c(α|∼β). In other words, given the result from [57], c(R)|=�c(α|∼β) holds iff α|∼β

can be derived from R using the axioms of System P.
The least specific e-model of c(R) corresponds to the least specific e-model of the possibilistic counterpart to the 

Z-ranking [23]. As this possibilistic counterpart corresponds to a knowledge base with at most |R| levels, it is clear that
least specific e-model of c(R) will correspond to the rational closure of R if k ≥ |R|. �

In contrast to System P, GPLcore� can also be used to reason about propositional combinations of conditionals. For example, 
it holds that

c(a|∼b) ∨ c(a|∼c)|=�c(a|∼b ∨ c) (26)

Indeed, using (Ax3) it follows from either of (a → b) � (a → ¬b) and (a → c) � (a → ¬c) that (a → b ∨ c) � (a → ¬(b ∨ c).
Hence, we find 

(
(a → b) � (a → ¬b)

) ∨ (
(a → c) � (a → ¬c)

) |= (a → b ∨ c) � (a → ¬(b ∨ c), which is equivalent to (26). 



This means that we can use GPLcore� to define a logic for reasoning about conditionals. Let us define the language Lc as the 
following fragment of Lcore� :

• If α, β ∈L and α �|= ⊥, then ((α → β) � (α → ¬β)) belongs to Lc ;
• If � and  belong to Lc , then ¬� and � ∧  are also in Lc .

We will refer to the corresponding logic as GPLc . Its satisfaction relation |=c is simply defined as the restriction of |=� to the 
language fragment Lc . To reason about formulas in Lc we can rely on the axiomatization of Lcore� proposed in Section 5.2. 
Alternatively, as we show next, we can also define a syntactic inference relation �c that allows derivations to say within 
the language fragment Lc . To this end, we will extend the inference rules of System P, all of which are theorems in GPLcore� . 
In particular, it was shown in [7] that the following System P rules, here written as GPLc formulas, can be derived from
(Ax1)–(Ax3):

(OR) c(α|∼γ ) ∧ c(β|∼γ ) → c(α ∨ β|∼γ )

(CM) c(α|∼β) ∧ c(α|∼γ ) → c(α ∧ β|∼γ )

(CUT) c(α ∧ β|∼γ ) ∧ c(α|∼β) → c(α|∼γ )

Furthermore, it is easy to see that the following System P rules also follow from (Ax1)–(Ax3):

(RE) c(α|∼α), if α is consistent
(LLE) c(α|∼β) → c(α′|∼β), if |= (α ≡ α′)
(RW) c(α|∼β) → c(α|∼β ′), if β |= β ′

In other words, all the inference rules of System P are theorems in GPLcore� . To enable reasoning about propositional combi-
nations of default rules in GPLc , we will also use the following axioms:

(WRM) c(α|∼γ ) ∧ ¬c(α|∼¬β) → c(α ∧ β|∼γ )

(INC) c(α|∼β) → ¬c(α|∼¬β)

Note that (INC) follows directly from (Ax4), i.e., the GPLc axiom (INC) is a theorem in GPLcore� . The same holds for (WRM), 
which follows from Proposition 7 below. The notation for the axiom (WRM) was introduced in [58], where a logic called 
NP+ is discussed, in which disjunctions and negations can also be expressed. Note that (WRM) is similar to, but different 
from the rational monotonicity rule considered in [59]. The latter allows to derive α ∧ β|∼γ as soon as α|∼γ holds and 
α|∼¬β cannot be established. In contrast, (WRM) requires that the negation of α|∼¬β can be derived. The axiom (INC) is 
needed to make inconsistencies explicit at the propositional meta-level.

For K a set of GPLc formulas and  a GPLc formulas, we write K �c  to denote that  can be derived from K using
(RE), (LLE), (RW), (OR), (CM), (CUT), (WRM), (INC), the axioms of propositional logic and modus ponens.

Proposition 7. Let � and  be formulas in Lc . Then � �c  iff � |=c  .

Proof. The proof is presented in Appendix D. �
A similar result was obtained in [60], where possibility theory was also used to give a semantics to disjunctions of 

conditionals, albeit in a different context. Other logics in which propositional combinations of conditionals can be expressed 
include the logic NP+ from [58], which has a semantics based on infinitesimal probabilities, the approach from [61], which 
is based on a three-valued semantics of conditional objects, and Lewis’ logic VA [62], whose sphere semantics has been 
related to comparative possibility relations in [63] and can thus be simulated in GPL in a similar way.

Compared to logics such as NP+ and VA, the main advantage of GPL is that we are able to provide a more intuitive 
semantics. Another advantage is that GPL can be implemented using SAT solvers in a relatively straightforward way, which 
should enable very efficient reasoning about default rules. Finally, embedding a logic of conditionals in GPL has the advan-
tage that it allows us to combine conditionals with other types of epistemic knowledge. For example, we can use ¬�1(β)

to express that β is an abnormal situation, and, e.g., use N1(α) → ¬�1(β) to encode that if α has been observed then β
should be considered abnormal, which is more cautious than α|∼¬β .

6. Non-monotonic logic programming in GPL

The ability of GPL to model limitations on the knowledge of an agent makes it a natural framework for implementing 
various forms of non-monotonic reasoning. Section 5.4 already explained how to capture reasoning with exception-tainted 
rules. In the following, we show how the semantics of answer set programs can also be naturally captured in GPL. Sec-
tion 6.2 then shows a close correspondence between GPL and the logic of minimal belief and negation as failure [64]. In 



particular, we obtain that the notion of minimality that is required in the latter logic is less demanding than the principle 
of minimal specificity in GPL.

6.1. Casting answer set programs in GPL

Consider the GPL formula �1(a) → N1(b). Intuitively, this formula allows us to reason about the absence of information: 
as long as there is no reason to believe that a is false, we assume that b is necessarily true. Note, however, that �1(a) →
N1(b), which is equivalent to N 1

k
(¬a) ∨ N1(b), has two minimally specific e-models: the e-models π∗

a and πb defined as 
follows

π∗
a (ω) =

{
k−1

k if ω |= a

1 otherwise
πb(ω) =

{
0 if ω |= ¬b

1 otherwise

Note that πb is Boolean in the sense that πb(ω) ∈ {0, 1} for every ω ∈ �, whereas π∗
a is not, if k ≥ 2. It turns out that in 

general, if we restrict our attention to minimally specific Boolean e-models of GPL formulas of this type with k = 2, we 
obtain a semantics for reasoning from the absence of information, which captures the stable model semantics of answer 
set programs. As we shall see the condition k > 1 is crucial. If k = 1 then �1(a) → N1(b) is equivalent to N1(¬a) ∨ N1(b), 
which does not allow for nonmonotonicity and only corresponds to a GPL (or more specifically MEL) translation of Kleene 
logic implication [65]. For the remainder of this section, we will focus on GPL2, although all the results readily translate to 
GPLk for any k ≥ 2.

Recall that an answer set program is a set of rules of the form:

a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm ∧ not c1 ∧ ... ∧ not c� (27)

Intuitively, this rule encodes the idea that if we have no knowledge that any of c1, ..., c� are true, then whenever we can 
derive b1, ..., bm we will assume that one of a1, ..., an must be true as well. As suggested in [66], we can view such a rule as 
a constraint on the possible epistemic states that a given agent may have. Let Lit = At ∪ {¬a | a ∈ At} be the set of literals in 
the language. Let M ⊆ Lit be such that {a, ¬a} � M for every a ∈ At. Such a set M ⊆ Lit can intuitively be viewed as a partial 
model: a ∈ M means that a is known to be true, ¬a ∈ M means that a is known to be false, and a, ¬a /∈ M means that the 
truth value of a is unknown. The reduct P M of an answer set program P w.r.t. a partial model M is defined as follows:

P M = {a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm | M ∩ {c1, ..., c�} = ∅, (a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm ∧ not c1 ∧ ... ∧ not c�) ∈ P }
Note that the reduct P M is free of the negation-as-failure operator “not”. The set M is called a model of a rule a1 ∨ ... ∨an ←
b1 ∧ ... ∧ bm iff {b1, ..., bm} � M or M ∩ {a1, ..., an} �= ∅. Furthermore, M is called a model of a set of rules P M (without 
negation-as-failure) if it is a model of every rule in P M . Finally, M is called an answer set of an answer set program P iff it 
is the (unique) minimal model of P M w.r.t. set inclusion.

Several equivalent methods have been identified to characterize the semantics of answer set programs [67]. Most of 
these characterizations are based on some kind of fixpoint construction. In the definition above, this is captured by the 
reduct, which fixes the interpretation of all literals under the scope of the “not” operator.

Using GPL, however, we can semantically characterize answer set programs purely in terms of minimally specific 
e-models. Specifically, given an answer set program P , we let K P be the GPL knowledge base obtained by translating
each rule of the form (27) into the following formula:

N1(b1) ∧ ... ∧ N1(bm) ∧ �1(¬c1) ∧ ... ∧ �1(¬c�) → N1(a1) ∨ ... ∨ N1(an) (28)

In other words, the body of a rule of the form (27) is satisfied if the agent knows each bi with maximal certainty and 
moreover the agent considers ¬c j fully possible for each j. Note that �1(¬c j) is equivalent to ¬N 1

2
(c j) in GPL2.

The transformation in (28) is by itself not enough, as ASP is based on the idea of forward chaining and in particular 
does not allow contrapositive reasoning (e.g., from the rule a ← b and the fact ¬a we should not derive ¬b). To see how 
forward chaining could be enforced using GPL, first note that there are three ways in GPL2 in which the formula (28) can 
be satisfied by a minimally specific e-model π of �P :

1. one of the meta-literals N1(bi) is not satisfied by π ;
2. one of the meta-literals �1(¬ci) is not satisfied by π , i.e., N 1

2
(ci) is satisfied by π ;

3. one of the meta-literals N1(ai) is satisfied by π .

The first case intuitively corresponds to an answer set which does not include bi , i.e., to a situation in which the rule (27)
does not apply. The third case intuitively corresponds to an answer set in which ai has been included to make the rule 
(27) satisfied, i.e., to a situation in which ai has been derived using (non-deterministic) forward chaining. The second case,
however, intuitively corresponds to a contrapositive inference, i.e., (27) has been satisfied by making ci true. The latter
inference is not allowed in ASP and the second case should thus be excluded. To this end, we take advantage of the fact
that it is only in the second case that certainty degrees other than 0 or 1 are needed. Note that here we do not use degrees



for modelling uncertainty, but intuitively for differentiating between literals that are assumed to be true and literals that 
can effectively be derived. In particular, it turns out that answer sets correspond to the minimally specific e-models of �P

in which only the certainty degrees 0 and 1 occur. Formally, the requirement that only these certainty degrees occur is 
encoded by the GPL formula �, defined as follows:

�=
∧
a∈At

N1(a) ∨ N1(¬a) ∨ (�1(a) ∧ �1(¬a)) (29)

The formula � expresses that for every atom a, the agent is either fully certain about the truth value of a (in which case 
N1(a) ∨ N1(¬a) holds) or the agent is completely ignorant about a (in which case �1(a) ∧ �1(¬a) holds). It turns out 
that the answer sets of P correspond to the minimally specific e-models of �P that satisfy �. In particular, we have the 
following correspondence.

Proposition 8. Let P be an answer set program and let K P be the corresponding GPL2 knowledge base. It holds that P has a consistent 
answer set iff

K P |=b

∧
a∈At

N1(a) ∨ N1(¬a) ∨ (�1(a) ∧ �1(¬a)) (30)

Furthermore, it holds that l is included in at least one answer set of P iff

K P |=b

( ∧
a∈At

N1(a) ∨ N1(¬a) ∨ (�1(a) ∧ �1(¬a))
)

∧ N1(l) (31)

Finally, it holds that l is included in all answer sets of P iff

K P |=c

( ∧
a∈At

N1(a) ∨ N1(¬a) ∨ (�1(a) ∧ �1(¬a))
)

→ N1(l) (32)

Proof. The proof is presented in Appendix E. �
Note that this result does not hold in GPL1. Indeed, for k = 1, like for instance in [28], we have that 

∧
a∈At N1(a) ∨

N1(¬a) ∨ (�1(a) ∧ �1(¬a)) is a tautology. This explains why a similar characterization is not possible in autoepistemic 
logic, or other modal logics which rely on Boolean certainty degrees only. In contrast, equilibrium logic [68] does allow a 
similar characterization, by using a Boolean valuation in two worlds (called here and there) instead of intermediary certainty 
degrees. The advantage of GPL over equilibrium logic is that the epistemic interpretation of formulas is explicit, which make 
them easier to interpret intuitively (although this comes at the cost of a less concise syntax); we refer to [8] for a more 
detailed discussion on the relation between GPL and equilibrium logic. Note that while Fariñas et al. [69] have proposed 
a characterization of equilibrium logic in modal logic, this characterization does not highlight the intuitive meaning of 
equilibrium logic formulas, from an epistemic reasoning point of view. Recently, the same authors [70] have proposed 
an epistemic equilibrium logic. Again, however, the aim of this logic is not to provide an intuitive method for epistemic 
reasoning, but to generalize epistemic specifications [71,72], a generalization of ASP which allows a new type of literal K l
in the body of rules, intuitively stating that l is true in all answer sets.

6.2. Logic of minimal belief and negation as failure

The characterization of ASP using GPL easily allows us to generalize the stable model semantics to a larger class of logic 
programs. For example, we could readily provide a semantics for disjunctions of ASP rules, we could allow negation as 
failure to appear in the head of a rule, or use expressions of the form N1(α) where α can be an arbitrary propositional 
expression instead of only a literal (see [66] for a more elaborate discussion on the latter point).

There are a number of existing logics which can similarly be used to provide a semantics for negation-as-failure in a 
more general setting. One of the simplest and earliest of these logics is Lifschitz’ logic of minimal belief and negation as 
failure (MBNF) [64]. The language of this logic is the usual propositional language, extended with two modalities B and 
“not”. The semantics are defined w.r.t. triples of the form (ω, Sb, Sn), where ω ∈ � is a propositional interpretation and 
Sb, Sn ⊆ � are sets of propositional interpretations:

• For an atom a, (ω, Sb, Sn)|=M BN F a iff ω |= a;
• (ω, Sb, Sn)|=M BN F ¬ψ iff (ω, Sb, Sn) �|=M BN F ψ ;
• (ω, Sb, Sn)|=M BN F ψ ∧ φ iff (ω, Sb, Sn)|=M BN F ψ and (ω, Sb, Sn)|=M BN F φ;
• (ω, Sb, Sn)|=M BN F Bψ iff (ω′, Sb, Sn)|=M BN F ψ for every ω′ ∈ Sb (i.e., Sb ⊆ �ψ � if ψ is a propositional formula);
• (ω, Sb, Sn)|=M BN F not ψ iff there exists an ω′ ∈ Sn such that (ω′, Sb, Sn) �|=M BN F ψ (i.e., Sn � �ψ � if ψ is a propositional

formula).



Intuitively, Bψ is true if ψ is known to be true, i.e., we can think of Sb as the set of worlds that the agent considers possible. 
Intuitively not ψ is true unless ψ is known to be true, where we instead consider Sn as the set of worlds that the agent 
considers possible. The satisfaction relation |= does not require any constraints on the relationship between Sb and Sn , 
although as we will see below, in models we will have that Sb = Sn . So, Sb is used to evaluate the “B” modalities and Sn is 
used to evaluate the “not” modalities. The use of two separate epistemic states can thus be thought of as a technical trick 
to encode a notion of minimality. As usual, ψ ∨ φ is seen as an abbreviation of ¬(¬ψ ∧ ¬φ) and ψ → φ as an abbreviation 
of ¬(ψ ∧ ¬φ). Moreover, (ω, Sb, Sn) satisfies a set of MNBF formulas K iff it satisfies every formula in that set. A structure 
(ω, S) is called a model of a formula ψ iff

1. (ω, S, S)|=M BN F ψ ; and
2. (ω′, S ′, S) �|=M BN F ψ for any S ′ ⊃ S and any propositional interpretation ω′ .

This second condition essentially plays a similar role to the notion of minimal specificity in GPL (and the notion of 
h-minimality in equilibrium logic). Note that the fact that modalities can be nested in MBNF does not really increase
its expressive power, as e.g., B(B(ψ)) and B(ψ) are equivalent (i.e., are satisfied by the same triples). Let us now consider
the restriction of the language of MBNF to formulas without nested modalities, in which all atomic formulas occur within
the scope of a modality. Let us refer to this fragment as MBNF1. This fragment is particularly interesting, because it can
be used to define the semantics of answer set programming, in a way which is similar to the characterization in GPL from
Proposition 8. In particular, consider an ASP rule of the following form

a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm ∧ not c1 ∧ ... ∧ not c�

The corresponding formula in MBNF1 is given by

B(b1) ∧ ... ∧ B(bm) ∧ not (c1) ∧ ... ∧ not (c�) → B(a1) ∨ ... ∨ B(an)

Lifschitz showed the following result.

Proposition 9. [64] Let P be an answer set program and let K be the corresponding MNBF knowledge base. If holds that a set of literals 
M is a (consistent) answer set of P iff there exists a model (ω, S) of K such that S = �M �.

We will now show that MBNF1 is related to, but different from GPL2. In particular, with each MBNF1 knowledge base �, 
the corresponding GPL knowledge base g(�) is obtained by replacing each occurrence of B(α) by N1(α) and each occur-
rence of not (α) by �1(¬α). Note that for MBNF1 formulas, we can identify models with sets S ⊆ � since whenever (ω, S)

is also a model of an MBNF1 formula, then (ω′, S) is a model for any interpretation ω′ . For the same reason, we will write 
(Sb, Sn) instead of (ω, Sb, Sn) when the choice of ω is irrelevant.

In the following, for any S ⊆ �, we define the possibility distribution πS as πS (ω) = 1 if ω ∈ S and πS (ω) = 0 otherwise.

Proposition 10. Let � be an MBNF1 knowledge base and let g(�) be the corresponding GPL2 knowledge base. Let S ⊆ �. Then 
(S, S)|=M BN F � iff πS |=G P L g(�).

Proof. For any propositional formula α, we have that (S, S)|=M BN F B(α) iff α is true in every ω ∈ S iff πS |=G P L N1(α). 
Similarly, we have (S, S)|=M BN F not (α) iff α is false in some ω ∈ S iff πS |=G P L �1(¬α). It follows that (S, S)|=M BN F � iff 
πS |=G P L g(�). �

Moreover, if πS is a minimally specific e-model of g(�) then S is obviously a model of �. However, we do not have 
that every model S of an MBNF1 formula � corresponds to a minimally specific e-model of g(�), as is illustrated by the 
following example.

Example 5. We consider an example with only one atom a and we denote � = {ωa, ω¬a}, where ωa is the interpretation 
which makes a true and ω¬a the interpretation which makes a false. Let ψ = B(a) ∨ not (a). Then g(ψ) = N1(a) ∨ �1(¬a)

has only one minimally specific e-model π , defined by π(ωa) = π(ω¬a) = 1. Accordingly, S1 = {ωa, ω¬a} is a model of ψ ; 
indeed we have (S1, S1) |=M BN F not (a) and S1 does not have any supersets since ωa and ω¬a are the only interpreta-
tions. However, we show that S2 = {ωa} is also a model of ψ . First note that (S2, S2)|=M BN F B(a) hence we already have 
(S2, S2)|=M BN F ψ . To show that S2 is a model, it suffices to show that (S1, S2) �|=M BN F ψ for the only superset S1, which is 
easy to verify. Indeed S1 is not in �a�, which violates B(a), and S2 = �a�, which violates not (a).

This means that the notion of minimal specificity in GPL is more demanding than the notion of minimality imposed on 
models in MBNF. In [8], we obtained a similar result when comparing GPL to equilibrium logic [68]. This discrepancy espe-
cially seems to arise for theories which correspond to logic programs with negation-as-failure in the head. It is well-known 
that in the presence of negation-as-failure in the head, most semantics that cover such cases lead to answer sets for which 
minimality no longer holds. While this has been advocated in e.g., [73] as a useful feature to encode particular constructs, 
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such as inclusive disjunction, this behaviour remains somewhat counter-intuitive in a setting where minimal commitment 
is one of the main guiding principles.

The encoding of MBNF1 in GPL is similar in spirit to the encoding of equilibrium logic that we proposed in [8]. In 
particular, the GPL encoding of an equilibrium logic theory is also such that (some) stable models correspond to those 
minimally specific e-models π in which π(ω) ∈ {0, 1} for each ω ∈ �. However, the encoding of MBNF1 is considerably 
more intuitive. This is a consequence of the fact that the modalities in MBNF have a clear epistemic flavor, which does not 
seem to be the case for the connectives in equilibrium logic.

7. Computational complexity

In this section, we will consider the computational complexity of the main reasoning tasks for GPL. The modalities �λ ,
∇λ , �X

λ , ∇X
λ were introduced in Section 4 as abbreviations of formulas that only contain modalities of the form Nλ . However, 

without these abbreviations, formulas may be exponentially longer, and as the computational complexity of reasoning tasks 
is expressed in function of the size of the formulas in the knowledge base, this has an impact on the complexity results. In 
other words, while these modalities have been introduced as abbreviations, they are not considered part of the language of 
GPL for the complexity results. We then also consider the variants GPL� and GPL�

R , in which these modalities are assumed 
to be included in the language:

GPL formulas are formulas in which all modalities are of the form Nλ or �λ .
GPL� formulas are formulas in which also modalities of the form �λ and ∇λ are allowed.
GPL�

R formulas are formulas in which moreover modalities of the form �X
λ and ∇X

λ are allowed.

Table 2 provides an overview of the complexity results that we will establish. In addition to the results from Table 2, 
we will also show that satisfiability checking in GPLcore� and GPL� are NP-complete (and thus that entailment checking is 
coNP-complete), but the brave and cautious inference relations will not be considered in this case, as the notion of minimal 
specificity is not well-defined for these logics (e.g. a � ⊥ does not have a minimally specific model).

Recall that a decision problem is in � P
i (i > 1) if it can be solved in polynomial time on a non-deterministic Turing 

machine using a � P
i−1-oracle, where � P

1 = NP. A decision problem is in �P
i if its complement is in � P

i . A decision problem 
is in �P

2 if it can be solved in polynomial time on a deterministic Turing machine, by making a logarithmic number of calls 
to an NP-oracle.

7.1. Complexity of reasoning about GPL formulas

Proposition 11. The problem of deciding whether a GPL formula is satisfiable is NP-complete (w.r.t. the size of the formula).

Proof. Hardness follows straightforwardly from the NP-completeness of satisfiability in propositional logic. In particular, 
note that the propositional formula α is satisfiable iff the GPL formula �1(α) is satisfiable.

We now propose an NP procedure for checking the satisfiability of an arbitrary GPL formula �. Each GPL formula � is 
equivalent to a disjunction of meta-terms, and it is sufficient that one of these terms is satisfiable. In polynomial time, we 
can guess such a term:

Nλ1(α1) ∧ ... ∧ Nλn(αn) ∧ �μ1(β1) ∧ ... ∧ �μm (βm) (33)

We know that Nλ1 (α1) ∧ ... ∧ Nλn (αn) has a unique least specific e-model π if α1 ∧ ... ∧ αn is satisfiable. All that we need 
to check is whether this is the case, and whether �(βi) ≥ μi for each i, with � the possibility measure induced by π . In 
other words, there are two conditions which we need to check. First, the following formula needs to be consistent:

α1 ∧ ... ∧ αn (34)

Second, to check whether �(βi) ≥ μi in the least specific model of Nλ1 (α1) ∧ ... ∧ Nλn (αn), we need to verify that βi has a 
model ω such that ω |= α j holds for all j where λ j ≥ ν(θ). In other words, we need to verify for each βi that the following 
formula is consistent:∧

{αi |λi ≥ ν(θ)} ∧ β j (35)



To check satisfiability in NP, when we guess the term (33), we can also guess an interpretation for each of these SAT 
instances and verify that they are indeed models of the corresponding propositional formulas. �
Corollary 1. The problem of deciding whether � |=  , with � and  GPL formulas, is coNP-complete.

Proof. This follows immediately from the observation that � |=  holds iff � ∧ ¬ is not satisfiable. �
From the proof it is immediately clear that the same complexity results hold in the case of MEL, i.e., when only the 

certainty levels 0 and 1 are used. In other words, there is no penalty, in terms of computational complexity, for allowing 
more certainty levels.

The proof of Proposition 11 suggests a way to reason with GPL formulas using standard SAT solvers. In particular, let �
be a GPL formula in which no negations occur at the meta-level. Since |=G P LNλ(α∧β) ≡ Nλ(α) ∧Nλ(β), we can also assume 
w.l.o.g. that every meta-literal of the form Nλ(α) is such that α is a disjunction of literals and that every meta-literal of
the form �λ(α) is such that α is a conjunction of literals. Let f (�) be the propositional formula which is obtained from �
by replacing every meta-literal of the form Nλ(α) by a fresh atom a(α, λ) and every meta-literal of the form �λ(α) by a
fresh atom b(α, λ). The SAT instance � corresponding with � contains the formula f (�) as well as the following formulas,
involving fresh atomic formulas of the form x(β,μ) , for each meta-literal �μ(β). Specifically, for each meta-literal of the
form �μ(β) we add:

b(β,μ) → a(β,μ)

1 ∧ ... ∧ a(β,μ)
n ∧ ¬b(β,μ)

1 ∧ ... ∧ ¬b(β,μ)
m (36)

where we assume β=a1 ∧ ... ∧ an ∧¬b1 ∧ ... ∧¬bm . Furthermore for each meta-literal of the form Nλ(α) such that λ ≥ ν(μ)

we add:

a(α,λ) ∧ b(β,μ) → c(β,μ)

1 ∨ ... ∨ c(β,μ)
r ∨ ¬d(β,μ)

1 ∨ ... ∨ ¬d(β,μ)
s (37)

where we assume α=c1 ∨ ... ∨ cr ∨ ¬d1 ∨ ... ∨ ¬ds . Note that the formulas (36) and (37) are added to check the condition 
that the formula (35) has to be satisfiable for each meta-literal of the form �μ(β) in the chosen meta-term. The other 
condition that we need to check is (34), which we can do by adding the following formulas for each meta-literal of the 
form Nλ(α):

a(α,λ) → c1 ∨ ... ∨ cr ∨ ¬d1 ∨ ... ∨ ¬ds (38)

where we again assume that α=c1 ∨ ... ∨ cr ∨ ¬d1 ∨ ... ∨ ¬ds .
The following example illustrates the proposed reduction to SAT.

Example 6. Consider the following GPLk formula for k = 4:

� = N1(x ∨ y) ∧ N 3
4
(¬y) ∧ N 2

4
(¬x ∨ z) ∧ (� 3

4
(¬z) ∨ � 1

4
(x))

The resulting SAT instance � contains the following propositional formulas:

a(x ∨ y,1) ∧ a(¬y, 3
4 )∧a(¬x ∨ z, 2

4 ) ∧ (b(¬z, 3
4 ) ∨ b(x, 1

4 )) (39)

b(¬z, 3
4 ) → ¬z(¬z, 3

4 ) (40)

b(x, 1
4 ) → x(x, 1

4 ) (41)

a(x ∨ y,1) ∧ b(¬z, 3
4 ) → x(¬z, 3

4 ) ∨ y(¬z, 3
4 ) (42)

a(¬y, 3
4 ) ∧ b(¬z, 3

4 ) → ¬y(¬z, 3
4 ) (43)

a(¬x ∨ z, 2
4 ) ∧ b(¬z, 3

4 ) → ¬x(¬z, 3
4 ) ∨ z(¬z, 3

4 ) (44)

a(x ∨ y,1) ∧ b(x, 1
4 ) → x(x, 1

4 ) ∨ y(x, 1
4 ) (45)

a(x ∨ y,1) → x ∨ y (46)

a(¬y, 3
4 ) → ¬y (47)

a(¬x ∨ z, 2
4 ) → ¬x ∨ z (48)

Recall that expressions such as a(x ∨ y, 1) and z(¬z, 3
4 ) are viewed as atomic formulas. From (39) we know that the atomic 

formulas a(x ∨ y, 1), a(¬y, 3 ) and a(¬x ∨ z, 2 ) all need to be true, as well as b(¬z, 3 ) or b(x, 1 ). However, from (40), 
4 4 4 4



together with (42)–(44) it follows that b(¬z, 34 ) cannot be satisfied in any model of �. This corresponds to the observa-
tion that the meta-term N1(x ∨ y) ∧ N 3

4
(¬y) ∧ N 2

4
(¬x ∨ z) ∧ � 3

4
(¬z) is not satisfiable. On the other hand, the meta-term

N1(x ∨ y) ∧ N 3
4
(¬y) ∧ N 2

4
(¬x ∨ z) ∧ � 1

4
(x) is satisfiable, and accordingly, it can readily be verified that � has a model in

which the atom b(x, 14 ) is true.

Proposition 12. Let � be a GPL formula and let � be the associated SAT instance, constructed using the method explained above. It 
holds that � is satisfiable iff � is satisfiable.

Proof. Suppose � has an e-model π . Then π satisfies some meta-term φ of the form (33). We define a partial interpretation 
ω as follows: ω |= a(α, λ) iff the meta-term Nλ(α) appears in φ and ω |= ¬a(α, λ) otherwise; similarly ω |= b(α, λ) iff the 
meta-term �λ(α) appears in φ and ω |= ¬b(α, λ) otherwise. Clearly, ω satisfies f (�). It remains to be shown that ω
can be extended to an interpretation of all atomic formulas appearing in �, such that (36)–(38) are satisfied. However, 
the existence of such an extension follows directly from the fact that the formulas (35) and (34) are satisfiable if π is an 
e-model of the meta-term φ.

Conversely, if � has a model ω it is clear that there is some meta-term φ of the form (33) such that ω |= a(α, λ) for
every meta-literal Nλ(α) appearing in φ and ω |= b(α, λ) for every meta-literal �λ(α) appearing in φ. As in the proof of 
Proposition 11 we find that φ has an e-model iff the formulas (35)–(34) are satisfied, and this follows straightforwardly 
from the fact that ω satisfies (36)–(38). �

As already follows from the results in Section 6, reasoning about minimally specific e-models is more expensive than 
reasoning about what is true for all e-models of a GPL knowledge base. This stands in contrast to standard possibilistic 
logic, where both notions of entailment coincide.

Proposition 13. Let � and  be two GPL formulas. The problem of checking whether � |=c  is �P
2 -complete (in the joint size of �

and ).

Proof.

Hardness Consider the following QBF formula:

ψ=∀x1, ..., xn .∃y1, ..., ym . φ(x1, ..., xn, y1, ..., ym)

In the following, we will abbreviate such formulas as ∀X∃Y . φ(X, Y ) where X = {x1, ..., xn} and Y = {y1, ..., ym}. 
We show that checking the validity of ψ can be reduced to the problem of checking whether � |=c  for � and 
 GPL formulas. Specifically, we choose � and  as follows:

� = (
N1(x1) ∨ N1(¬x1)

) ∧ ... ∧ (
N1(xn) ∨ N1(¬xn)

)
 = �1(φ(x1, ..., xn, y1, ..., ym))

Let π : � → [0, 1] be a minimally specific e-model of  . Let us define L ⊆ {x1, ..., xn,¬x1, ..., ¬xn} as the set of 
literals that are known to be true in the epistemic state π :

L = {xi |π |= N1(xi)} ∪ {¬xi |π |= N1(¬xi)}
It is clear, by definition of  , that for every xi either π |= N1(xi) or π |= N1(¬xi), and as a result either xi ∈ L
or (¬xi) ∈ L. It is also clear, by construction of L, that xi and ¬xi cannot both be in L. In other words L defines 
a propositional interpretation over {x1, ..., xn}. Conversely, each propositional interpretation over {x1, ..., xn} will 
correspond to some minimally specific e-model of  .

Because π was assumed to be minimally specific, every interpretation ω which is consistent with L will be 
such that π(ω) = 1. In particular, if there exists a model ω of φ(x1, ..., xn, y1, ..., ym) which is compatible with L, 
it will satisfy π(ω) = 1 and thus π |= �1(φ(x1, ..., xn, y1, ..., ym)).

The QBF ψ is valid if and only if such a model ω exists for every choice of L. In other words, we have that ψ
is valid iff � |=c  .

Membership Follows from the membership result in Proposition 15 below. �
To characterize the complexity of brave reasoning, note that � |=c  iff it is not the case that � |=b ¬ . Hence we 

immediately get the following result.

Corollary 2. Let � and  be two GPL formulas. The problem of checking whether � |=b  is � P
2 -complete (in the joint size of �

and ).



Given this complexity result, it is clear that no polynomial transformation to SAT will allow us to check � |=c  or 
� |=b  , unless the polynomial hierarchy collapses. However, it is straightforward to reduce these entailment queries to 
QBFs, using a translation similar to the proposed SAT translation for checking the consistency of GPL formulas. In this way, 
we can use QBF solvers for reasoning about the minimally specific models of a GPL knowledge base.

7.2. Complexity of reasoning about GPL� formulas

We now consider GPL� formulas, i.e., formulas in which also meta-literals of the form �λ(α) and ∇λ(α) can occur.

Proposition 14. The problem of deciding whether � |=  , for � and  two GPL� formulas, is �P
2 -complete (in the joint size of �

and ).

Proof.

Hardness A standard �P
2 -complete problem is the following. Let φ1, ..., φn be propositional formulas. Decide whether the 

smallest i for which φi is unsatisfiable is an odd number.
Without loss of generality, we can assume that n is odd (as otherwise we could simply omit φn). Now consider 

the following GPL� formula:

=¬�1(φ1) ∨ (�1(φ1) ∧ �1(φ2) ∧ ¬�1(φ3))

∨ ... ∨ (�1(φ1) ∧ ... ∧ �1(φn−1) ∧ ¬�1(φn))

We show that �1(�) |=  iff the smallest i for which φi is unsatisfiable is odd. Clearly, �1(�) has exactly one 
e-model, which is the possibility distribution π∗ for which every world is fully possible, i.e., π∗(ω) = 1 for every
ω ∈ �. For a propositional formula φ, we then have �∗(φ) = 1 iff �φ� �= ∅. In other words, π∗ will be an e-model
of  iff φ1 is not satisfiable, or φ1 and φ2 are satisfiable but not φ3, etc.

Membership It is well-known that the class �P
2 coincides with the class of decision problems which can be solved in 

polynomial time on a deterministic Turing machine by using a polynomial number of parallel queries to an NP-
oracle, i.e., such that the result of one query to the NP-oracle cannot be used to formulate another query to the 
NP-oracle [74]. Surprisingly, allowing two rounds of parallel queries does not lead to an increased complexity ([75], 
Theorem 9). We will show that � |=  can be decided in this way, thus proving membership in �P

2 .
Since � |=  holds iff � ∧ ¬ is unsatisfiable, it is sufficient to show that satisfiability checking of GPL�

formulas is in �P
2 . Let  be a GPL� formula. Without loss of generality, we can assume that no implications occur 

in  and that all negations occur inside a modality, i.e., the meta-literals in  are connected using conjunction 
and disjunction only.

Assume that the meta-literals occurring in  are:
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Using a first round of parallel calls to an NP-oracle, we check γ u
i |= αv

j for all 1 ≤ i ≤ pu , 1 ≤ j ≤ nv , and u + v ≥
k + 1. Note that the number of calls to the oracle is at most quadratic in the number of meta-literals appearing 
in  .

Using the result of these oracle calls, we can decide the satisfiability of  in NP, i.e., by making one additional 
call to the NP-oracle, as follows. Note that  is equivalent to a disjunction of meta-terms. In polynomial time we 
may guess such a meta-term, of the following form:

�=Nv1(α1) ∧ ... ∧ Nvn (αn) ∧ �w1(β1) ∧ ... ∧ �wm (βm)

∧ �u1(γ1) ∧ ... ∧ �up (γp) ∧ ∇z1(δ1) ∧ ... ∧ ∇zr (δr)

We will further refine the meta-literals of the form �wi (βi) and ∇zi (δi) in �. To refine a meta-literal of the form 
�wi (βi) we need to replace βi by a more restrictive formula. To this end, for each βi we guess a specific model
ωβi ∈ �βi �, and we define β∗

i = ∧
ωβi |=l l, i.e., β∗

i is chosen such that �β∗
i � = {ωβi }. It follows that |=G P L�wi (β

∗
i ) ≡

�wi (β
∗
i ).

To refine a meta-literal of the form ∇zi (δi), we need to replace δi with a less restrictive formula. In par-
ticular, we guess a world ωδi /∈ �δi � and choose the formula δ∗ such that �δ∗� = � \ {ωδi }. It then holds that 
i i



|=G P L∇zi (δ
∗
i ) ≡ Nzi (δ

∗
i ). Note that the size of the formulas β∗

i and δ∗
i is linear in the number of literals, hence we 

can indeed guess these formulas in polynomial time.
Clearly, the term � is satisfiable iff such refinements can be found that make the following term �∗ satisfiable

�∗=Nv1(α1) ∧ ... ∧ Nvn (αn) ∧ �w1(β
∗
1 ) ∧ ... ∧ �wm(β∗

m)

∧ �u1(γ1) ∧ ... ∧ �up (γp) ∧ Nz1(δ
∗
1) ∧ ... ∧ Nzr (δ

∗
r )

Let π∗ be the most specific possibility distribution satisfying

�w1(β
∗
1 ) ∧ ... ∧ �wm(β∗

m) ∧ �u1(γ1) ∧ ... ∧ �up (γp)

and let π∗ be the least specific possibility distribution satisfying

Nv1(α1) ∧ ... ∧ Nvn (αn) ∧ Nz1(δ
∗
1) ∧ ... ∧ Nzr (δ

∗
r )

If is clear that every possibility distribution π from Pk satisfying π∗(ω) ≤ π(ω) ≤ π∗(ω) is an e-model of �∗ . 
To complete the proof, we need to show that it can be checked in polynomial time whether such a possibility 
distribution π exists. This is the case exactly when α1 ∧ ... ∧ αn ∧ δ∗

1 ∧ .... ∧ δ∗
r is satisfiable, and the following 

entailment relations are valid:
• β∗

i |= α j for every i, j such that wi ≥ ν(v j)

• β∗
i |= δ∗

j for every i, j such that wi ≥ ν(z j)

• γi |= α j for every i, j such that ui ≥ ν(v j)

• γi |= δ∗
j for every i, j such that ui ≥ ν(z j)

To verify satisfiability in NP (given the result of the first round of calls to the oracle), we can guess the term �∗
and at the same time guess a model of α1 ∧ ... ∧αn ∧ δ∗

1 ∧ .... ∧ δ∗
r . We can use that model to verify the satisfiability 

of α1 ∧ ... ∧αn ∧ δ∗
1 ∧ .... ∧ δ∗

r . Moreover, the entailment relations of the form γi |= α j can be verified by looking up 
the result of the first round of calls to the NP oracle. To check β∗

i |= α j , since β∗ only has one model wβi it suffices 
to check whether α j is true in that model, which can clearly be done in polynomial time. Similarly, β∗

i |= δ∗
j can 

be decided in this way. In fact, in the latter case it suffices to check that wβi �= wδ j . Finally, to check γi |= δ∗
j , we 

can equivalently check ¬δ∗
j |= ¬γi . Since ¬δ∗

j has a unique model wδ j it suffices to check that γi is false in this 
model. �

Thus we find that allowing the � modality causes a jump in complexity. It should be noted, however, that this increased 
complexity is the result of how N and � interact. In particular, the NP-completeness result from Proposition 11 could 
straightforwardly be adapted to a logic where only � modalities are allowed, by taking advantage of the duality expressed 
in (15).

Proposition 15. Let � and  be two GPL� formulas. The problem of checking whether � |=c  is �P
2 -complete (in the joint size of �

and ).

Proof.

Hardness Follows immediately from Proposition 13.
Membership We now present a � P

2 algorithm for checking that  is false in at least one minimally specific e-model of �.
The GPL formula � is equivalent to a disjunction of meta-terms. In polynomial time, we can guess such a 

meta-term. Moreover, as in the proof of Proposition 14, without loss of generality, we can assume that the only 
meta-literals which occur in this meta-term are of the form Nλ1 (α1) and �μ1 (β1), by refining any meta-literals of 
the form �λ1 (α1) and ∇μ1 (β1). Assume that we guess a meta-term of the following form:

Nλ1(α1) ∧ ... ∧ Nλn (αn) ∧ �μ1(β1) ∧ ... ∧ �μm (βm) (49)

Using an NP-oracle we can check that this formula is consistent, verifying that α1 ∧ ... ∧ αn is consistent, and that 
βi |= α j whenever μi ≥ ν(λ j). If the meta-term is consistent, it has a unique least specific e-model π1, which is 
the least specific e-model of Nλ1 (α1) ∧ ... ∧ Nλn (αn), noting that the latter corresponds to a standard possibilistic 
logic base.

Using the NP-oracle we can check that β is false in π1. In particular:
• a meta-literal Nδ1 (γ1) is satisfied by π1 iff {αi | λi ≥ δ1} |= γ1;
• a meta-literal �δ1 (γ1) is falsified by π1 iff {αi | λi ≥ ν(δ1)} |= ¬γ1;
• a meta-literal �δ1(γ1) is satisfied by π1 iff γ1 |= {αi | λi ≥ ν(δ1)};
• a meta-literal ∇δ1(γ1) is falsified by π1 iff ¬γ1 |= {αi | λi ≥ δ1}.

What remains to be verified is that there does not exist another consistent meta-term which is an implicant of
� and which has a least specific e-model π2 that is strictly less specific than π1.



The check this, we define a GPL� knowledge base �′ as follows. Without loss of generality, we can assume that 
� is in negation normal form and in particular that there are no occurrences of negation or implication outside 
the modalities. Starting from �, for each meta-literal Nδ(γ ) that occurs, we test whether

Nλ1(α1) ∧ ... ∧ Nλn (αn) |= Nδ(γ ) (50)

If this is not the case, no e-model of Nδ(γ ) can be less specific than π1; we then replace Nδ(γ ) by ⊥. Furthermore, 
for each meta-literal ∇δ(γ ) which occurs, we test whether ¬γ ∧ ¬ 

∧{αi | λi ≥ δ} is consistent. If not, we find 
that no e-model of ∇δ(γ ) can be less specific than π1, and we replace ∇δ(γ ) by ⊥. If, on the other hand,
¬γ ∧ ¬ 

∧{αi | λi ≥ δ} is consistent, then we replace the meta-literal ∇δ(γ ) by ∇δ(γ ∨ ∧{αi | λi ≥ δ}), since the 
minimally specific e-models of the latter GPL formula are exactly those minimally specific e-models of ∇δ(γ ) that 
are less specific than π1. Note that the resulting knowledge base �′ is consistent, and in particular that (49) is an 
implicant of �′ .

By replacing a meta-literal Nδ(γ ) or ∇δ(γ ), we potentially reduce the set of e-models of the knowledge base. 
However, by construction, none of these e-models can be less specific than π1. Moreover, each minimally specific 
e-model of �′ is either equal to π1 or strictly less specific than π1. Therefore, we finally test whether �′ |=
Nλ1 (α1) ∧ ... ∧ Nλn (αn). If this is the case, then none of the e-models of �′ , and by extension of �, can be less
specific than π1. On the other hand, if this is not the case, then �′ has an e-model which is not a refinement
of π (since any refinement of π1 is also an e-model of Nλ1 (α1) ∧ ... ∧ Nλn (αn)). By construction, �′ then has an
e-model which is strictly less specific than π1, which means that the guess in (49) did not induce a minimally
specific e-model of �. �

Corollary 3. Let � and  be two GPL� formulas. The problem of checking whether � |=b  is � P
2 -complete (in the joint size of �

and ).

7.3. Complexity of reasoning about GPL�
R formulas

Next we consider the complexity of reasoning in the presence of the restricted guaranteed possibility modality.

Proposition 16. The problem of deciding whether � |=  , for � and  two GPL�
R formulas, is �P

3 -complete (in the joint size of �
and ).

Proof. We will prove that checking the satisfiability of a GPL�
R formula is � P

3 -complete, from which the stated result readily 
follows.

Hardness Let X ∪ Y ∪ Z be a partition of the set of atomic formulas. We can show that checking the validity of the QBF 
=∃X∀Y ∃Z . φ(X, Y , Z) is equivalent to checking whether the following formula is satisfiable:∧

x∈X

(
N1(x) ∨ N1(¬x)

) ∧ �Y
1 (�) ∧ N1(φ(X, Y , Z)) (51)

Indeed, this formula is equivalent to a disjunction of meta-terms, each of which corresponds to an interpretation 
of the variables in X . Let X1 ∪ X2 be a partition of X and let us consider the corresponding implicant of (51):⎛

⎝ ∧
x∈X1

N1(x)

⎞
⎠ ∧

⎛
⎝ ∧

x∈X2

N1(¬x)

⎞
⎠ ∧ �Y

1 (�) ∧ N1(φ(X, Y , Z))

This is equivalent to

�Y
1 (�) ∧ N1

⎛
⎝φ(X, Y , Z) ∧ (

∧
x∈X1

x) ∧ (
∧

x∈X2

¬x)

⎞
⎠

The latter formula is satisfiable iff every truth assignment of the variables in Y can be extended to a model of 
φ(X, Y , Z) ∧ (

∧
x∈X1

x) ∧ (
∧

x∈X2
¬x). Clearly this means that (51) is satisfiable iff the QBF  is valid. This means 

that satisfiability checking in GPL�
R is � P

3 -hard, from which it follows that entailment checking is �P
3 -hard.

Membership We provide a � P
3 procedure for verifying that a GPL�

R formula  is satisfiable. Similarly as in the proof of 
Proposition 14, we can guess an implicant of  of the following form:

�=Nv1(α1) ∧ ... ∧ Nvn (αn) ∧ �
X1
w1(β1) ∧ ... ∧ �

Xm
wm(βm)

where X1, ..., Xm are sets of atomic formulas. We give a � P
2 procedure for checking that � is not satisfiable. First 

verify whether α1 ∧ ... ∧ αn is satisfiable, using an NP oracle. If this is the case, select a βi , guess a model ω



of βi , and verify using the NP-oracle that conjX
ω ∧ {α j | v j ≥ ν(wi)} is inconsistent. It follows that checking the 

satisfiability of � is in �P
2 , and can thus be done in constant time using a � P

2 -oracle. �
Proposition 17. The problem of deciding whether � |=c  , for � and  two GPL�

R formulas, is �P
4 -complete (in the joint size of �

and ).

Proof.

Hardness Let X ∪ Y ∪ Z ∪ U be a partition of the set of atomic formulas. We show that checking the validity of the QBF 
ψ=∀X∃Y ∀Z∃U . φ(X, Y , Z , U ) is equivalent to checking whether � |=c  where:

�=( ∧
x∈X

N1(x) ∨ N1(¬x)
) ∧ N1(φ(X, Y , Z , U ))

∧
((( ∧

y∈Y

N1(y ∨ a) ∨ N1(¬y ∨ a)
) ∧ �

Z∪{a}
1 (¬a)

)
∨ N1(a)

)
=¬N1(a)

Indeed, first note that for every subset X0 ⊂ X (i.e., for every interpretation of X), � has a minimally specific
e-model in which 

∧
x∈X0

N1(x) ∧ ∧
x/∈X0

N1(¬x) is true. To see why this is the case, note that the least specific
e-model π1 of 

∧
x∈X0

N1(x) ∧ ∧
x/∈X0

N1(¬x) ∧ N1(a) is an e-model of � and for any e-model π2 of � which is 
strictly less specific than π1, it must be the case that π2 |= ∧

x∈X0
N1(x) ∧∧

x/∈X0
N1(¬x). We thus find that � |=c 

iff for every X0 ⊂ X , it holds that f (X0) |=c  , where:

f (X0)=
∧

x∈X0

N1(x) ∧
∧

x/∈X0

N1(¬x) ∧ N1(φ(X, Y , Z , U ))

∧
((( ∧

y∈Y

N1(y ∨ a) ∨ N1(¬y ∨ a)
) ∧ �

Z∪{a}
1 (¬a)

)
∨ N1(a)

)

Note that |=G P L� ≡ ∨
X0⊆X f (X0). Now let us define g(X0) and f (X0, Y0) for X0 ⊆ X and Y0 ⊆ Y as follows:

g(X0)=
∧

x∈X0

N1(x) ∧
∧

x/∈X0

N1(¬x) ∧ N1(φ(X, Y , Z , U )) ∧ N1(a)

f (X0, Y0)=
∧

x∈X0

N1(x) ∧
∧

x/∈X0

N1(¬x) ∧ N1(φ(X, Y , Z , U ))

∧
∧

y∈Y0

N1(y ∨ a) ∧
∧

y /∈Y0

N1(¬y ∨ a) ∧ �
Z∪{a}
1 (¬a)

Note that f (X0) = g(X0) ∨∨
Y0⊆Y f (X0, Y0). If there exists a Y0 ⊆ Y such that f (X0, Y0) is consistent, then clearly 

the least specific e-model of f (X0, Y0) will be strictly less specific than any e-model of g(X0). Furthermore note 
that f (X0, Y0) |=c ¬N1(a) while g(X0) |=c N1(a). In other words, we have f (X0) |=c ¬N1(a) iff there exists a 
Y0 ⊆ Y such that f (X0, Y0) is consistent. The latter condition will be satisfied iff for every Z0 ⊆ Z it holds that ∧

x∈X0
x ∧ ∧

x/∈X0
¬x ∧ ∧

y∈Y0
y ∧ ∧

y /∈Y0
¬y ∧ ∧

z∈Z0
z ∧ ∧

z/∈Z0
¬z ∧ φ(X, Y , Z , U ) is consistent. In other words, iff 

for every Z0 ⊆ Z there exists a U0 ⊆ U such that X0 ∪ Y0 ∪ Z0 ∪ U0 defines a model of φ(X, Y , Z , U ).
In summary we have that � |=c  iff for every X0 it holds that f (X0) |=c  , iff for every X0 there exists a Y0

such that f (X0, Y0) is consistent, iff for every X0 there exists a Y0 such that for every Z0 there exists a Y0 such 
that X0 ∪ Y0 ∪ Z0 ∪ U0 defines a model of φ(X, Y , Z , U ), iff the QBF ψ is valid.

Membership We give a � P
4 procedure for checking � �|=c  , from which the membership result immediately follows. As 

in the proof of Proposition 16, we can guess an implicant of � of the following form:

�0=Nv1(γ1) ∧ ... ∧ Nvn (γn) ∧ �
X1
w1(δ1) ∧ ... ∧ �

Xm
wm(δm)

where X1, ..., Xm are sets of atomic formulas. Using a � P
2 oracle, we can verify that �0 is consistent, as in the 

proof of Proposition 16. Since the unique least specific e-model of �0 is also the least specific e-model of Nv1 (γ1) ∧
... ∧ Nvn (γn), using a � P

2 oracle, we can check in polynomial time that �0 �|=c  . Indeed:
• The satisfaction of meta-literals of the form Nλ(ε), �λ(ε), �λ(ε) and ∇λ(ε) occurring in  can be verified as

in the proof of Proposition 15.
• To check whether Nv1 (γ1) ∧ ... ∧ Nvn (γn) |=c �X

λ (ε), it suffices to check the validity of the following QBF:

∀X . (∃(At \ X) . ε) → (∃(At \ X) .
∧

{γi | vi ≥ ν(λ)})
This can be accomplished in constant time using a � P oracle.
2



• To check whether Nv1 (γ1) ∧ ... ∧ Nvn (γn) |=c ∇X
λ (ε), it suffices to check that Nv1 (γ1) ∧ ... ∧ Nvn (γn) �|=c �X

λ (¬ε), 
since Nv1 (γ1) ∧ ... ∧ Nvn (γn) has a unique least specific e-model.

Finally, we give a � P
3 procedure for showing that the least specific e-model of �0 is not a minimally specific 

e-model of �. In particular, we guess an implicant of � of the form:

�1=Nu1(ε1) ∧ ... ∧ Nus (εs) ∧ �
Y1
z1 (ζ1) ∧ ... ∧ �

Yt
zt (ζt)

We can then verify using a � P
2 oracle that �1 is consistent. Using an NP oracle, we can furthermore verify that 

Nv1 (γ1) ∧ ... ∧ Nvn (γn) |= Nu1 (ε1) ∧ ... ∧ Nus (εs) while Nu1 (ε1) ∧ ... ∧ Nus (εs) �|= Nv1 (γ1) ∧ ... ∧ Nvn (γn), from which 
it follows that the least specific e-model of �1 is strictly less specific than the least specific e-model of �0. �

Corollary 4. The problem of deciding whether � |=b  , for � and  two GPL�
R formulas, is � P

4 -complete (in the joint size of � and ).

7.4. Complexity of reasoning in GPL� and GPLcore�

To characterize the complexity of satisfiability checking in GPLcore� , we can take advantage of a straightforward reduction 
to GPLk . First note that when only finitely many certainty degrees are considered, � can be introduced as an abbreviation 
in GPLk:

α � β =
k∨

i=1

(
N i

k
(α) ∧ ¬N i

k
(β)

)
(52)

For finite knowledge bases, we never really need infinitely many certainty degrees, although the required number can 
depend on the size of the considered formulas. This is made precise in the following proposition.

Proposition 18. Let � = {α1 � β1, ..., αn � βn, γn+1 ∼ δn+1, ..., γm ∼ δm}. If k ≥ n, it holds that � is satisfiable in GPLk iff � is 
satisfiable in GPLcore� .

Proof. Since any e-model of � in GPLk is also an e-model of � in GPLcore� , it is clear that satisfiability in GPLk entails 
satisfiability in GPLcore� .

Conversely, let π be an e-model of  in GPLcore� . In particular, among all such e-models, let π be such that the number 
of certainty levels in � = {π(ω) | ω ∈ �} is minimal. Let �′ = {1 − N(αi) | 1 ≤ i ≤ n} ∪{1 − N(βi) | 1 ≤ i ≤ n}⊆ �. It holds that 
� = �′ . Indeed, if this were not the case, we could define a possibility distribution π ′ as follows:

π ′(ω) =

⎧⎪⎨
⎪⎩

max{λ |λ < π(ω),λ ∈ �′} if π(ω) /∈ �′ and π(ω) > min�′

min� if π(ω) < min�′

π(ω) otherwise

(53)

It is straightforward to verify that the necessity measure induced by π ′ still satisfies all constraints. This shows that it 
is possible to choose a possibility distribution π ′ which only takes values from �′ . Since we moreover clearly have that 
�′ ⊆ �, and π was assumed to minimize |�|, we find �′ = �.

We now show that |�| ≤ n + 1. In particular, we show that if λ ∈ � \ {min �, max �} it holds that there are at least two 
different formulas χ1, χ2 among {α1, ..., αn, β1, ..., βn} such that N(χ1) = N(χ2) = 1 − λ. Suppose this were not the case, 
and that e.g., αi is the only formula for which N(αi) = 1 − λ. Define π ′ as follows:

π ′(ω) =
{

max{μ : μ ∈ �′,μ < λ} if π(ω) = 1 − λ

π(ω) otherwise

Then it is clear that the necessity measure induced by π ′ still satisfies all constraints, while π ′ uses strictly fewer certainty 
levels than π , a contradiction. The case where βi is the only formula with necessity 1 − λ is entirely analogous. Finally, 
since only the relative ordering of the certainty levels matters, it is always possible to choose π such that � = {0, 1k , ..., 1}, 
k ≥ n. In other words, there exists an e-model π ∈Pk of �. �

In general, to verify whether � |=�  holds, we can rewrite � ∧ ¬ such that it is free of negations, by using the fact 
that ¬(α � β) is equivalent to (α ∼ β) ∨ (β � α), and similarly ¬(α ∼ β) is equivalent to (α � β) ∨ (β � α). Let � be the 
resulting formula. Then a suitable lower bound for k, ensuring that � |=�  iff � |=k

G P L  , can be found as follows:

bound(α � β) = 1

bound(α ∼ β) = 0

bound(�1 ∧ �1) = bound(�1) + bound(�2)

bound(�1 ∨ �1) = max(bound(�1),bound(�2))



Since satisfiability checking in GPLcore� can thus be reduced to checking the satisfiability of a GPL formula (whose size is 
polynomial in the size of the initial formula), it follows that this problem is in NP.

Proposition 19. The complexity of deciding whether a GPLcore� formula is satisfiable is NP-complete (w.r.t. the size of the formula).

Proof. To see why satisfiability checking in GPLcore� is NP-hard, note that the propositional formula α is satisfiable iff α � ⊥
is satisfiable. NP-membership directly follows from Proposition 18. �
Proposition 20. The complexity of deciding whether a GPL� formula is satisfiable is NP-complete (w.r.t. the size of the formula).

Proof. NP-hardness trivially follows from Proposition 19. We now propose an NP procedure to check the satisfiability of a 
GPL� formula �. First, if � is satisfiable, in polynomial time we can guess a satisfiable term of the following form:

n∧
i=1

Nλi (αi) ∧
m∧

i=n+1

¬Nλi (αi) ∧
p∧

i=m+1

(αi � βi) ∧
q∧

i=p+1

(αi ∼ βi)

From Lemma 3 in Appendix C, we know that this term is satisfiable iff the following GPLcore� formula is satisfiable.∧
{αi � α j |1 ≤ i ≤ n,n + 1 ≤ j ≤ m, λi ≥ λ j} ∧

∧
{αi ∼ �|1 ≤ i ≤ n, λi = 1}

∧
∧

{� � αi |n + 1 ≤ i ≤ m} ∧
∧

{αi � ⊥|1 ≤ i ≤ n}
∧

∧
{αi � βi |m + 1 ≤ i ≤ p} ∧

∧
{αi ∼ βi | p + 1 ≤ i ≤ q}

As in the proof of Proposition 19, we find that the satisfiability of this latter formula can be checked using an NP proce-
dure. �
8. Concluding remarks

We have introduced generalized possibilistic logic (GPL) as a general framework for reasoning about the revealed be-
liefs of an external agent. At the syntactic level, formulas in GPL are propositional combinations of meta-literals of the 
form Nλ(α), expressing that it is known that an external agent believes α with certainty (at least) λ. Meta-literals of the 
form �λ(α), �λ(α) and ∇λ(α) have also been introduced as abbreviations in the language. At the semantic level, the four 
considered types of meta-literals correspond to lower bounds on the four main uncertainty measures from possibility the-
ory, i.e., the necessity, possibility, guaranteed possibility and potential necessity measures. We have moreover introduced 
a refinement of �λ(α) and ∇λ(α) to express context-dependent information about the ignorance of the agent in a more 
compact way.

After presenting an axiomatization of GPL and proving its soundness and completeness, we have studied two different 
ways to reason about the ignorance of an external agent, based on the principle of minimal specificity and based on 
guaranteed possibility respectively. Subsequently, we discussed the ability of GPL to model comparative uncertainty. Among 
others, we axiomatized a logic, which can be embedded in GPL, to reason about arbitrary propositional combinations of 
statements of the form “α is (strictly) more certain than β”. As a special case, we obtain that GPL can be used to reason 
about propositional combinations of defaults, in the sense of System P. Next, we showed that the ability of GPL to model 
ignorance makes it a natural vehicle for expressing the semantics of non-monotonic logic programming formalisms. In 
particular, we showed how disjunctive answer set programs naturally correspond to a type of GPL theories, with answer 
sets corresponding to minimally specific e-models which are Boolean, in the sense that all interpretations are either possible 
to degree 1 or to degree 0. We then compared GPL with a fragment of Lifschitz’ logic of minimal belief and negation as 
failure (MBNF) which generalizes disjunctive answer set programming. While there is a close relationship between theories 
in this fragment of MBNF and the corresponding GPL theories, we have found that the notion of minimality demanded 
of MBNF models is less strict than the notion of minimal specificity, which is similar to an observation we made in [8]
about equilibrium logic. While the less demanding notion of minimality in MBNF and equilibrium logic may have technical 
advantages, in particular for modelling inclusive disjunction [73], this finding casts doubt on the appropriateness of logics 
such as MBNF and equilibrium logic for epistemic reasoning.

In terms of computational complexity, we found natural decision problems at the first, second, third and fourth level of 
the polynomial hierarchy, where the third and fourth level are only reached when the refined modalities �λ(α) and ∇λ(α)

are allowed. This confirms that the latter modalities allow us to compactly express knowledge that would otherwise require 
exponentially long formulas (unless the polynomial hierarchy collapses).

The ability of GPL to model both negation-as-failure and conditionals in an intuitive way demonstrates its versatility 
as a general logic for reasoning about the beliefs of an agent from an outsider point of view (as opposed to introspective 
reasoning). Among others, this makes GPL a natural choice for the formal study of access control mechanisms that need to 



maintain the confidentiality of some pieces of knowledge. For example, [76] discusses a number of settings where an infor-
mation system needs to be able to determine whether answering a given query would allow the user to derive information 
that is supposed to remain secret, based on possibly incomplete knowledge of what that user already knows. The use of 
GPL is also natural in game theoretic settings, where agents need to reason based on their incomplete knowledge about the 
goals of other agents, e.g., as part of a negotiation process [77].

There are several ways in which GPL can be further extended. For example, a framework for multi-agent epistemic 
reasoning could be obtained by encapsulating GPL formulas similarly to how GPL encapsulates propositional formulas. Let 
us write N(λ,A)(α) to denote that agent A knows α with certainty λ. A formula such as N(λ,A)(N(μ,B)(β)) expresses that 
(I know) that A knows with certainty λ that B knows β with certainty μ. At the semantic level, in the two-agent case, 
e-models would be of the form (πA , πB , πAB , πB A), where πA and πB are possibility distributions over propositional inter-
pretations (encoding what objective formulas A and B know), and πAB and πB A are possibility distributions over possibility
distributions over propositional interpretations (encoding resp. what A knows about what B knows, and what B knows
about what A knows). We then have e.g. (πA , πB , πAB , πB A) |= N(λ,A)(α ∧ N(μ,B)(β)), expressing that (I know that) A knows
α and A knows that B knows β , iff πA |= Nλ(α) and N AB{τ | τ |= Nμ(β)} ≥ λ, where N AB is the necessity measure in-
duced by πAB . Note that this approach does not allow us to consider chains of arbitrary length, e.g., formulas such as
N(λ1,A)(N(μ,B)(N(λ2,A)(α))) would require e-models of the form (πA, πB , πAB , πB A, πAB A, πB AB). In practice, this would not
be a restriction, as we only need to consider those chains that appear in the given GPL knowledge base. Among others, it
would be interesting to see how the interplay between minimal specificity and guaranteed possibility would allow us to
model limits on agents’ knowledge, and how such models would compare against multi-agent extensions of only know-
ing [78,79].
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Appendix A. Proof of Proposition 1

Proof. The soundness of the axioms (PL), (K), (N), (D) and (W) w.r.t. the semantics of GPL can readily be verified. Here we 
show that these axioms are also complete.

Let F = {Nλ(α) | α ∈ L, λ ∈ �+
k }. Let �∗ be the set of all propositional interpretations over the set of atomic formulas F . 

Given a GPL knowledge base K , let K ∗ be the propositional knowledge base over F , defined as

K ∗ =K ∪ {Nλ(α → β) → (Nλ(α) → Nλ(β)) |α,β ∈ L and λ ∈ �+
k }

∪ {N1(�)} ∪ {Nλ(α) → ¬N 1
k
(¬α) |α ∈ L}

∪ {Nλ1(α) → Nλ2(α) |α ∈ L, λ1 ≥ λ2}
where α → β is an arbitrary (but fixed) formula from L which is equivalent to α → β , and similarly for ¬α. We then have 
that � can be derived from K using the axioms (PL), (K), (N), (D), (W) and modus ponens iff � can be derived from K ∗ in 
propositional logic.

To finish the proof, note that with every model I of K ∗ , we can associate a set-function gI : 2� → � defined for α ∈ L
as

gI (�α�) = max{λ | I |= Nλ(α)}
where we define gI (�α�) = 0 if {λ | I |= Nλ(α)} = ∅. From the fact that K ∗ contains every instantiation of the axioms (K),
(N), (D) and (W), we can derive the following properties for the function gI :

• We have gI (�) = 1 thanks to the fact that N1(�) ∈ K ∗ .
• We have gI (∅) = 0. Indeed, since K ∗ contains N1(�) and N1(�) → ¬N 1

k
(⊥) (as an instantiation of (D)) and Nλ(⊥) →

N 1
k
(⊥) for every λ ∈ �+

k (as an instantiation of (W)) we know that I |= ¬Nλ(⊥) for every λ ∈ �+
k . It follows that

{λ | I |= Nλ(⊥)} = ∅ and thus gI (∅) = gI (�⊥�) = 0.
• We have that gI is monotone w.r.t. set inclusion. Indeed, if �α� ⊆ �β� then α |= β holds, which means that K ∗ will

entail Nλ(α) → Nλ(β) for every λ ∈ �+
k (as an instantiation of (K)). It follows that {λ | I |= Nλ(α)} ⊆ {λ | I |= Nλ(β)} and

gI (�α�) ≤ gI (�β�).
• We have that gI (�α ∧ β�) = min(gI (�α�), gI (�β�)) for every α, β ∈ L. Indeed from the monotonicity of gI we already

have gI (�α ∧ β�) ≤ min(gI (�α�), gI (�β�)). Conversely, assume I |= Nλ(α) and I |= Nλ(β). Using Nλ(β) and the instanti-
ation of (K) on the tautology β → (α → (α ∧ β)) we find I |= Nλ(α → (α ∧ β)). Using another instantiation of (K) we
find from I |= Nλ(α → (α ∧ β)) and I |= Nλ(α) that I |= Nλ(α ∧ β). It follows that {λ | I |= Nλ(α)} ∩ {λ | I |= Nλ(β)} ⊆
{λ | I |= Nλ(α ∧ β)} and gI (�α ∧ β�) ≥ min(gI (�α�), gI (�β�).



It is well-known [12] that every set-function which satisfies these four criteria is a necessity measure, and this neces-
sity measure uniquely identifies a normalized possibility distribution π , which by construction will be an e-model of K . 
Conversely, it is easy to see that every e-model π of K corresponds to a unique propositional model I of K ∗ , defined as 
I |= Nλ(α) iff N(α) ≥ λ for N the necessity measure induced by π . �
Appendix B. Proof of Proposition 4

Before we present the proof of the main result, which will apply to arbitrary propositional combinations of comparative 
certainty statements, we show that the proposed axioms are sufficient for detecting inconsistencies in sets of statements of 
the form α � β .

Lemma 1. Let � = {α1 � β1, ..., αn � βn}. It holds that � has an e-model iff � �core� ⊥.

Proof. The soundness of the axioms follows easily from well-known properties of necessity measures. We thus focus on 
showing that ⊥ can be derived if � is not satisfiable.

For each αi there exist formulas α1
i , ..., αmi

i such that αi=α1
i ∧ ... ∧ α

mi
i and such that for each formula α j

i it holds that 
�α

j
i � = � \ {ω j

i } for some propositional interpretation ω j
i . Similarly, for each βi there are formulas β1

i , ..., βni
i such that 

βi=β1
i ∧ ... ∧ β

ni
i and for each k it holds that �βk

i � = � \ {ωk
i } for some propositional interpretation ωk

i .

From αi � βi we can derive using (Ax3) that α j
i � βi for every j ∈ {1, ..., mi}. Furthermore, using (25) we can derive 

A j
i =(α

j
i � β1

i ) ∨ ... ∨ (α
j
i � β

ni
i ). Conversely, from A j

i we can derive α j
i � βi using (Ax3), and from {α1

i � βi, ..., α
mi
i � βi} we 

can derive αi � βi using (Ax2) and (Ax3). It follows that αi � βi is equivalent to {A1
i , ..., A

mi
i }.

Let φ be a mapping from {1, ..., n} × {1, ..., mi} to {1, ..., ni}, allowing us to choose for each formula A j
i a disjunct 

α
j
i � β

φ(i, j)
i . Clearly � is satisfiable iff there exists a mapping φ such that �φ = {α j

i � β
φ(i, j)
i | i ∈ {1, ..., n}, j ∈ {1, ..., mi}} is 

satisfiable. Accordingly, for � to be unsatisfiable, it suffices to show that for each such mapping φ, ⊥ can be derived from 
the formulas in �φ .

Each formula α j
i � β

φ(i, j)
i corresponds to a constraint of the form N(α

j
i ) > N(β

φ(i, j)
i ), which by construction corresponds 

to the constraint π(ω
j
i ) < π(ω

φ(i, j)
i ) on the associated possibility distribution. Clearly a set of such constraints can be 

satisfied unless there is a cycle of the form π(ω1) < π(ω2), π(ω2) < π(ω3), ..., π(ωr) < π(ω1). In such a case, �φ contains 
formulas of the form χ1 � χ2, χ2 � χ3, ..., χr � χ1 (up to syntactic variations of the arguments χl which we can ignore 
because of (Ax3)). By repeatedly applying (20) we can then derive χ1 � χ1, which allows us to derive ⊥ using (Ax4). Thus 
we have shown that �φ is unsatisfiable iff ⊥ can be derived. �

In the next lemma, we additionally consider formulas of the form γ ∼ δ.

Lemma 2. Let � = {α1 � β1, ..., αn � βn, γn+1 ∼ δn+1, ..., γm ∼ δm}. It holds that � has an e-model iff � �core� ⊥.

Proof. We show that � has an e-model if � �core� ⊥; the other direction follows from the soundness of the axioms.
From Lemma 1 we know that {α1 � β1, ..., αn � βn} is satisfiable, given that we assumed that no inconsistency can 

be derived. Let π be a possibility distribution that satisfies {α1 � β1, ..., αn � βn}. From the fact that � is a strict par-
tial order, the fact that ∼ is an equivalence relation and (Ax5), it follows that we can partition the set of formulas 
X = {α1, ..., αn, β1, ..., βn, γn+1, ..., γm, δn+1, ..., δm} as X = X1 ∪ ... ∪ Xs where for χ ∈ Xr and χ ′ ∈ Xt , with r < t , it holds 
that � contains a conjunct α � β where |=α ≡ χ and |=β ≡ χ ′ . Let Lr = {1 − N(χ) | χ ∈ Xr}. Because of how we choose π , 
it holds that max Lr < min Lt for r < t . We now define the possibility distribution π ′ as follows:

π ′(ω) =

⎧⎪⎨
⎪⎩

min L1 if π(ω) ≤ max L1

min Ls if π(ω) > max Ls−1

min Lr if 1 < r < s and max Lr−1 < π(ω) ≤ max Lr

Let N ′ be the necessity measure induced by π ′ . It is straightforward to verify that N ′(χ) = N ′(χ ′) for χ, χ ′ ∈ Xr and that 
N ′(χ) > N ′(χ ′) if χ ∈ Xr and χ ′ ∈ Xt with r < t . In other words, it holds that π ′ |=� �. �

Proposition 4 now follows easily.

Proof. The soundness of the axioms can be verified straightforwardly. To see why the completeness result holds, note that 
when � |=�  holds, we have that � ∧ ¬ is unsatisfiable. Let �1 ∨ ... ∨ �n be a formula in DNF which is equivalent to 
� ∧ ¬ , where each disjunct �i is a conjunction φi

1 ∧ ... ∧ φi
n of meta-literals of the form α � β and α ∼ β . From Lemma 2

it immediately follows that each such a disjunct �i is unsatisfiable iff φ1 ∧ ... ∧φn �core� ⊥. Since �1 ∨ ... ∨�n is inconsistent, 
none of the disjuncts �i are satisfiable, from which we can thus conclude �1 ∨ ... ∨ �n �core� ⊥ and thus � �core�  . �



Fig. C.1. Transformations used in the proof of Lemma 3.

Appendix C. Proof of Proposition 5

Lemma 3. Let K = {Nλi (αi) | 1 ≤ i ≤ n} ∪ {¬Nλi (αi) | n + 1 ≤ i ≤ m} ∪ {αi � βi | m + 1 ≤ i ≤ p} ∪ {αi ∼ βi | p + 1 ≤ i ≤ q}. Let the 
set of GPLcore� formulas L be given by:

L = {αi � α j |1 ≤ i ≤ n,n + 1 ≤ j ≤ m, λi ≥ λ j} ∪ {αi ∼ �|1 ≤ i ≤ n, λi = 1}
∪ {� � αi |n + 1 ≤ i ≤ m} ∪ {αi � ⊥|1 ≤ i ≤ n}
∪ {αi � βi |m + 1 ≤ i ≤ p} ∪ {αi ∼ βi | p + 1 ≤ i ≤ q}

It holds that K has an e-model iff L has an e-model.

Proof. It is straightforward to verify that all the considered axioms are sound, hence when K has an e-model it must be 
the case that L has an e-model as well. Conversely, suppose that L has an e-model π . Note that by definition of e-model, 
π is then normalised. Clearly all formulas of the form α � β and α ∼ β in K are satisfied by π , as these formulas are 
also included in L. Furthermore, for every formula of the form N1(α) in K , L will contain the formula α ∼ �, and thus 
N(α) = N(�) = 1 for N the necessity measure induced by π . Hence all formulas of the form N1(α) from K are satisfied 
by π .

• Assume that some formula Nλl (αl), with λl < 1, is not satisfied by π and let c = N(αl); note that we then have
c < λl . Furthermore note that c > 0 since L contains the formula α � ⊥. Let d be the smallest element from the
set {λn+1, ..., λm,1} which is strictly greater than λl; since λl < 1 such an element d must indeed exist. We define the
normalized possibility distribution π ′ for ω ∈ � as follows:

π ′(ω) =
{
π(ω) if π(ω) > 1 − c or π(ω) ≤ 1 − d

1 − λl − (1−c−π(ω))
d−c (d − λl) otherwise

The transformation from π to π ′ is illustrated in Fig. C.1(a). First note that from c > 0 and the fact that π is normalised, 
it follows that π ′ is normalised. Furthermore, since c < λl < d we have that the transformation from π to π ′ is order-
preserving, i.e. we have π(ω1) < π(ω2) iff π ′(ω1) < π ′(ω2). It follows that π ′ satisfies all formulas of the form α � β

and α ∼ β in K , given that π satisfies these formulas, as the satisfaction of such formulas only relies on the ordering 
of the possibility degrees. It clearly also holds that π ′ |= Nλl (αl). Indeed, since N(αl) = c we know that π(ω) ≤ 1 − c
for every model of ¬αl . By definition of π ′ this means that π(ω) ≤ 1 − λl for each such ω, and thus π ′ |= Nλl (αl). 
Furthermore, since π ′(ω) ≤ π(ω) for every ω ∈ �, it holds that π ′ satisfies all the formulas of the form Nλ(α) that 
were already satisfied by π .
We now show that the same holds for formulas of the form ¬Nλ(α). Suppose π |=� ¬Nλp (αp), with p ∈ {n + 1, ..., m}.
– If λp > λl then λp ≥ d. If it were the case that π ′ |=� Nλp (αp), then for every model ω of ¬αp we would have

π ′(ω) ≤ 1 − λp ≤ 1 − d. However, by construction of π ′ this would mean π ′(ω) = π(ω) for each model of ¬αp and
thus N(αp) = N ′(αp), a contradiction.

– If λp ≤ λl then αl � αp is in L. Hence we have that c = N(αl) > N(αp). It follows that there is some model ω∗ of ¬αp

such that π(ω∗) > 1 − min(c, λp). By definition of π ′ we then have π ′(ω∗) = π(ω) and thus π ′ |=� ¬Nmin(c,λp)(αp)

and a fortiori π ′ |=� ¬Nλp (αp).



• Now consider the case where some formula ¬Nλl (αl) is not satisfied by π , and let us write c = N(αl); note that we
then have c ≥ λl > 0. Furthermore note that we have c < 1 since L contains the formula � � α. Let d be the largest
element from the set {λ1, ..., λn, 0} which is strictly smaller than λl ; since λl > 0, such an element d must exist. Let us
write e = d+λl

2 . We define the normalized possibility distribution π ′ for ω ∈ � as follows:

π ′(ω) =
{
π(ω) if π(ω) < 1 − c or π(ω) ≥ 1 − d

1 − e + (1−c−π(ω))
d−c (e − d) otherwise

This transformation from π to π ′ is illustrated in Fig. C.1(b). Since π ′(ω) ≥ π(ω) and π is normalised, we have that 
π ′ is normalised as well. Furthermore, since d < e < λl ≤ c, we have that the transformation from π to π ′ is order-
preserving, and thus that π ′ satisfies all formulas of the form α � β and α ∼ β . We also have that π ′ |= ¬Nλl (αl). 
Indeed, since c < 1 there must exist model ω∗ of ¬αl such that π(ω∗) = 1 − c. By construction, it holds that 
π ′(ω∗) = 1 − e, from which it follows that N ′(αl) ≤ e < λl , with N ′ the necessity measure induced by π ′ . Further-
more, since π ′(ω) ≥ π(ω) for every ω ∈ �, it holds that π ′ satisfies all the formulas ¬Nλp (αp) that were already 
satisfied by π .
We now show that the same holds for formulas of the form Nλp (αp). Suppose π |=� Nλp (αp), with p ∈ {1, ..., n}.
– If λl > λp then λp ≤ d. Suppose π ′ �|=� Nλp (αp). Then there exists a model ω∗ of ¬αp such that π ′(ω∗) > 1 − λp .

However, since 1 − λp ≥ 1 − d, we have π ′(ω∗) = π(ω∗), which would mean π �|=� Nλp (αp), a contradiction.
– If λl ≤ λp then αp � αl is in L, and thus N(αp) > N(αl) = c. It follows that π(ω) < 1 − c for every model of ¬αp .

Thus we have π(ω) = π ′(ω) for every model of ¬αp , and in particular N(αp) = N ′(αp), for N ′ the necessity measure
induced by π ′ .

By iterating this construction until all formulas of the form Nλl (αl) and ¬Nλl (αl) are satisfied, we obtain an e-model 
of K . �

Noting that all formulas in the set L can be derived from K using �� , the completeness of the GPL� axioms follows 
easily from the previous lemma, together with the completeness of the GPLcore� axioms from Section 5.2.

Proof. As it is clear that � ��  implies � |=�  , we focus on the completeness result. If � |=�  then � ∧ ¬ is 
unsatisfiable. Let �1 ∨ ... ∨ �n be a formula in DNF which is equivalent to � ∧ ¬ , where each disjunct �i is a conjunction 
φi

1 ∧ ... ∧ φi
n of meta-literals of the form Nλ(α), ¬Nλ(α), α � β and α ∼ β . From Lemma 3 it immediately follows that each 

such a disjunct �i is unsatisfiable iff φ1 ∧ ... ∧ φn �� ⊥. Since �1 ∨ ... ∨ �n is inconsistent, none of the disjuncts �i are 
satisfiable, from which we can thus conclude �1 ∨ ... ∨ �n �� ⊥ and thus � ��  . �
Appendix D. Proof of Proposition 7

We first show the soundness of the axioms.

Proof. As already discussed, the soundness of the axioms (RE), (LLE), (RW), (OR), (CM), (CUT) and (INC) follows from 
the soundness of (Ax1) and (RI1)–(RI3). To show that (WRM) is sound w.r.t. the possibilistic semantics it is sufficient 
to show that for any possibility measure � it holds that �(α ∧ γ ) > �(α ∧ ¬γ ) and �(α ∧ ¬β) ≤ �(α ∧ β) together 
imply �(α ∧ β ∧ γ ) > �(α ∧ β ∧ ¬γ ). To see that this is the case,6 note that �(α ∧ γ ) > �(α ∧ ¬γ ) means that either 
�(α ∧ β ∧ γ ) > �(α ∧ ¬γ ) or �(α ∧ ¬β ∧ γ ) > �(α ∧ ¬γ ). In the former case, we readily obtain �(α ∧ β ∧ γ ) >
�(α∧β ∧¬γ ). In the latter case, we also need to have �(α∧β ∧γ ) > �(α∧β ∧¬γ ) since otherwise we find �(α∧¬β) ≤
�(α∧β) = �(α∧β ∧¬γ ), and in particular �(α∧¬β ∧γ ) ≤ �(α∧¬β) ≤ �(α∧β ∧¬γ ) ≤ �(α∧¬γ ), a contradiction. �

To show the completeness result, we will use two lemmas.

Lemma 4. c(α1|∼β1) ∧ ... ∧ c(αn|∼βn) is satisfiable iff c(α1|∼β1) ∧ ... ∧ c(αn|∼βn) �c ⊥.

Proof. We show that c(α1|∼β1) ∧ ... ∧ c(αn|∼βn) �c ⊥ if c(α1|∼β1) ∧ ... ∧ c(αn|∼βn) is unsatisfiable. The other direction 
trivially follows from the soundness of the axioms.

Without loss of generality we can assume that =c(α1|∼β1) ∧ ... ∧ c(αn−1|∼βn−1) is satisfiable, but that every e-model 
π of  is such that �(αn ∧ βn) ≤ �(αn ∧ ¬βn), with � the possibility measure induced by π (i.e., from an inconsistent 
conjunction of conditionals with a consistent antecedent, we can always select a non-empty, maximal consistent subset of 
conditionals). This is only possible if every e-model π of  is such that �(αn ∧ βn) < �(αn ∧ ¬βn). Indeed, suppose there 
was an e-model π of  such that �(αn ∧ βn) = �(αn ∧ ¬βn) < 1 and define π ′ as follows (0 < ε < 1 − �(αn ∧ βn)):

6 The proof appears in [80] but is given again as this paper may be hard to find.



π ′(ω) =
{
π(ω) + ε if π(ω) = �(αn ∧ βn) and ω |= αn ∧ βn

π(ω) otherwise

It is easy to see that if ε < minn−1
i=1 (�(αi ∧ βi) − �(αi ∧ ¬βi)) it holds that π ′ is an e-model of c(α1|∼β1) ∧ ... ∧ c(αn|∼βn).

If �(αn ∧ βn) = �(αn ∧ ¬βn) = 1 we instead define π ′ as follows (0 < ε < �(αn ∧ ¬βn)):

π ′(ω) =
{
π(ω) − ε if π(ω) = �(αn ∧ ¬βn) and ω |= αn ∧ ¬βn

π(ω) otherwise

Thus we can assume that for every e-model π of  , we have π |=cc(αn|∼¬βn). Given the completeness result from [57] for 
consistent sets of conditionals, it follows that c(αn|∼¬βn) can be derived from c(α1|∼β1) ∧ ... ∧ c(αn−1|∼βn−1). Finally, using
(INC) and the axioms of classical logic, we can derive ⊥ from c(αn|∼¬βn) and c(αn|∼βn). �
Lemma 5. Let {γ1|∼δ1, ..., γm|∼δm} be a rationally closed set of defaults and let � = c(γ1|∼δ1) ∧ ... ∧c(γm|∼δm) ∧¬c(γm+1|∼δm+1) ∧
... ∧ ¬c(γr |∼δr). It holds that � is satisfiable iff � �⊥.

Proof. Assume that � � ⊥; we show that � has an e-model. Note that the other direction follows trivially from the sound-
ness of the axioms.

Since � � ⊥, it follows from Lemma 4 that the set of conditionals {γ1|∼δ1, ..., γm|∼δm} is consistent. Given the corre-
spondence between consistent sets of conditionals and possibility theory shown in [57], this means that c(γ1 |∼δ1) ∧ ... ∧
c(γm|∼δm) is satisfiable, and in particular that it has an e-model π such that the conditionals satisfied by π are exactly 
those in {γ1|∼δ1, ..., γm|∼δm}, since we assumed that this set is rationally closed. Since � � ⊥ it holds that none of the 
defaults γm+1|∼δm+1, ..., γr |∼δr is included in this latter set, and thus that π is an e-model of �. �

We now show the completeness result.

Proof. As it is clear that � �c  implies � |=c  , we focus on the completeness result. If � |=c  then � ∧ ¬ is unsat-
isfiable. Let �1 ∨ ... ∨ �n be a formula in DNF which is equivalent to � ∧ ¬ , where each disjunct �i is a conjunction 
φi

1 ∧ ... ∧ φi
n of meta-literals of the form c(γ |∼δ) or ¬c(γ |∼δ). Moreover, thanks to axiom (WRM) we can assume that the 

set of meta-literals of the form c(γ |∼δ) correspond to a rationally closed set of defaults. From Lemma 5 it then follows that 
each such a disjunct �i is satisfiable iff φ1 ∧ ... ∧ φn �c ⊥. Since �1 ∨ ... ∨ �n is inconsistent, none of the disjuncts �i are 
satisfiable, from which we can thus conclude �1 ∨ ... ∨ �n �c ⊥ and thus � �c  . �
Appendix E. Proof of Proposition 8

To prove the three results, we show that for every minimally specific e-model π of K P which satisfies 
∧

a∈At N1(a) ∨
N1(¬a) ∨ (�1(a) ∧ �1(¬a)), it holds that the set M defined as follows is an answer set of P :

M = {l ∈ Lit |π |= N1(l)} (E.1)

and that all answer sets are of this form, i.e., that for every answer set M of P it holds that the possibility distribution πM
defined as follows is a minimally specific e-model of K P which satisfies 

∧
a∈At N1(a) ∨ N1(¬a) ∨ (�1(a) ∧ �1(¬a)):

πM(ω) =
{

1 if ω |= l for every literal l ∈ M

0 otherwise

• Let M be a consistent answer set of P . We show that πM is a minimally specific e-model of K P which satisfies ∧
a∈HP

N1(a) ∨ N1(¬a) ∨ (�1(a) ∧�1(¬a)). The latter trivially follows from the fact that πM (ω) ∈ {0, 1} for each propo-
sitional interpretation ω. It remains to be shown that πM is a minimally specific e-model of K P . Note that because M
is a consistent answer set, it holds that πM is normalized.
To see why πM is an e-model, consider a rule from P of the form (27) and assume that πM satisfies N1(b1) ∧ ... ∧
N1(bm) ∧ �1(¬c1) ∧ ... ∧ �1(¬c�). Since πM |= N1(bi), we have πM(ω) = 0 for all worlds ω in which bi is false. By 
construction this means that bi ∈ M . Similarly, since πM |= �1(¬ci) there is at least one world ω in which ci is false, 
which by construction means that ci /∈ M .
It follows that the rule a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm is in the reduct P M . Since M is a model of this rule (given the 
assumption that M is an answer set), one of a1, ..., an is in M . By construction this means that πM |= N1(ai) for some 
1 ≤ i ≤ n.
It remains to be shown that πM is minimally specific. Suppose π∗ is an e-model of K P which is strictly less specific 
than πM . Then there exists a world ω such that πM(ω) = 0 and π∗(ω) > 0. This means that there is a literal l∗ ∈ M
such that π |= N1(l∗) and π∗ �|= N1(l∗). Let M∗ = {l | π∗ |= N1(l)}. It is clear that M∗ ⊂ M . It is not hard to see that M∗
is a model of P M , which is a contradiction since M is an answer set and thus by definition the unique minimal model 
of P M .



• Let π be a minimally specific e-model of K P , which satisfies
∧

a∈At N1(a) ∨N1(¬a) ∨ (�1(a) ∧�1(¬a)). Let M be defined 
as in (E.1). From the fact that π is normalized, it immediately follows that M is consistent.
First we show that M is a model of P M . Consider a rule of the form (27), for which {c1, ..., c�} ∩ M = ∅, i.e., such that 
a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm is in the reduct P M . Since ci /∈ M we know that π �|= N1(ci). Because π by assumption 
satisfies N1(ci) ∨ N1(¬ci) ∨ (�1(ci) ∧ �1(¬ci)) it follows that π |= N1(¬ci) or π |= �1(¬ci). Using axiom (D) we find 
that π |= �1(¬ci) for each ci . We then have that π is an e-model of N1(a1) ∨ ... ∨ N1(an) ∨ ¬N1(b1) ∨ ... ∨ ¬N1(bm), 
from which we immediately find that M is a model of a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm .
Now suppose that M is not an answer set. Then the minimal model M∗ of P M is such that M∗ ⊂ M . The corresponding 
possibility distribution π∗ is defined as

π∗(ω) =
{

1 if ω |= l for every literal l ∈ M∗

0 otherwise

When π∗(ω) = 0, we have that ω |= ¬l for some l ∈ M∗ . Then we also have l ∈ M which means π |= N1(l) and in 
particular π(ω) = 0. It follows that π∗ is less specific than π , and since there is a literal l0 ∈ M \ M∗ such that π |=
N1(l0) and π∗ �|= N1(l0), it follows that π∗ is strictly less specific than π .
Now we define a third possibility distribution π+ as follows:

π+(ω) =
{

1
2 if π(ω) = 0 and π∗(ω) = 1

π∗(ω) otherwise

Clearly, we have that π+ is strictly less specific than π . We show that π+ is an e-model of K P , contradicting our 
assumption that π were a minimally specific e-model of K P , from which it then follows that M must be an answer set.
Consider a rule of the form (27). If {c1, ..., c�} ∩ M �= ∅, by construction π |= N1(ci) must hold for some ci . This means 
π+ |= N 1

2
(ci) and in particular π+ |= ¬�1(¬ci). This means that π+ satisfies the corresponding GPL formula of the 

form (28). On the other hand, if {c1, ..., c�} ∩ M = ∅, then M∗ satisfies the rule a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm , since this 
rule is in the reduct P M . Moreover, by construction we have l ∈ M∗ iff π∗ |= N1(l) iff π+ |= N1(l). It follows that π+
satisfies N1(a1) ∨ ... ∨ N1(an) ∨ ¬N1(b1) ∨ ... ∨ ¬N1(bm).
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