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Model for the dynamics of micro-bubbles in
high-Reynolds-number flows

Zhentong Zhang1, Dominique Legendre1 and Rémi Zamansky1,†
1Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, 

Toulouse, France

We propose a model for the acceleration of micro-bubbles (smaller than the dissipative 
scale of the flow) subjected to the drag and fluid inertia forces in a homogeneous and 
isotropic turbulent flow. This model, that depends on the Stokes number, Reynolds 
number and the density ratio, reproduces the evolution of the acceleration variance 
as well as the relative importance and alignment of the two forces as observed 
from direct numerical simulations (DNS). We also report that the bubble acceleration 
statistics conditioned on the local kinetic energy dissipation rate are invariant with 
the Stokes number and the dissipation rate. Based on this observation, we propose a 
stochastic model for the instantaneous bubble acceleration vector accounting for the 
small-scale intermittency of the turbulent flows. The norm of the bubble acceleration 
is obtained by modelling the dissipation rate along the bubble trajectory from a 
log-normal stochastic process, whereas its orientation is given by two coupled random 
walks on a unit sphere in order to model the evolution of the joint orientation of the 
drag and inertia forces acting on the bubble. Furthermore, the proposed stochastic 
model for the bubble acceleration is used in the context of large eddy simulations 
(LES) of turbulent flows laden with small bubbles. To account for the turbulent 
motion at scales smaller than the mesh resolution, we decompose the instantaneous 
bubble acceleration in its resolved and residual parts. The first part is given by the 
drag and fluid inertia forces computed from the resolved velocity field, and the second 
term refers to the random contribution of small unresolved turbulent scales and is 
estimated with the stochastic model proposed in the paper. Comparisons with DNS 
and standard LES, show that the proposed model improves significantly the statistics 
of the bubbly phase.

Key words: bubble dynamics, particle/fluid flow, isotropic turbulence

1. Introduction
In various industrial set-ups, such as chemical reactors, water treatment, steam

generators and systems for drag reduction, the presence of a bubble phase plays
an essential role. The further improvement of these applications rely on our ability
to predict the dynamics of the bubbles in highly turbulent flows. However, even
if the equation for the dynamics of micro-bubbles (i.e. bubbles smaller than the
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dissipative scale of the flow) is well known and only depends on the local velocity
of the fluid and its derivatives (Gatignol 1983; Maxey & Riley 1983; Magnaudet &
Eames 2000), it remains challenging to precisely estimate the statistics of the bubble
acceleration in turbulent flows. These difficulties arise because all the flow scales
affect the bubble motion. In particular, the small scales of the flow play an essential
role. Indeed, for small bubbles, the dominance of the fluid inertia term in the bubble
dynamics equation leads to an increase of the bubble acceleration variance with the
bubble diameter (Calzavarini et al. 2009; Prakash et al. 2012; Mathai et al. 2016)
in contrast with inertial particles for which the fluid inertia terms can be neglected.
Further, the non-Gaussian acceleration probability density functions (p.d.f.s) with
broad probability tails of high bubble acceleration events observed experimentally and
numerically (Mazzitelli & Lohse 2004; Volk et al. 2008a; Prakash et al. 2012) stress
the importance of the intermittent fluctuations characteristic of the small scales of
the flow. In addition, the specificity of bubble acceleration statistics has been shown
to affect, among other important statistical quantities, their dispersion and clustering
properties (Mazzitelli & Lohse 2004; Calzavarini et al. 2008; Tagawa et al. 2012,
2013).

For very large Reynolds-number flows, it remains impossible to resolve all the
turbulent scales with direct numerical simulations (DNS). This is why, when the large
scale features of the flow mainly depend on the specific configuration, the large eddy
simulations (LES) approach is commonly used. In such approaches, the effective
action of the small-scale motions on the large-scale evolution is parameterized.
Models based on the turbulent viscosity have proved to reasonably achieve such
parameterization of the energy transfer rate below the resolved scale (Meneveau &
Katz 2000; Sagaut 2002). Following this procedure, one obtains the evolution of a
coarse-grained filtered velocity field, uf . Within this framework, the standard approach
to perform LES with Lagrangian tracking for the dispersion of micro-bubbles in a
turbulent flow is to substitute the local fluid velocity by the filtered velocity field in
the bubble dynamics equation (Climent & Magnaudet 1999; van den Hengel, Deen &
Kuipers 2005; Hu & Celik 2008; Dhotre et al. 2013). However, doing so, the small
(unresolved) scales of the flow are discarded from the bubble dynamics, resulting in
strong underestimation of the bubble acceleration.

Different approaches were considered to account for the unresolved scales in
the calculation of the drag force on small inertial particles. Most of them rely
on the stochastic estimation of the subgrid fluid velocity along the Lagrangian
trajectory of the particles (Fede & Simonin 2006; Berrouk et al. 2007; Pozorski
& Apte 2009; Minier, Chibbaro & Pope 2014; Breuer & Hoppe 2017; Johnson
& Meneveau 2017; Sawford 1991; Sawford & Guest 1991; Park et al. 2017).
Nevertheless, none of these approaches addressed the issue of the fluid inertia
force, which is essential for bubble dynamics. Aside, approaches have been proposed
to reconstruct the fluid fluctuations in the Eulerian fields which can in turn be used
to advect the dispersed phase (Kerstein 1999; Burton & Dahm 2005a,b; Ghate &
Lele 2017). Among them Sabel’nikov, Chtab & Gorokhovski (2007) introduced the
decomposition of the instantaneous fluid acceleration field into a filtered contribution
and a random contribution to account for the intermittency at small, unresolved, scales
(see also Sabel’nikov, Chtab-Desportes & Gorokhovski 2011; Zamansky, Vinkovic &
Gorokhovski 2013; Sabelnikov, Barge & Gorokhovski 2019). Recently, Gorokhovski
& Zamansky (2018) considered a similar decomposition for the instantaneous
acceleration of dispersed objects,

ab = ab|{z}
large-scale
contribution

+ a⇤

b|{z}
small-scale random

contribution

. (1.1)



The temporally and spatially filtered force is obtained from the resolved velocity field,
uf , while the random force accounts for fluctuations at unresolved scales. The filtered
contribution presents much less intense fluctuations than the total acceleration as can
be verified in Lalescu & Wilczek (2018). In line with the Kolmogorov hypothesis,
it is assumed that the main source of randomness in the acceleration is attributed
to the fluctuation of the local energy transfer rate. We then propose to approximate
the instantaneous small scale contribution of the acceleration by the acceleration
conditionally averaged on the local value of the dissipation rate as ‘seen’ along the
Lagrangian path "⇤ : a⇤

b ⇡ hab | "⇤i. Within the LES framework, "⇤ has to be modelled
since its wide fluctuations cannot be resolved from the filtered velocity field. For solid
inertial particles solely subject to the Stokes drag force, Gorokhovski & Zamansky
(2018) proposed such a model along with a log-normal stochastic process as a
surrogate to the local dissipation rate. In the present paper, we extend this approach
to the dynamics of micro-bubbles dispersed in turbulent flows. We first use DNS to
analyse the statistics of the bubble acceleration and of the two main forces acting on
the bubble (drag and fluid inertia forces). Specifically, we investigate the evolution of
the magnitude of the two forces with the bubble diameter and their relative orientation,
as well as the statistics of the bubble acceleration conditioned on the local dissipation
rate. To estimate the magnitude of the acceleration, we propose a model based on the
bubble spectral response to the fluid velocity fluctuation initially proposed by Tchen
(1947). Further, consistently with the time scale separation between the evolution
of the norm and the orientation (Pope 1990; Mordant, Crawford & Bodenschatz
2004), our modelling is supplemented with a stochastic process for the orientation,
a⇤

b = |a⇤|e⇤. The proposed model accounts for intermittency effects, as well as the
correlation and alignment between the drag force and the fluid inertia force.

The outline of the paper is as follows: in § 2 we provide the numerical details of the
DNS and the LES of statistically stationary homogeneous and isotropic turbulent flows.
In § 3, we report the statistics of the acceleration and of the forces obtained from the
DNS for various Stokes numbers. We also present a model describing the dependence
of these statistics. Section 4 gives the formulation of the stochastic models accounting
for the unresolved fluid acceleration. Subsequently the coupling of this model with
LES is assessed by comparison with DNS and standard LES.

2. Details of the numerical simulations
We consider very small bubbles dispersed in an isotropic homogeneous turbulent

flow. The continuous liquid phase is given by the incompressible Navier–Stokes
equation and the dispersed phase is treated with a point particle approach. The
feedback of the bubbles on the carrier phase is disregarded. The carrier flow field is
computed with a pseudo-spectral method in a periodic box (Zamansky et al. 2016;
Gorokhovski & Zamansky 2018; Bos & Zamansky 2019). In order to maintain a
statistically stationary state, a forcing term active at the smallest wavenumbers is
applied to the Navier–Stokes equation (Chen et al. 1993). The flow field is simulated
by DNS and LES for the same Reynolds number, and the details of the simulation
parameters are given in table 1. For the LES, the turbulent viscosity is estimated by
the standard Smagorinsky model, ⌫� = Cs�|Sij|, where Sij is the filtered rate of strain
tensor, � is the cutoff scale and Cs is the model parameter. With the Smagorinsky
model, the energy transfer rate from scale �, "� = 2(⌫ + ⌫�)SijSij can give a relatively
good estimate of the average energy flux, h"�i = h"i, with " being the local rate of
kinetic energy dissipation. However, the energy transfer rate from scale � typically



Method N ReH Re� ⌧L/⌧⌘

h"iH
K3/2

L/⌘ ⌘/� ⌫�/⌫ ⌧�/⌧⌘

DNS 10243 10 600 216 55.8 1.9 418 0.8 — —
LES 643 10 100 193 51.3 2.09 367 0.045 9.7 52
LES 483 9 800 187 48.4 2.3 336 0.034 14.6 59
LES 323 9 381 175 45.5 2.47 307 0.02 25 80

TABLE 1. The numerical parameters of the DNS and LES. The number of grid points in
each direction is given by N. The size of numerical domain is H = 2p, ⌧L = (2/3K)/" is
the eddy turnover time, L = (2/3K)3/2/" is the scale of the large eddies, K is the average
turbulent kinetic energy and " is the average dissipation rate. The Reynolds number based
on the large scale of the flow is given by ReH , Re� is Reynolds number based on the
Taylor length scale, ⌘ and ⌧⌘ are the Kolmogorov length and time scale and ⌧� = �2/⌫�.

presents much less intense fluctuations compared to " when � � ⌘. In the following,
it is shown that " is able to characterize the bubble dynamics, and we use a stochastic
process to estimate the value of " from "�.

For micro-bubbles in turbulence, the bubble equation of motion is essentially
given by the drag force and the inertia force (Gatignol 1983; Maxey & Riley 1983;
Magnaudet & Eames 2000),

ab(t) =
dub(t)

dt
= �

ub(t) � uf (x = xb(t), t)
⌧b

+ �
Duf

Dt
(x = xb(t), t);

dxb(t)
dt

= ub(t),

(2.1a,b)
where ab, ub and xb are the bubble acceleration, velocity and position, uf is the fluid
velocity field and Duf /Dt = @uf /@t + uf · ruf is its material derivative. The parameter
�, which compares the mass accelerated by the fluid to the mass accelerated by the
bubble, is defined as � = (1 + Cm)/(� + Cm), where � is the density ratio and Cm is
the added mass coefficient (Cm = 1/2 for a sphere in an unbounded environment). For
a bubble ⌧b = d2

b/(24⌫), with ⌫ the kinematic viscosity and db the bubble diameter, and
� = 3, assuming that the gas–liquid density ratio is vanishing, and that the bubbles are
non-deformable spheres with free slip at the liquid interface. For a solid body with
no slip at the interface one has ⌧b = (� + Cm)d2

b/(18⌫) and for large density ratio
� ⇡ 0. In (2.1) the history and lift forces are discarded as they appear less important
(Legendre & Magnaudet 1997, 1998; Magnaudet & Eames 2000; Mazzitelli, Lohse
& Toschi 2003; Calzavarini et al. 2008). Also as shown by Mathai et al. (2016) the
effect of gravity is negligible on the bubble dynamics as long as St/Fr ⌧ 1, with St =
⌧b/⌧⌘ and Fr = a⌘/g being the Stokes and Froude numbers, respectively, ⌧⌘ =

p
⌫/h"i

and a⌘ =
p

h"i/⌧⌘ being the Kolmogorov time and acceleration scales, respectively. To
evaluate the right-hand side of (2.1) the value of fluid velocity and total acceleration
fields at the bubble positions are interpolated from the computational grid with the
Hermite interpolation scheme. For each Stokes number we track 1 628 000 bubbles per
Stokes number for the DNS and 62 800 for the LES. In table 2 we give the Stokes
number for our seven sets of simulations. For a bubble with � =0, the only possibility
to vary the Stokes number is to change db/⌘ through the relation db/⌘ =

p
24St. As

apparent, for the largest Stokes numbers considered here, the point particles approach
appear unrealistic as db/⌘ > 1. Note, however, that according to Calzavarini et al.
(2009), the finite volume effects appear to be significant for db/⌘ > 10. Moreover, as
seen in table 2 for the largest Stokes numbers, the bubble Reynolds number, Reb =



St 0.021 0.074 0.20 0.45 1.01 1.55 2.07
db⌘ 0.70 1.33 2.19 3.29 4.93 6.10 7.04
Reb 0.06 0.36 1.4 4.2 11.3 18.4 25.1

TABLE 2. The Stokes numbers and non-dimensional diameters of the bubbles used for
the DNS and LES, and the bubble Reynolds numbers computed from the DNS.

p
h(uf � ub)2idb/⌫, becomes significant, and the Stokes drag law is not strictly valid

for those Stokes numbers. Nevertheless, the drag of a spherical clean bubble needs
corrected by a function of Re ranging between 1 and 3 in the limit of infinite Reynolds
number. Typically for the maximum value reported in table 2, the correction is 1.9. So
we do not expect a qualitative change on the behaviour of the results presented below.
Therefore, we choose to keep a simple drag law in order to simplify the analysis.
Finally let us mention that from a dimensional point of view to have St = 1 and Fr = 1
for bubbles in water, with normal gravity (g = 9.81 m s�2), requires db ⇡ 0.0002 m
and " ⇡ 0.2 m2 s�3.

The DNS results are detailed in the next section. They will serve as the basis for
the discussion of the stochastic modelling developed in § 4.

3. Statistics of the bubble acceleration and of the fluid forces on the bubbles
Response of small bubbles and particles to turbulence is known to depend on both

Stokes number and �. This is illustrated in figure 1 which presents the normalized
acceleration variance against the Stokes number for various value of �. In this figure
we report the data obtained from our DNS for micro-bubbles (� = 3), the DNS for
Calzavarini et al. (2009) for light particles (� = 2.5) and heavy particles (� = 0.14)
and the DNS of Bec et al. (2010) for heavy particles (� = 0). For the heavy particles
(� <1), it is observed that the acceleration variance decreases when the Stokes number
increases. This is in contrast to the case of bubbles and light particles (� >1) in which
the bubble normalized acceleration variance increases with St.

Based on the dynamics of the bubble given by (2.1) and following the approach of
Tchen (1947) (see also Hinze 1975), one can derive a response function of the bubble
velocity fluctuations to the fluid fluctuations, Hu(!),

Eb(!) = H2
u(!)Ef (!); H2

u(!) =
1 + �2!2⌧ 2

b

1 + !2⌧ 2
b

, (3.1a,b)

with ! the pulsation, and where Eb(!) = ûb(!)ûb(�!) and Ef (!) = ûf (!)ûf (�!) are
the Lagrangian spectra of the bubble and fluid velocity and circumflexes are used to
denote the Fourier coefficients. To obtain this relation we assume that the trajectory
of the bubble does not deviate significantly from the trajectory of a fluid element
as we substitute the material derivative of the fluid velocity by its time derivative
along the bubble trajectory. This assumption is questionable as soon as the Stokes
number of the bubble is not vanishingly small, and will be discussed later. Anyway,
it enables us to easily obtain the qualitative behaviour of the bubble dynamics since
in that case, it is not explicitly dependent on the fluid velocity gradient. As shown in
the inset of figure 1, the response function differs significantly for a bubble (� = 3)
and a heavy particle (� = 0). While for � = 0, the inertia of the particle filters the
high frequency fluctuations of the fluid, for a bubble the high frequency fluctuations
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FIGURE 1. (Colour online) Acceleration variance normalized by the fluid tracer 
acceleration variance from our DNS for bubbles (e and continuous line), the DNS data of 
Bec et aL (2010) and Lanotte (2011) for heavy inertial particles f3 = 0, Re ,1 = 400 (• and 
continuous line), the DNS from Calzavarini et aL (2009) for f3 = 2.5 and Re,1 = 180, with 
and without the Faxén correction ( + with dotted and dot-dashed lines, respectively), and 
f3 = 0.14 (+ with continuous line), the experimental measurements from Prakash (2013) 
for Re,1 = 145 - 230 and f3 :=:::: 3 (x with dashed lines). Comparison with the relation 
(3.4), (ai)(St, /3, Re0)/(ai)(o, 1, Re0) with c 1 = 2.8 and Re�12 

= 0.08Re,1 = 16 for f3 = 0, 
0.14, 0.5, 1, 1.5, 2, 2.5 and 3 from black to orange, in dashed lines, and with c1 = 2.8 
and Re�12 

= 0.08Re,1 = 32, f3 = 0 in black dotted line. The inset is the response function 
(3.1) as a function of Wt"b for f3 = 0, 0.5, 1, 2 and 3 from black to orange, respectively. 

of the fluid are amplified. From this relation one can also obtain the response fonction 
relating the bubble acceleration fluctuations to the fluid velocity fluctuations along the 
bubble trajectory, Ha(w),

(3.2a,b) 

with Ea the Lagrangian spectrum of the bubble acceleration. The bubble acceleration 
variance is given by (a�} = 2 Jt Ea(w) dw. To compute the variance, one needs 
to prescribe the Lagrangian fluid velocity spectrum along the bubble trajectory. 
For a fluid tracer the Lagrangian spectrum presents a power law for intermediate 
frequencies, E1(w) � (e}w-2 (Tennekes & Lumley 1972; Yeung 2001). To account for
finite Reynolds number effects, and to have a finite energy density for w � 0 we 
consider the form for the Lagrangian spectra (Hinze 1975; Mordant, Metz & Michel 
2001) as follows: 

(3.3) 



with k0 a constant, and !�1
0 the Lagrangian integral time scale. Note that the relation

(3.3) gives, for the velocity Lagrangian autocorrelation, ⇢(⌧ ) = exp(�!0⌧ ). As shown
by Sawford & Yeung (2011), one has (⌧⌘!0)

�1 = (!⌘/!0)/2p ⇡ 0.08Re�, with !⌘ =

2p/⌧⌘. For convenience we note in the following Re1/2
0 = (⌧⌘!0)

�1. Furthermore the
normalizing condition of the spectra, hu2

f i = 2
R

1

0 Ef (!) d!, gives after integration
hu2

f i = pk0h"i/!0 that imposes k0 = 2(⌧L/⌧⌘)(!0/!⌘) ⇡ 4(⌧L/⌧⌘)Re�1
� with ⌧L = hu2

f i/h"i
the large eddy time scale. This constant is computed from the DNS to be k0 ⇡ 1.04
(see table 1). As seen from figure 2(a), with k0 =1.03 and !0/!⌘ =0.0092, the relation
(3.3) provides a very good estimation of Ef for the various Stokes number considered
here, for ! ⌧ !⌘. Nevertheless, the high frequency part of the spectra, which presents
dependence on the Stokes number, is not predicted correctly by (3.3), an increase
in inertia leads to more energy at high frequency. Let us note that for � > 0 the
previous integral only converges if Ef (!) decreases fast enough at large !. Therefore
to ensure its convergence, the integral is truncated above k1!⌘, independently of the
Stokes number. This gives for the bubble acceleration variance the following relation:

ha2
bi ⇡ c0a2

⌘

"
�2

+
1 � �2

1 � St2
0

tan�1(c1St)
c1St

�
1 � �2St2

0

1 � St2
0

tan�1(c1Re1/2
0 )

c1Re1/2
0

#
, (3.4)

with c1 = 2pk1, c0 = 4pk1k0 and St0 = St/Re1/2
0 a Stokes number based on the large

eddy time scale. Note that the previous relation does not present singularities for St0 =

1 since in this case the last two terms cancel. Also ha2
bi remains positive for all St,

Re0 and �. Nevertheless, the assumptions used to derive (3.4) are a priori satisfied
for Re0 � St2 and Re0 � 1, and in this limit (3.4) becomes

ha2
bi ⇡ c0a2

⌘


�2

+ (1 � �2)
tan�1(c1St)

c1St

�
. (3.5)

A similar relation is proposed by Zaichik & Alipchenkov (2011). Their derivation
is based on the same approximation for the fluid acceleration and assumes the
fluid velocity correlation in physical space that include a viscous cutoff at small
scale contrary to the relation (3.3) used here. The relation (3.4) with c1 = 2.8 and
Re1/2

0 = 16 is plotted in figure 1 for various St and �. In this figure, the bubble
acceleration variance is normalized by the acceleration variance of fluid tracers
estimated from the model (3.4) by setting St = 0 and � = 1. It is seen that (3.4) is
overall in good agreement with the DNS data sets for � = 3, 2.5, 0.14 and 0. The
discrepancy between the DNS and relation (3.4) observed for the inertial particles
around St = 1, is attributed to the preferential concentration of particles, since this
effect is not accounted for in the model. For the inertial particles at St ⇡ 0.5 the
model overestimates the acceleration by approximately 20 %. It is also observed that
for St > 1, (3.4) underestimates the DNS when � = 3 and 2.5. Note also that the
evolution of the acceleration variance with St and � given by the model (3.4) appears
qualitatively similar to the DNS data presented by Volk et al. (2008a). As expected,
the acceleration variance normalized by the acceleration variance of fluid tracer tends
to unity when St goes to 0 for every value of �, indicating that bubbles with bubbles
with extremely small diameter effectively behave as fluid tracers. According to (3.4)
for � = 0, the decrease of the acceleration variance with the Stokes number presents
the same scaling as the relation proposed by Gorokhovski & Zamansky (2018),
namely ha2

bi/a2
⌘ ⇡ 1 for St ⌧ 1, ha2

bi/a2
⌘ ⇠ St�1 for 1 ⌧ St ⌧

p
Re0 and ha2

bi/a2
⌘ ⇠ St�2

for St �
p

Re0 and appears consistent with the relation proposed by Bec et al. (2006).
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FIGURE 2. (Colour online) (a) Lagrangian fluid velocity spectra along the bubble
trajectory from the DNS for St = 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07 (from
black to red, respectively). Comparison with the power law !�2 and the relation
(3.3), k0/((!/!⌘)

2 + (!0/!⌘)
2) with k0 = 1 and !0/!⌘ = 0.0092 in grey dot-dashed and

dashed lines, respectively. (b) Evolution with the Stokes number of the variance of the
material derivative of fluid velocity at the bubble position (black circles) and of the
Lagrangian time derivative along the bubble trajectories of the fluid velocity (red crosses).
Both quantities are normalized by the global variance of the fluid tracer acceleration. The
inset is the variance of the difference between these two quantities in logarithmic scales
normalized by the Kolmogorov acceleration and comparison with the St and St1/2 power
laws.

In contrast, for a bubble (� = 3), according to (3.4), the normalized acceleration
variance increases as ha2

bi/a2
⌘ � 1 ⇠ St2 and saturates to �2 for St � 1. Note, however,

that the limit St � 1 does not make sense, since for a bubble it implies d2
b/⌘

2 � 1
which disagrees with the pointwise model. From the experimental results of Prakash
et al. (2012) and the numerical simulations with a Faxén correction term (Calzavarini
et al. 2009), also plotted in figure 1 for completeness, it appears that the finite
size effect becomes important from St ⇡ 2 or db/⌘ ⇡ 7, and leads to a decrease of
the acceleration variance with a further increase of the bubble diameter (or Stokes
number).

To analyse the substitution of the fluid velocity material derivative at the
bubble position, Duf /Dt, by its Lagrangian derivative along the bubble trajectory,
duf /dt, implied in (3.1), we remark that the material derivative can be written as
Duf /Dt = duf /dt + (uf � up) · ruf . We estimate that the order of magnitude of the
last term is O((uf � up) · ruf ) = hF2

di
1/2St, Fd being the drag force. Therefore, based

on the previously disused scaling of the inertial particle acceleration we expect that
this term grows linearly with St for St ⌧ 1 and as St1/2 for 1 ⌧ St ⌧

p
Re0 (see

also the relation for the variance of the drag force proposed latter in (3.6)). Note
that to obtain the previous estimation we have assumed that velocity gradients are
of order 1/⌧⌘ and thus we neglected intermittency effects which probably leads to
an underestimation at large Reynolds numbers. As shown in the inset of figure 2(b)
the proposed scaling for the difference appears to be consistent with the DNS. To
analyse further the error due to the simplification of the fluid inertia term we have
computed, from the DNS, the variances of Duf /Dt and duf /dt. It is seen in figure 2(b)
that for St < 0.2 the variance of the time derivative of the fluid velocity along the
bubble trajectory remains sizable to the variance of the fluid acceleration at the



bubble position (around 10 % of difference) while, for St = 1, it is larger by a factor
of roughly 3. Moreover, the normalized p.d.f. of these two quantities (not shown)
remains quite similar even for the largest Stokes number considered here. We can
then conclude that our approximation is reasonable for St < 1 and could lead to
an overestimation of the fluid inertia term for larger St. Nevertheless, the range of
validity of the substitution and of the pointwise bubble approximation are seen to
coincide.

The expression (3.5) does not include any intermittency effects and Reynolds
number dependence (Yeung et al. 2006). The intermittent behaviour of the dissipation
rate which is accounted for by the stochastic models discussed in § 4 is associated
with large fluctuations of the acceleration (Kolmogorov 1962; Castaing, Gagne &
Hopfinger 1990; Lukassen & Wilczek 2017). This is seen in figure 3 presenting
the bubble acceleration p.d.f. obtained from the DNS. It is observed that the bubble
acceleration p.d.f. clearly presents a non-Gaussian behaviour with stretched tails
indicating the occurrence of very intense acceleration events as pointed by Volk et al.
(2008a), Prakash et al. (2012) and Loisy & Naso (2017). For intermediate Stokes
number (St ⇡ 0.5) the bubble acceleration p.d.f. appears even more stretched than the
p.d.f. of fluid tracer acceleration. While a further increase of St gives again a p.d.f.
very similar to the p.d.f. of fluid tracer acceleration. Correspondingly, figure 3(b)
shows that the bubble acceleration flatness (Fla = h(ab � habi)

4i/h(ab � habi)
2i2)

presents a maximum for a Stokes number around 0.2. Note that a peak was also
observed in Calzavarini et al. (2009) but with a smaller maximum value and for a
larger value of St. The difference is attributed to the smaller value of � and Re�
(� = 2.5 and Re� = 75) used in Calzavarini et al. (2009). In this figure we also
compare the flatness of fluid acceleration at the bubble position (or equivalently the
flatness of the inertia force). It is observed that its value increases with St, but remains
much smaller than the bubble acceleration flatness for intermediate Stokes numbers.
As discussed below, the non-monotonic evolution of the bubble acceleration flatness
is attributed to specific geometrical arrangements of the hydrodynamic forces applied
to the bubble, rather than to a preferential concentration of bubbles in special regions
of the flow (Calzavarini et al. 2008; Tagawa et al. 2012). Given the very large values
taken by the flatness, this statistic might not be well converged, nevertheless there is
no doubt that the flatness of the acceleration of the bubbles is much greater than that
of the acceleration of the fluid at the bubble position.

From the relation (3.1) it is as well possible to obtain an estimate for the variance
of the two terms on the right-hand side of (2.1), the drag force FD = �(1/⌧b)(ub(t) �

uf (x = xb(t), t)), and the fluid inertia effect FI = �(Duf /Dt)(x = xb(t), t),

hF2
Di ⇡

Z k1!⌘

0
Ef (!)

!2(1 � �)2

1 + !2⌧ 2
b

d!

⇡ c0a2
⌘

(1 � �)2

1 � St2
0

 
tan�1(c1St)

c1St
�

tan�1(c1Re1/2
0 )

c1Re1/2
0

!
(3.6)

hF2
I i ⇡

Z k1!⌘

0
Ef (!)!2�2 d!

⇡ c0a2
⌘�

2 1 �
tan�1(c1Re1/2

0 )

c1Re1/2
0

!
. (3.7)
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FIGURE 3. (Colour online) (a) The p.d.f.s of the bubble acceleration normalized by its
root-mean-square value in black for St = 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07
(shifted upward by two decades from each other for clarity, respectively) and comparison
with the p.d.f.s of the acceleration of fluid tracers in red. (b) Flatness of the bubble
acceleration (u) and of the fluid acceleration at the bubble position (+) against St from
our DNS.

These relations are plotted in figure 4(a) and are compared with the variance of the
forces obtained from our DNS. Similar to the estimation of the acceleration variance
expressions (3.6) and (3.7) are seen to provide a good estimation of the variances of
FD and FI although the drag force is overestimated and the inertia force given by
(3.7) is independent of the Stokes number which disagrees with the observation of
figure 2(b). It is seen that for small Stokes numbers the variance of the two forces
are commensurate, although the fluid inertia effect is dominant. Precisely, for St ! 0
the variance of the drag force is (2/3)2 of that of the inertia term. It is also observed
that the sum of the variance of the two forces is much larger than the variance of
the bubble acceleration indicating a significant correlation between the two terms. As
expected, when the Stokes number is increased, the drag force becomes negligible and
the bubble acceleration is essentially given by the fluid inertia term.

Figure 4(b) presents the p.d.f. of both drag and fluid inertia forces for the various
Stokes numbers. It is observed that for vanishingly small Stokes numbers (St = 0.02)
the p.d.f.s of the two forces are essentially identical, and present both developed tails.
The increase of the Stokes number results in a significant reduction of the tails of the
drag force’s p.d.f. whereas the p.d.f. of the inertia force presents very little variation
(see also its flatness in figure 3). It is also worth mentioning that the p.d.f. of both
forces remain symmetrical for all Stokes number indicating that the average and the
skewness values of the two forces are zero. Because the bubbles sample regions of
the flow in which the fluid acceleration variance is slightly below its overall value
(see figure 2) and that the p.d.f. of the fluid acceleration at the bubble position is
nearly invariant with the Stokes number, we conclude that the maximum of the bubble
acceleration flatness is not caused by preferential concentration effects but is rather
due to the alignment of the hydrodynamic forces on the bubble.

In figure 5(a), we plot the evolution of the correlation between FD and FI with the
Stokes number obtained from the DNS. It is seen that for small St the two forces are
completely anticorrelated, while they progressively decorrelate as St increases. Indeed
requiring that for St = 0 the acceleration is equal to the acceleration of a fluid tracer,
we obtain from (2.1) that FD = (1 � �)/�FI , that gives an anti-alignment for � > 1.
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FIGURE 4. (Colour online) (a) Evolution with the Stokes number of the variance of the
drag force (circle) and inertia force (crosses) relative to the bubble acceleration variance
according to our DNS and comparison with (3.6) and (3.7) normalized by (3.4) with c1 =

2.8 and Re1/2
0 = 16 in dashed and dot-dashed lines, respectively. (b) The p.d.f. of the fluid

inertia forces (black) and of the drag force (red) normalized by their root-mean-square
value for St = 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07 (shifted upward by one decade
from each other for clarity, respectively).

Further, the correlation can also be readily estimated for larger Stokes numbers from
(3.6), (3.7) and (3.4) as follows:

hFD · FIi ⇡ c0a2
⌘

�(1 � �)

1 � St2
0

tan�1(c1St)
c1St

�
tan�1(c1Re1/2

0 )

c1Re1/2
0

!
. (3.8)

Figure 5(a) shows that the relation (3.8) is in good agreement with the DNS results.
Further, if the persistence of the temporal autocorrelation of the norms of the two
forces is much longer than for their orientation, then the correlation between the two
forces could be approximated by their relative orientation,

hFD · FIi ⇡ hcos ✓i(hF2
DihF2

I i)
1/2, (3.9)

where ✓ is defined as cos ✓ = FD · FI/|FD||FI| = eI · eD, with eI and eD the orientation
vectors of the inertia term and of the drag force, respectively. This is confirmed
in figure 5(a) that indeed hcos ✓i remains quite close to hFD · FIi(hF2

DihF2
I i)

�1/2.
Figure 5(b) reports the evolution with the Stokes number of the p.d.f. of cos ✓ . For
small Stokes numbers, the two forces appear to be essentially anti-aligned as the
p.d.f. presents a sharp peak around �1 consistent with its averaged value. When the
Stokes number is increased, the distribution of cos ✓ becomes flatter, indicating that
the relative orientation of the two forces becomes progressively statistically isotropic.
Note that according to (3.8) we should expect a positive correlation between the two
forces for � < 1 and small St.

In figure 6(a), we present the evolution of the Lagrangian autocorrelation of the
bubble acceleration for the various Stokes numbers. It is observed that an increase of
the Stokes number produces a faster decorrelation, as already reported by Volk et al.
(2008b), although for 0 < St < 2 it is seen that the correlation time remains of order ⌧⌘.
It is worth mentioning that this behaviour departs significantly from the evolution of
inertial particles which present larger correlation time with increasing St (Gorokhovski
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FIGURE 5. (Colour online) (a) Evolution with St of the coefficient of correlation between
the drag and inertia forces (dots) and of hcos ✓i (✓ being the relative orientation of the
forces) (crosses) from the DNS and comparison with relation (3.8) normalized by (3.6)
and (3.7) with c1 = 2.8 and Re1/2

0 = 16 in blue lines. (b) The p.d.f.s of the cosine of the
angle ✓ between the two forces, for St = 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07 (from
black to red, respectively).

& Zamansky 2018). To further analyse this point, we also present, in figure 6(a), the
autocorrelation along the bubble trajectory of the two forces acting on the bubble. It is
observed that for vanishingly small Stokes number, the two forces present exactly the
same evolution of their Lagrangian correlation, because of the almost instantaneous
response of the drag force to the inertia force. With increasing the Stokes number,
one sees a clear difference in the autocorrelation of the drag force and of the inertia
forces. Increasing the Stokes number gives a longer persistence time for the drag
forces which can be directly attributed to the increase of ⌧b. On the other hand, the
faster decorrelation of the inertia force is explained by the deviation of the bubble
trajectories from the fluid tracer trajectories.

The response of the drag force to the inertia term is analysed in figure 6(b)
which presents the plot of the cross correlation of the orientation of the two
forces along the bubble trajectory. The cross-correlation is defined as ⇢eD,eI =

h�eI(t) · eD(t + ⌧ )i/(he2
I ihe2

Di)1/2. This figure confirms that the orientation of the
drag forces responds to the inertia term. The temporal lag between the two forces
can be estimated from the time shift of the peak, max⌧ (⇢eD,eI (⌧ )) = ⇢eD,eI (⌧lag). In
the inset of figure 6(a), we present the evolution of ⌧lag with St. It is seen that ⌧lag
presents a linear evolution for small ⌧b. Indeed for vanishingly small Stokes number,
the drag responds instantaneously. For larger Stokes number, the growth rate of ⌧lag
reduces. We observe that ⌧lag ⇡ ⌧⌘(� � 1)�1 tan�1((� � 1)St) is a relatively good
approximation of the lag of the drag force compared to the inertia effect. Clearly
a further check of this speculative relation would require simulations for different
values of �. We remark that one could estimate the autocorrelation of the bubble
acceleration or hydrodynamic forces as well as the cross-correlation presented in
figure 6 from the spectral response model of (3.1). However, this would require a
more precise estimation of the Lagrangian fluid velocity spectra at high frequency
than the relation (3.3), as the decorrelation is controlled by the dissipative range of
the spectra which depend on St as seen in figure 2.

The anti-alignment of the forces at small Stokes can be explained as follows. For
vanishingly small Stokes number, the relaxation time ⌧b of the bubble velocity to the
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FIGURE 6. (Colour online) (a) Autocorrelation coefficient of the bubble acceleration, drag
force and fluid inertia terms (shifted upward by one unit from each other, respectively, for
clarity) from our DNS. (b) Cross-correlation between the drag force and the fluid inertia
term as given by our DNS. The inset is the evolution of the time lag (defined as the
time of the peak of cross-correlation) with St, and comparison with the ⌧lag/⌧⌘ = St and
⌧lag/⌧⌘ = (� � 1)�1 tan�1((� � 1)St). For both figures St = 0.02, 0.074, 0.20, 0.45, 1.01,
1.55 and 2.07 (from black to red, respectively).

local fluid velocity is much smaller than the persistence time of the fluid inertia term,
which is of order ⌧⌘ (Pope 1990; Mordant et al. 2004). Therefore, the drag force
will very quickly respond, leading it to be statistically opposed to the fluid inertia
term. On the other hand, for St � 1 we should expect that the orientation of the
two forces becomes independent because the relaxation time of the particle becomes
much larger than ⌧⌘. In the meantime, we have observed that the amplitude of the
drag forces becomes negligible as the Stokes number is increased. This conjunction
of the evolution of the relative orientation and magnitude of the two forces, leads to
the increases of the bubble acceleration flatness, observed in figure 3 for St around 0.5.
For these Stokes numbers, the amplitude of the drag forces remains significant while
its orientation already presents a wide distribution, leading to the strong intermittency
of the acceleration, when the two forces, of similar magnitude, are anti-aligned the
acceleration will be close to zero whereas in case of an alignment of the forces intense
acceleration will result.

We have proposed above a relation between the bubble acceleration variance
and the average dissipation rate. However, in line with the Kolmogorov theory,
the instantaneous acceleration depends a priori on the local energy dissipation rate
". To discuss this point we present in figure 7 statistics of the bubble acceleration
conditioned on the local value of the dissipation rate. This is also motivated to provide
supports for a stochastic modelling of the bubble acceleration that accounts for the
large fluid fluctuations in small-scale motions, as discuss in the following section.
We consider in figure 7(a) the variance of the bubble acceleration conditioned on
the local dissipation rate. We first observe that for " larger than its average value,
ha2

b|"i appears to be independent of the Stokes number, and increases as "3/2, while
it presents little dependence on both " and St for small value of ",

ha2
b|"i ⇡ ha2

bi

✓
"

h"i

◆3/2

; " > h"i. (3.10)
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FIGURE 7. (Colour online) (a) Variance of the bubble acceleration conditioned on the
local value of the dissipation rate " for the various Stokes number St = 0.02, 0.074, 0.20,
0.45, 1.01, 1.55 and 2.07 (from black to red, respectively) normalized by unconditional
bubble acceleration variance, and comparison with the relation ha2
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a dashed line. (b) The p.d.f.s of acceleration conditioned on the dissipation rate for St = 1.
Eight values of " are reported, "/h"i= 0.17, 0.28, 0.46, 0.77, 1.3, 2.1, 3.5 and 5.8 (shifted
upward by two decades from each other, respectively) and comparison with unconditioned
bubble acceleration p.d.f. with dashed lines.

This behaviour is similar to previous observations for fluid tracers from Yeung et al.
(2006). The invariance with St observed for the micro-bubbles is therefore attributed
to dominance of the fluid inertia term. It was reported by Yeung et al. (2006) that the
exponent of the power law for the conditional acceleration is reduced for low values
of Reynolds numbers. Also Yeung et al. (2006) showed that the value at which the
acceleration variance converge for " ! 0 decreases with Reynolds number, indicating
that the acceleration in the weakly dissipative regions is primarily influenced by the
large-scale sweeping. In figure 7(b) the conditional p.d.f. normalized by its standard
deviation is shown to be approximately self-similar with ". The conditional p.d.f.s
present slightly less developed tails than the unconditional p.d.f., similarly to the
observation of Yeung et al. (2006) for fluid particles. Note that in figure 7(b), the
conditional p.d.f.s are shown for St = 1 but a similar conclusion holds for the other
Stokes number studied here.

4. Stochastic modelling of the dynamics of micro-bubbles
Following the proposition of Gorokhovski & Zamansky (2018) (see also Sabel’nikov

et al. 2007, 2011; Zamansky et al. 2013), the instantaneous acceleration of each
bubble is decomposed into filtered and stochastic parts. The first term corresponds to
the contribution to the sweep imposed by the large (resolved) scales of the flow, and
the second term accounts for the unresolved fluctuations of the carrier phase

ab = ab + a⇤. (4.1)

The residual contribution a⇤ is determined by the drag forces and the fluid inertia
effect (added mass and Tchen force), a⇤ = F⇤

D + F⇤

I , which are both considered as
random processes. The stochastic forces are both decomposed into a norm and an
orientation process, F⇤

D = |F⇤

D|e⇤

D and F⇤

I = |F⇤

I |e⇤

I . These decompositions are supported



by the separation of time scale of the evolution of the autocorrelation for the norm
and the orientation, suggesting that the norm and orientation of each force can be
treated as independent processes, similarly to Pope (1990), Mordant et al. (2004) and
Sabel’nikov et al. (2011). However, as mentioned previously, the two forces present
significant correlation (both for their norm and their orientation) and could not be
considered as independent.

First, in line with the refined Kolmogorov assumption, the main source of
randomness in the instantaneous norms of the forces is attributed to the local energy
dissipation rate. Then by analogy with relation (3.10), we propose the following:

|F⇤

D| ⇡ hF⇤2
D |"⇤i

1/2
⇡ hF⇤2

D i
1/2
✓

"⇤

h"i

◆3/4

, (4.2)

|F⇤

I | ⇡ hF⇤2
I |"⇤i

1/2
⇡ hF⇤2

I i
1/2
✓

"⇤

h"i

◆3/4

. (4.3)

In these relations, "⇤ is obtained from a stochastic process mimicking the evolution
of the dissipation rate along the bubble trajectory. Since it is observed that the norm
of the two forces are strongly correlated, "⇤ is the same stochastic variable in both
relations (4.2) and (4.3). It was indeed observed from the DNS that the norms of
the two forces remain strongly correlated for all the Stokes numbers considered here,
consistent with (3.9). In order to only consider the contribution from the unresolved
fluctuations in the estimation of hF⇤2

D i and hF⇤2
I i, the integrals (3.6) and (3.7) are

truncated for ! < k22p/⌧� with ⌧� = �2/⌫� the time scale of the smallest eddies
resolved by the mesh. And, as before, the integrals are also truncated for ! > k1!⌘ to
ensure its convergence. Considering, for simplicity, the high Reynolds limit Re0 � 1
and Re0 � St2, the estimation for the instantaneous norms are then given by

|F⇤

D| = c1/2
0 "3/4

⇤
⌫�1/4

|1 � �|
tan�1(c1St)

c1St
�

tan�1(c1StRe�1/2
� )

c1St

!1/2

, (4.4)

|F⇤

I | = c1/2
0 "3/4

⇤
⌫�1/4�(1 � Re�1/2

� )1/2, (4.5)

where Re1/2
� = (k2/k1)⌧�/⌧⌘ is a Reynolds number characteristic of the subgrid scale

motion. This gives for a⇤,

a⇤
= c1/2

0 "3/4
⇤

⌫�1/4

"
|1 � �|

c1St

✓
tan�1(c1St) � tan�1

✓
c1St
Re1/2

�

◆◆1/2

e⇤

D + �(1 � Re�1/2
� )1/2e⇤

I

#
.

(4.6)
Note that when the mesh is refined (� ! ⌘), Re� ! 1 and the amplitude of the

residual contributions vanish as expected, since for a sufficiently fine mesh the bubble
dynamics should be captured by the resolved contribution. Concerning the evolution
of the stochastic variable "⇤, assuming that it is given by a log-normal process that
depends on the local value of "� computed from the coarse LES mesh, one obtains
the following stochastic process for "3/4

⇤
similar to Pope & Chen (1990) (see also

Gorokhovski & Zamansky 2018):

d"3/4
⇤

"
3/4
⇤

=
d"

3/4
�

"
3/4
�

�

✓
ln
✓

"3/4
⇤

"
3/4
�

◆
�

3
16

� 2
◆

dt
⌧�

+

s
9
8

� 2

⌧�

dW, (4.7)



where dW is the increment of the Wiener process and d"
3/4
� is the increment of

"
3/4
� along the bubble trajectory. This stochastic process ensures that h"⇤i = h"�i (see

the details in Gorokhovski & Zamansky (2018)), and the parameter � is given by
� 2

= 0.36 ln Re1/2
� materializing the depth of the cascade process (Kolmogorov 1962;

Castaing 1996), with the value of the coefficient in front of the logarithm set in order
to reproduce the Reynolds number dependence reported by Yeung et al. (2006). The
time scale ⌧� imposes the temporal correlation of "⇤. Note that more sophisticated
multiplicative models have been proposed for "⇤ (Pereira, Moriconi & Chevillard
2018); however, in the present paper we have used the simple log-normal process
(4.7).

The orientation vectors e⇤

D and e⇤

I appearing in (4.6) are given by two joint
stochastic random walks on the unit sphere

de⇤

I = �Ie⇤

I ⇥ ↵I dt + (�I � 1)e⇤

I , (4.8)
de⇤

D = �De⇤

D ⇥ ↵D dt + (�D � 1)e⇤

D, (4.9)

with ↵I and ↵D the angular velocities of the evolution of e⇤

I and e⇤

D on the
sphere and where the factors �I = (1 + ↵I. ↵I dt2 � (↵I · e⇤

I )
2 dt2)�1/2 and �D =

(1 + ↵D.↵D dt2 � (↵D · e⇤

D)2 dt2)�1/2 correspond to a projection ensuring that the norms
of both e⇤

I and e⇤

D remain unity (Gorokhovski & Zamansky 2018). The coupling of
these two random walks, through the evolution of their angular velocities, is intended
to reproduce the anti-alignment between the two orientation vectors observed for small
Stokes number, and their decorrelation when St is increased as well as the correlation
of the orientation with the coarse-grained (resolved) fluid acceleration. Moreover
the temporal evolution of the random walks provides a temporal autocorrelation
for the two orientations. The evolution of ↵I and ↵D is given by the following
Ornstein–Uhlenbeck process presenting restoring terms, damping terms and diffusion
terms:

d↵I = �e⇤

I ⇥
Dtuf

�
dt � ↵I

dt
⌧I

+

s
� 2

I

⌧I
dWI, (4.10)

d↵D = �e⇤

D ⇥ e⇤

I
dt
⌧ 2

r
� ↵D

dt
⌧D

+

s
� 2

D

⌧D
dWD, (4.11)

with dWI and dWD the increments of two independent three-dimensional Wiener
processes. The diffusion terms provide a return to isotropy of both orientations as
the randomness of the angular velocities lead e⇤

D and e⇤

I to visit every point of the
sphere. The temporal autocorrelation of both e⇤

D and e⇤

I is then related to the diffusion
coefficient of the angular velocity. On the other hand, the restoring terms tend to
align e⇤

D and e⇤

I with some equilibrium orientation.
For small values of ⌧�/⌧⌘, we expect to have an alignment of the fluid acceleration

model onto the coarse-grained fluid acceleration, while for ⌧�/⌧⌘ large, the alignment
with the resolved acceleration should be weak, in agreement with the local isotropy
assumption (Kolmogorov 1941). Therefore, in our model, we propose to have an
alignment of the orientations of the subgrid contribution of the fluid acceleration to the
coarse-grained fluid acceleration orientation Dtuf /|Dtuf |. The alignment between them
is controlled by the restoring term in (4.10) and the time scale (|Dtuf |/�)�1/2 ⇡ ⌧�.

The restoring term in (4.11) will tend to align e⇤

D on �e⇤

I in agreement with the
observations of § 3. The rate of alignment is given by the parameters ⌧r. Since the
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1.55 and 2.07 (from black to red, respectively) as obtained from model (4.8)–(4.11). The
inset is the evolution of he⇤

D · e⇤

I i with St as given by the stochastic model, and comparison
with the relation (3.8). (b) Cross-correlation between e⇤

D and e⇤

I obtained from the model
(4.8)–(4.11). The inset is the evolution of the time lag between e⇤

D and e⇤

I against St, and
comparison with ⌧⌘(� � 1)�1 tan�1((� � 1)St).

latter should coincide with the time lag observed in the cross-correlation between the
orientation of the two forces (see figure 6), we set ⌧r = ⌧⌘(� � 1)�1 tan�1((� � 1)St).
This ensures that the drag force correlation time increases with the Stokes number as
observed in figure 6.

The other parameters in (4.10) are set to ⌧I = ⌧⌘ and � 2
I = ⌧�2

⌘ which ensure that the
temporal autocorrelation of the fluid acceleration orientation is of the order of ⌧⌘ in
agreement with the experimental findings of Mordant et al. (2004) and our DNS (see
figure 6). In (4.11) the parameters are set to ⌧D = (⌧b + ⌧⌘)/4 and � 2

D = (⌧b + ⌧⌘)
�2/2

consistent with Gorokhovski & Zamansky (2018).
Figure 8(a) presents the evolution of the p.d.f. of the relative orientation between

the two forces cos ✓⇤ = e⇤

D · e⇤

I , obtained from numerical integration of the stochastic
orientation model (4.8)–(4.11) (and setting Dtuf = 0 in (4.8)). We clearly observe
that at small Stokes number the model predicts an anti-alignment between the two
orientation vectors while their relative orientation becomes more isotropic when the
Stokes number increases. This behaviour is in agreement with the statistics computed
from the DNS (see figure 5b), although the p.d.f. from the DNS present a more
stretched tail. It is also confirmed in the inset of figure 8(a) that the proposed
stochastic model gives the correct evolution of the average relative orientation with
the Stokes number, since as in the DNS case hcos ✓⇤i follow the relation (3.8). The
cross-correlation between e⇤

D and e⇤

I is also presented in figure 8(b). The behaviour
of the DNS observed in figure 6 can be qualitatively reproduced by the stochastic
model with an increase of the time lag with the Stokes number.

The resolved contribution in (4.1) is obtained from a spatially and temporarily
averaged version of (2.1). The spatial average arises from substituting the actual
velocity field uf to the coarse-grained velocity field uf in this equation. In addition,
a temporal filter is also explicitly applied to prevent the term a developing high
frequencies that would correlate with the residual term. Removing the frequencies
above 1/⌧� results in the following expression for a (see also Gorokhovski &
Zamansky 2018):

a = �
ub � uf

max(⌧b, ⌧�)
+ �

Duf

Dt
, (4.12)



where Dtuf = @tuf + uf · ruf is the fluid total acceleration computed from the coarse
mesh. Note that one does not have to necessarily consider the coupling with the LES
to use the proposed model. Indeed, by considering the limit � ! L, L being the
integral length scale, the term a vanishes and (4.1) becomes ab = a⇤. As well, in
this limit one can replace "�(t) in (4.7) by the constant value h"i. For example, one
can estimate the Reynolds number dependence for the intermittency correction in (3.5)
from the moments of a log-normal variable, to be ha2

bi/a2
⌘ / exp(3/8 � 2) = Re0.135

� , as
proposed by Yeung et al. (2006).

In order to assess the approach (4.1) as well as the stochastic model proposed
in (4.6)–(4.11), we present a comparison of the statistics of the bubble dynamics
obtained from the DNS, the standard LES (without modelling of the residual bubble
acceleration i.e. setting a⇤ = 0 in (4.1)), and the LES with the proposed model. All
the comparisons are made for Re� ⇡ 200 and three resolutions are used for the LES
(323, 483 and 643) while the resolution of the DNS is 10243. The details of the LES
are given in § 2.

We first present in figure 9(a) the evolution of the bubble acceleration variance
with the Stokes number. We observe that the standard LES largely underestimates
the bubble acceleration variance compared to the DNS. As expected the discrepancy
increases as the mesh resolution is made coarser. This points out that the residual term
in (4.1) is dominant. In contrast, the LES supplemented by the stochastic modelling
is in very good agreement with the DNS. Moreover, with the stochastic model, the
LES presents a very small dependence on the grid resolution. This confirms that the
effects of the unresolved small scales of the flow are correctly accounted for by the
model.

Figure 9(b) presents the p.d.f. of the bubble acceleration for the various Stokes
numbers. It is seen that the standard LES predicts p.d.f.s that depart significantly from
the DNS and remain much closer to the Gaussian distribution. On the other hand, the
p.d.f.s from the LES with the stochastic model overlap very well with the p.d.f.s of
the DNS over the whole range of Stokes numbers considered here. This shows that the
intermittent behaviour of the bubble acceleration can be reproduced with the proposed
stochastic model.

We consider in figure 10 the autocorrelation of the acceleration component. As
illustrated for St = 1, the decorrelation of the acceleration is much slower from the
LES than from the DNS. This is expected since the decorrelation of the acceleration
component is attributed to the small-scale motions of the flow which are discarded in
the LES. For the LES supplemented with the model the evolution of the correlation
coefficient presents qualitative agreement with the DNS. This behaviour is confirmed
in the inset of figure 10 which presents the correlation time, defined as the zero
crossing time, against the Stokes number. It is observed that the correlation times
obtained from the DNS and from the LES with the model both remain of the order
of ⌧⌘, whereas the standard LES predicts a much larger correlation time. We observe
that the orientation model plays an essential role in obtaining an accurate estimation
of the decorrelation time, and it is likely that an improvement of the model given
by (4.8)–(4.11) could reduce the small discrepancies seen between the LES using the
model and the DNS.

To evaluate the capability of the stochastic approach to accurately reproduce the
time structure of the bubble velocity, we report in figure 11 the statistic of the
velocity increments along the bubble trajectory. For that, we consider the structure
function for a component of the bubble velocity Sq(⌧ ) = h(ub,x(t + ⌧ ) � ub,x(t))qi. In
figure 11(a) we present the evolution of the variance of the velocity increments, S2,
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with the time shift. The results from the LES with the proposed model follow very
well those obtained from the DNS, whereas with the standard LES, the variance of
the velocity increments is largely underestimated. Moreover, we observe that with the
stochastic model the LES can reproduce the inertial range as observed from the DNS
contrary to the standard LES. Figure 11(b) shows the evolution of the flatness of the
bubble velocity increments, S4/S2

2. We see that with the standard LES the flatness
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remains close to its Gaussian value at all time shifts. In contrast, the LES with
the proposed model gives an evolution of the flatness in agreement with the DNS,
presenting a value close to 3 at large ⌧ and a significant increase with a reduction
of the time shift. One can then conclude that intermittency effects associated with
the small scales of the velocity field can be captured by the LES supplemented by
the proposed model. Note that in figure 11 we have presented the evolution of the
structure function for St = 1, but the same behaviour is obtained for the other values
of Stokes number considered here.

We present in figure 12, ha2
b|"⇤i, the variance of the bubble acceleration conditioned

on the value of the instantaneous value of the dissipation rate "⇤ estimated from the
stochastic model (4.7). It is observed that similar to the DNS results reported in the
figure 7, the bubble acceleration from the LES with the model increases as "3/2

⇤
for

large values of the dissipation rate, and is independent on "⇤ for the small values of
the latter. This behaviour shows that the acceleration of the bubbles in the weakly
dissipative regions can be computed by the resolved contribution ab, indicating the
influence of the large-scale sweeps, while the largest fluctuation of the acceleration
are correctly estimated with the stochastic model.

5. Conclusion
In this paper, we study the statistics of the acceleration and forces of micro-bubbles

(⌘ > db) subject to the drag and fluid inertia forces in a homogenous and isotropic
turbulent flow. For small Stokes numbers, the two forces are commensurate and are
found to be preferentially anti-aligned, whereas for larger Stokes numbers the drag
force becomes negligible and the bubble acceleration is essentially given by the fluid
inertia forces resulting in a bubble acceleration variance larger than for fluid tracers.
We propose an analytical model, depending on the Stokes number, Reynolds number
and the density ratio, describing qualitatively these observations. The model based
on the spectral response of the bubble to the fluid fluctuations (similar to the Tchen
theory) assumes firstly the shape for the frequency spectra of the fluid velocity along
the bubble position (with a !�2 power law), and secondly that the material derivative



10-4 10-2 100 102 104

Ó/¯Ó˘

104

103

102

101

100

10-1

10-2

¯a
2 x|Ó

˘/
¯a

2 x˘
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conditioned on the stochastic value of the dissipation rate "⇤ obtained from the LES with
the stochastic model (black line) and comparison with the bubble acceleration variance
conditioned on the local dissipation rate obtained from the DNS (red line), with St = 0.02
and a mesh size of 483 for the LES.

of the fluid velocity at the bubble position can be substituted by the time derivative
along the bubble trajectories. These assumptions lead to fairly accurate estimations for
small St, and some deviations are observed for St ⇡ 1 as the preferential concentration
of bubbles is not accounted for. This effect could be taken into account in the model,
by providing more precise, St dependent, estimation of the high frequency part of
the Lagrangian fluid velocity spectra and of the fluid acceleration variance at the
bubble position. It is further observed that the micro-bubble acceleration conditioned
on the local dissipation rate presents a surprising invariance. For values of the local
dissipation rate similar or larger than the average one, the conditional acceleration
variance appears to be invariant with the Stokes number and increases with the
dissipation rate, whereas the conditional p.d.f. are observed to be nearly invariant
with the dissipation rate and the Stokes number when normalized by the conditional
variance. Such invariance was not expected because of the very intense clustering
of the bubbles reported by Calzavarini et al. (2008) around St = 1. Indeed, at small
Stokes number the bubbles behave like fluid tracers, whereas for Stokes numbers
of order 1 (for which one can neglect the drag force) the acceleration of a bubble
is roughly � = 3 times that of a tracer at the same position. Nevertheless the near
invariance of the conditional statistics implies that in the two cases the bubbles sample
fluid regions in which the fluid acceleration conditional statistics are the same as in
the entire domain. This observation can provide some help in studying the � and
St dependence of the clustering morphology of the bubbles presented by Calzavarini
et al. (2008).

Based on these observations, we propose, within the LES framework, an extension
of the approach of Gorokhovski & Zamansky (2018) in order to account for
the unresolved fluid turbulent fluctuations in the dynamics of micro-bubbles for
locally homogenous and isotropic high-Reynolds numbers flows. To this end, the
instantaneous acceleration of the bubble is decomposed into a filtered contribution
given by the resolved fluid velocity field and a random contribution. The stochastic
part is given by the sum of two correlated random processes, one for the drag forces



and the second for the fluid inertia terms. For the instantaneous norm of both forces,
we consider the fluctuations of the energy transfer rate, relying on the fact that the
fluctuations of the norm are self-similar for a given value of the energy transfer rate.
For the latter a surrogate is obtained by a log-normal stochastic process evolving
along the bubble trajectory. Whereas the former, which is observed to be invariant,
is estimated from the variance of the forces conditioned on the dissipation rate as
obtained from the model derived in this paper. The residual part is supplemented
by a stochastic process for the orientations of the two forces. The model is given
by two coupled random walks on the surface of the unit sphere, which enables us
to reproduce the progressive decorrelation of the force components, their correlation
with the large-scale motion, as well as the return to local isotropy for sufficiently
large-scale separation, and the preferential anti-alignment of the two forces observed
for St < 1. To summarize, the model depends on the Stokes number and the �
parameter of the bubbles as well as a local Reynolds number Re� based on the mesh
size. In addition few parameters of the model need to be prescribed from the DNS.

The comparisons of the statistics obtained with LES supplemented by the proposed
stochastic model with the ones obtained from DNS confirmed that the dynamics of
the bubbles can be accurately computed by this approach even for very coarse meshes
while the standard LES approach (without stochastic modelling for the high frequency
fluctuations) fails to reproduce the statistics of the DNS. Nevertheless, the bubble
clustering at subgrid scales or short-time relative dispersion are not improved by the
modelling presented in this paper because the estimation of the dissipation rates along
each bubble trajectory is obtained by independent stochastic processes.

The derivation of the proposed model is made for arbitrary density ratio, although,
in this paper we only focus on the micro-bubble regime (� = 3). It can be shown
that for � = 0 our model becomes equivalent to the formulation proposed for inertial
particles in Gorokhovski & Zamansky (2018). Moreover, for neutrally dense particles
(� = 1), the proposed model would provide results equivalent to those obtained for
vanishingly small Stokes number, as expected for particles much smaller than the
Kolmogorov scales. The assessment of the model for intermediate values of � is also
interesting but is postponed for future work. Also interesting is to account for other
forces that can have a non-negligible role on the bubble dynamics (buoyancy, lift and
history). As well, accounting for the deformation of the bubbles is necessary if one is
interested in bubbles larger than the micro-scale of the flow (db > ⌘). Finally, we have
focused on the modelling of the subgrid scale for homogenous and isotropic turbulent
flow. Nevertheless, we think that the model proposed in this paper could provide
acceptable results for flows that can be considered locally isotropic and homogenous
at the scale of the mesh, since the main parameters of the model are defined locally.
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