

Hydrogen production from natural gas thermal cracking: design and test of a pilot-scale solar chemical reactor

Sylvain Rodat, Stéphane Abanades, Gilles Flamant

► To cite this version:

Sylvain Rodat, Stéphane Abanades, Gilles Flamant. Hydrogen production from natural gas thermal cracking: design and test of a pilot-scale solar chemical reactor. WHEC, 2010, Essen, Germany. hal-02640507

HAL Id: hal-02640507 https://hal.science/hal-02640507

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hydrogen production from natural gas thermal cracking: design and test of a pilot-scale solar chemical reactor

Sylvain Rodat, Stéphane Abanades, Gilles Flamant **PROMES-CNRS**, France

Solar methane decarbonization aims at dissociating methane into two valuable products: hydrogen and carbon black.

After the operation of a 10 kW solar reactor, a 50 kW reactor was designed, built and tested at the 1 MW solar furnace of the laboratory. The indirect heating reactor is composed of a graphite cavity (approaching the black-body behaviour) crossed by seven single graphite tubes (80) cm length). The cavity is separated from the ambient oxidizing atmosphere by a domed quartz window. A filter bag permits to separate carbon particles from the gaseous products.

versus temperature

For 900 g/h of CH₄ injected (50% molar, the rest being argon) at 1800K, this reactor produced 200 g/h H₂ (88% H₂ yield), 330 g/h CB (49% $^{\circ}$ C yield) and 340 g/h C_2H_2 with a thermal efficiency of 15%. A 2D thermal model of the reactor was developed. It showed that the design of the reactor front face could be drastically improved to lower thermal losses. The optimized design could reach 77% of the ideal black-body absorption efficiency (86% at 1800K), i.e. 66%. A preliminar economic analysis at 55 MW scale shows that this process can be competitive with the conventionnal process of hydrogen production that is to say, the steam methane reforming.

Figure 4: TEM image (APTL, Greece) of a carbon black sample (CNRS, France)

Projected total cost: 3.2 m€

Maximum EC contribution: 1.9 m€

Co-ordinator's e-mail address: Flamant@promes.cnrs.fr

Project web site – URL address:

http://www.promes.cnrs.fr/ACTIONS/Europeenes/solhycarb.htm

Duration: March 2006- February 2010 (4 years)

Figure 5: Economic analysis (Hydrogen production price vs carbon black selling price)

Project funded by the European Commission, FP6, Contract SES-CT2006-19770