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Abstract This paper tackles the challenge presented by small-
data to the task of Bayesian inference. A novel method-
ology, based on manifold learning and manifold sampling,
is proposed for solving this computational statistics prob-
lem under the following assumptions: 1) neither the prior
model nor the likelihood function are Gaussian and neither
can be approximated by a Gaussian measure; 2) the num-
ber of functional input (system parameters) and functional
output (quantity of interest) can be large; 3) the number of
available realizations of the prior model is small, leading
to the small-data challenge typically associated with expen-
sive numerical simulations; the number of experimental re-
alizations is also small; 4) the number of the posterior real-
izations required for decision is much larger than the avail-
able initial dataset. The method and its mathematical aspects
are detailed. Three applications are presented for validation:
The first two involve mathematical constructions aimed to
develop intuition around the method and to explore its per-
formance. The third example aims to demonstrate the oper-
ational value of the method using a more complex applica-
tion related to the statistical inverse identification of the non-
Gaussian matrix-valued random elasticity field of a dam-
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1 Introduction

1.1 Overview of the Bayesian approach

The Bayesian approach is a very powerful statistical tool
that provides a rigorous formulation for statistical inverse
problems and about which numerous papers and treatises
have been published [68,34,38,71,12,10,70,52,14,25,61].
In general, this approach requires the use of variants of the
Markov Chain Monte Carlo (MCMC) methods [2] for gen-
erating realizations (samples) of the posterior model given
a prior model and data typically derived either from numer-
ical simulations or from experimental measurements. This
probabilistic approach is extensively used in many fields of
physical and life sciences, computational and engineering
sciences, and also in machine learning [43,57,74] and in al-
gorithms devoted to artificial intelligence [37,23].

In the supervised case, the most popular Bayesian inver-
sion approach consists of constructing the likelihood func-
tion using a Gaussian model. For instance, using the output
predictive error, the conditional probability density function
(pdf) of the random quantity of interest, Q, given a value w
of the random parameter W, is constructed using the equa-
tion Q = f(W)+B in which B is a Gaussian random vector
that accounts for modeling errors introduced during the con-
struction of the mathematical/computational model of the
system (represented by the deterministic mapping f) and/or
the experimental measurements errors. Although generally
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more efficient than their alternatives, MCMC generators for
sampling from the posterior distribution [30,61], still re-
quire a large number of calls to the computational model,
which can present insurmountable difficulties for expensive
models, specially when dealing with high-dimensional prob-
lems (functional inputs/outputs). Generally, this situation re-
quires the introduction of a surrogate model for f in order to
decrease the numerical cost such as the Gaussian-process
surrogate model including Gaussian-process regression and
linearization techniques (see for instance [35,36,55] for cal-
ibration of computer models, [6,48] for formulations using
Gaussian processes, and [22,50,33,69,75] for algorithms
adapted to large-scale inverse problems in the Gaussian like-
lihood framework).

Nevertheless, the additive Gaussian noise model for the
likelihood is not always sufficient and embedded models
have to be considered for the likelihood. Consequently, the
Bayesian approach becomes much more computationally tax-
ing, in particular for high-dimension where it can become
outright prohibitive. This is the case if Q = f(W) is replaced
by Q = f(W,U) in which U is a random vector. For in-
stance, U corresponds to the spatial discretization of a non-
Gaussian tensor-valued random field appearing as a coeffi-
cient in a partial differential operator. In such a case, the con-
ditional probability density function of Q = f(w,U), given
W = w, involves solving the forward problem for several
realizations of U. A number of procedures have been pro-
posed in recent years to tackle this challenge, ranging from
adapted representations [72,73], to reduced-order models,
and surrogate models (see for instance, [32,11,9,20,54] for
reduced-order models and [42,45,8,62] for stochastic redu-
ced-order models). Many methods based on the use of poly-
nomial chaos expansions have also been developed (see for
instance, [24,4,17,61] for the identification of stochastic sys-
tem parameters and random fields in stochastic boundary
value problems, [40,39,53,73] for Bayesian inference in in-
verse problems, and [44,29] for explicit construction of sur-
rogate models).

The Bayesian approach for parameter estimation in the
non-Gaussian embedded likelihood case has significantly been
developed for low dimension [47,3] and using filtering tech-
niques and functional approximations [31,46,41,1]. Recently,
a nonparametric Bayesian approach for non-Gaussian cases
has been proposed [49] for which the invertible covariance
matrix of the Gaussian kernel-density estimation is optimized
by taking into account the unknown block dependence struc-
ture.

The high-dimension case concerns functional inputs/out-
puts for which the numerical cost of the computational model
is expensive (the one considered in this paper). Concerning
the case of a high dimensional target for which a large num-
ber of realizations are also required, methods have been pro-
posed [13,5].

1.2 Framework of the developments, difficulties involved,
and novelties

This paper is devoted to the Bayesian inference for the small-
data challenge using the probabilistic learning on manifolds
(PLoM). The PLoM method has been introduced in [63].
Complementary developments can be found in [26,64–66].
Applications and validations can be found in [27,28,67,62].
The small-data character is related to the given initial dataset.
We clarify hereinafter the role-played by the initial dataset in
the proposed methodology, using for explaining it an exam-
ple and detailing the difficulties involved that contribute to
demonstrate the novelty of the approach. Let us consider the
statistical inverse problem for identifying a posterior prob-
ability measure of a non-Gaussian random field. This ran-
dom field is the functional input that is the parameter in infi-
nite dimension of a partial differential operator of a stochas-
tic boundary value problem (BVP). Partial observations are
done on the functional output (the solution of the BVP),
which is also in high dimension. Only a few experimen-
tal realizations are available (small number of experiments).
Consequently, this Bayesian inference is in high dimension
(functional input and functional output), with small experi-
mental data for the observations. The problem consists of es-
timating the posterior probability measure of the functional
input using the experimental data for the functional output
while preserving the non-Gaussian character of the likeli-
hood function. The fundamental assumption used, which jus-
tifies the proposed novel method, is as follows. The numer-
ical cost of an evaluation of one realization of the random
output, knowing one realization of the random input, using
the computational model of the BVP, is very large. Only a
very limited number of evaluations (tens, or at most hun-
dreds) can be carried out. This number is too small to use
the Bayes method in very high dimensions. Classically, a
surrogate model must then be constructed. Taking into ac-
count the high-dimension character of this surrogate model
(functional input – functional output) and the limitation of
the number of evaluations, any algebraic representation can-
not be constructed. We thus propose an alternative approach
based on the use of the PLoM, which allows for generating
a large number of additional realizations of the random cou-
ple (input – output) from the knowledge of an initial dataset
of this couple. These realizations are calculated using an in-
formative prior model of the random input and the computa-
tional model of the BVP. This initial dataset is small due to
the limited number of evaluations. As it has been shown in
[63], a small initial dataset allows for constructing a prob-
abilistic surrogate model without algebraic representation.
For solving this problem, the PLoM method published in
[63] requires key modifications. It is necessary to introduce
several novel ingredients in the methodology that are de-
tailed in Section 2.
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Introducing a mathematical framework, we now synthe-
size the novel approach dedicated to the high-dimension case
in the context of the small-data challenge. We consider the
case Q = f(W,U) in which W, U, Q are random vari-
ables with values in Rnw , Rnu , Rnq , and where (w, u) 7→
f(w, u) is a nonlinear mapping. In addition to the mapping
f, only two pieces of information are available. The first one
consists of an initial dataset (the training set), DNd , made
up of Nd independent realizations (samples) {(qj ,wj), j =

1, . . . , Nd} of the couple of random vectors, (Q,W). The
second piece of information consists of an experimental data-
set, Dexp

nr , used for updating, and consisting of nr given in-
dependent experimental realizations (measures or simula-
tions) {(qexp,r, r = 1, . . . , nr} of Q. The objective then is
to construct, using the Bayesian approach, a set of νpost real-
izations, {wpost,`, ` = 1, . . . , νpost} of the posterior random
vector, denoted by Wpost. The following requirements have
guided the development of the proposed novel methodol-
ogy.

1. The non-Gaussian case is considered. The conditional
probability distribution of Q given W = w is not Gaus-
sian. For instance, mapping f is not additive with re-
spect to the Gaussian random vector U, contrarily to the
case for which the output-predictive-error formulation is
used, which consists in adding to Q = f(W) a Gaussian
noise U.

2. The problem is in high dimension, nw is large and nq
can also be large.

3. The number Nd of realizations of the prior model is
small, which means that we are in the context of the
small-data challenge. This situation can be induced, for
instance, by the use of an expensive computer code for
generating the set DNd of realizations.

4. The number nr of experimental realizations is small.
5. The number νpost of the posterior realizations required

for decision is large.

1.3 Organization of the paper

In order to discuss and motivate the intricate interplay be-
tween the requirements presented in Section 1.2 necessary
details concerning PLoM and the various modeling choices
are included in the paper, which is organized as follows.
Section 3 is devoted to the mathematical statement of the
problem. In Section 4, we introduce the scaling of the initial
dataset. The scaling of the random vector X = (Q,W) is
denoted by X = (Q,W). Section 5 deals with the generation
of additional realizations for the prior probability model us-
ing the PLoM while the reduced-order representations for Q
and W are constructed in Section 6 using the learned dataset.
Section 7 is devoted to the Bayesian formulation for the pos-
terior model and Section 8 deals with the nonparametric

statistical estimation of the posterior pdf using the learned
dataset, for which a regularization model is proposed. The
dissipative Hamiltonian MCMC generator, which is a non-
linear Itô stochastic differential equation (ISDE), is detailed
in Section 9 for the posterior pdf. The question relative to
the choice of a value of the regularization parameter is ana-
lyzed in Section 10. In Section 11, we summarize the main
steps for implementing the algorithm. Three applications are
presented in Sections 12 and 13. The first two are relatively
simple and can easily be reproduced. The third application is
devoted to the ultrasonic wave propagation in biological tis-
sues for which W is the random vector corresponding to the
spatial discretization of a non-Gaussian tensor-valued ran-
dom elasticity field of a cortical bone exhibiting osteoporo-
sis. In order to retain clarity throughout the paper, several
of the mathematical and algorithmic details have been rele-
gated to 9 appendices. For reasons of limitation of the num-
ber of pages, the first two applications and all the appendices
have been moved to the Supplementary material.

Notations

x: lower-case letters are deterministic real variables.
x: boldface lower-case letters are deterministic vectors.
x: lower-case blackboard letters are deterministic vectors.
X: upper-case letters are real-valued random variables.
X: boldface upper-case letters are random vectors.
X upper-case blackboard letters are random vectors.
[x]: lower-case letters between brackets are matrices.
[X]: boldface upper-case letters between brackets are ran-
dom matrices.

n: dimension (n = nq + nw) of vector x or X.
nq: dimension of vectors q, q, Q, and Q.
nr: number of independent experimental realizations.
nw: dimension of vectors w, w, W, and W.
ν: dimension (ν = νq + νw) of vectors x̂ and X̂.
νar: number of additional realizations.
νpost: number of independent realizations for the posterior.
νq: dimension of vectors q̂ and Q̂.
νw: dimension of vectors ŵ and Ŵ.
[In]: identity matrix in Mn.
Mn,N : set of the (n×N) real matrices.
Mn: set of the square (n× n) real matrices.
M+
n : set of the positive-definite (n× n) real matrices.

M+0
n : set of the positive-semidefinite (n× n) real matrices.

R: set of the real numbers.
Rn: Euclidean vector space on R of dimension n.
[y]kj : entry of matrix [y].
[y]T : transpose of matrix [y].
E: Mathematical expectation.
‖x‖: usual Euclidean norm in Rn.
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<x, y>: usual Euclidean inner product in Rn.
‖[A]‖F : Frobenius norm of a real matrix [A].
δkk′ : Kronecker’s symbol.
pdf: probability density function.
MCMC: Markov Chain Monte Carlo.

2 Outline of the novel method

In order to improve numerical conditioning, the initial dataset
DNd is scaled using an adapted affine transformation into a
dataset DNd made up of the Nd independent realizations
{(qj ,wj), j = 1, . . . , Nd} of the scaled random variables
(Q,W) with values in Rnq × Rnw . Using this same affine
transformation, experimental dataset Dexp

nr is transformed into
a scaled experimental dataset Dexp

nr made up of the nr inde-
pendent realizations {qexp,r, r = 1, . . . , nr}.

Each of the requirements listed in Section 1.2 presents
its own significant challenges which are addressed through-
out the paper.

(i)- For addressing the small-data challenge, the PLoM, which
has been introduced in [63], is used. This PLoM allows for
generating a learned dataset (big dataset) Dνar of νar addi-
tional realizations of the prior model of the scaled random
vector (Q,W) in which the number νar can be arbitrarily
large (νar � Nd), using only information defined by the
scaled initial dataset DNd . The convergence in probabil-
ity distribution of the learning with respect to Nd is investi-
gated. This learned dataset Dνar allows for constructing an
accurate estimate of the posterior distribution.

(ii)- For addressing the high-dimension data challenge, a
novel approach is proposed. Two reduced-order representa-
tions are separately constructed, one for random vector Q
and another one for random vector W, using for each one a
principal component analysis (PCA) based on their covari-
ance matrix estimated with the νar additional realizations
that are extracted from the learned dataset Dνar . Random
vector Q (resp. W) is then transformed into a random vector
Q̂ (resp. Ŵ) with values in Rνq (resp. in Rνw ). In general,
but depending on the application, the reduced dimensions
are such that νq � nq and νw � nw. It should be noted that
a direct construction by PCA of a reduced-order representa-
tion of random vector X = (Q,W) cannot be done because
we need to have a separate representation for the projected
random variable Q̂ and for its counterpart Ŵ in order to be
able to write Bayes formula. Consequently, the random vec-
tor Q̂ (resp. Ŵ) is centered with an empirical-estimated co-
variance matrix that is the identity matrix [Iνq ] (reps. [Iνw ]).
The centered random variables Q̂ and Ŵ, which are statis-
tically dependent, are then correlated. This means that the

empirical-estimated covariance matrix [CX̂ ] of random vec-
tor X̂ = (Q̂, Ŵ) is not a diagonal matrix. The (2× 2) block
writing of [CX̂ ] (with respect to Q̂ and Ŵ) exhibits two
block diagonal identity matrices, namely [Iνq ] and [Iνw ], but
there are extradiagonal block matrices that, in general, are
not equal to zero. At this stage, there is an additional diffi-
culty that is related to the fact that, in general, matrix [CX̂ ]

is singular or is not sufficiently well conditioned to carry
out the algebraic manipulations necessary for the construc-
tion of the posterior pdf based on the use of the Gaussian
kernel-density estimation method, using the learned dataset
Dνar . Most often, in the literature, either the rank of [CX̂ ] is
assumed to be less than ν = νq + νw (in this case, adapted
algebraic methods have been proposed) or matrix [CX̂ ] is
assumed to be invertible (in that case, there is no difficulty).
However, no adapted method seems to have been proposed
for the ”intermediate” case. Therefore, we had to develop a
novel regularization [Ĉε] of [CX̂ ] in order to achieve the re-
quired robustness.

(iii)- To ensure the robustness of proposed methodology,
several novel ingredients have been analyzed, tested, and
validated.

- The first one (as explained above) is related, if nec-
essary, to the construction of a regularization [Ĉε] in M+

ν

of [CX̂ ] in order to obtain a positive-definite inverse matrix
[Ĉε]

−1 whose condition number is of order 1 and for which
the value of the hyperparameter ε can be set, independently
of applications.

- The second one is related to the construction of the
MCMC generator for obtaining a robust algorithm for the
computation of the νpost realizations of Wpost whose pos-
terior pdf is ppost

Ŵ
. This pdf is explicitly deduced from the

Gaussian kernel-density representation of the joint pdf pQ̂,Ŵ

using the νar additional realizations of (Q̂, Ŵ) and the nr
experimental realizations of Q̂. This MCMC generator is
the one (but adapted to the posterior model) used for the
PLoM. However, it has been seen through many numerical
experiments that a normalization with respect to the covari-
ance matrix of the posterior model Ŵ

post
of Ŵ had to be

made in order to improve the robustness of the algorithm.
Unfortunately, although the expression of ppost

Ŵ
is explicitly

known, the algebraic calculation of this covariance matrix
is not possible and, as it will be explained in the following,
an approximation has to be constructed. Finally, a statistical
reduction along the data axis is performed using a diffusion
maps basis in order to avoid a possible scattering of the pos-
terior realizations generated, which then allows for preserv-
ing the concentration of the posterior probability measure
(when such a concentration exists).
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3 Formulation

In this paper, any Euclidean space E (such as Rnw ) is equip-
ped with its Borel field BE , which means that (E ,BE) is a
measurable space on which a probability measure can be
defined. In this section, we first detail the mathematical for-
mulation of the problem and we state the objective.

Defining the stochastic mapping F and the initial dataset
DNd . Let w 7→ F(w) be a stochastic mapping from Rnw into
the space L2(Θ,Rnq ) of all the second-order random vari-
ables defined on a probability space (Θ, T ,P) with values
in Rnq . The vector w (the input) belongs to an admissible set
Cw ⊂ Rnw and is modeled by a second-order random vari-
able W = (W1, . . . ,Wnw) defined on (Θ, T ,P) with val-
ues in Rnw , for which the support of its probability distribu-
tion PW(dw) is Cw, and which is assumed to be statistically
independent of F. The quantity of interest (the output) is a
random variable Q = (Q1, . . . ,Qnq ) defined on (Θ, T ,P)
with values in Rnq , which is written as Q = F(W), which
is statistically dependent of F and W, and which is assumed
to be of second order. For the problem considered, the only
available information consists of a given initial dataset (train-
ing set) constituted ofNd independent realizations {(qjq,w

j
d),

j = 1, . . . , Nd} of random variable (Q,W) with values in
Rnq × Rnw .

Example of stochastic mapping F and origin of the given
initial dataset DNd . The stochastic nature of the mapping
F deserves a clarification. It is induced by the division of
the input random parameters of a computational model into
two separate subsets only one of which is initially observed,
and the influence of the other subset is manifested as un-
certainty about the mapping. Thus consider, for instance, a
large-scale stochastic computational model of a discretized
stochastic physical system for which the random quantity
of interest is written as Q = f(W,U). The random vari-
able U = (U1, . . . ,Unu) is construed as a hidden variable
defined on (Θ, T ,P), with values in Rnu , with probability
distribution PU(du), and which is statistically independent
of W. The function (w, u) 7→ f(w, u) is a measurable map-
ping from Rnw × Rnu into Rnq , which is a representation
of the solution of the stochastic computational model. Con-
sequently, the joint probability distribution PW,U(dw, du) of
W and U is PW(dw)⊗ PU(du). For all w in Rnw , stochastic
mapping F is such that F(w) = f(w,U). The origin of the
initial dataset DNd can come from the computation ofNd in-
dependent realizations {qjd, j = 1, . . . , Nd} such that qjd =

f(wjd,U(θj)), in which {wjd = W(θj)}j are Nd indepen-
dent realizations of W generated with PW(dw), and where
{U(θj)}j are Nd independent realizations of U generated
with PU(du). It should be noted that realizations {U(θj)}j

are not explicitly included in the initial dataset.

Introducing the random variable X and its realizations. We
then introduce the random variable X = (Q,W) defined on
(Θ, T ,P), with values in Rn (n = nq + nw), and for which
the probability distribution, PX(dx), on Rn is unknown, and
for which the initial dataset defined by

DNd = {xjd = (qjd,w
j
d), j = 1, . . . , Nd} , (1)

is the only available information.

Existence hypothesis of probability density function for X. It
is assumed that the unknown probability distribution PX(dx)
admits a density pX(x) with respect to the Lebesgue mea-
sure dx on Rn. Therefore, the joint probability distribution
PQ,W(dq, dw) on Rn of Q and W admits a density pQ,W(q,w)
with respect to the Lebesgue measure dq dw on Rn. The
probability distributions PQ(dq) and PW(dw) of Q and W
admit the densities pQ(q) =

∫
pQ,W(q,w) dw and pW(w) =∫

pQ,W(q,w) dq with respect to the Lebesgue measures dq
on Rnq and dw on Rnw , respectively. The conditional pdf
q 7→ pQ|W(q|w) on Rnq of Q given W = w in Cw ⊂
Rnw is such that pQ,W(q,w) = pQ|W(q|w) pW(w). Since
the support of pW is Cw ⊂ Rnw , if w is given in Rnw\Cw,
then pW(w) = 0, and consequently, q 7→ pQ,W(q,w) is the
zero function. It should be noted that hypothesis PX(dx) =
pX(x) dx would not be satisfied if F was a deterministic map-
ping, F(w) = f(w) independent of U, because the support,
Snw = {(w, f(w)),w ∈ Cw ⊂ Rnw} of PX(dx) on Rn,
would be the manifold of dimension nw in Rn, consisting
of the graph of the deterministic mapping f.

Specifying the experimental dataset Dexp
nr . An experimental

dataset Dexp
nr is given and is constituted of nr independent

experimental realizations of Q,

Dexp
nr = {qexp,r, r = 1, . . . , nr} , (2)

that are also assumed to be independent of realizations {qjd}j .

Objective. As explained in Section 1, the objective is to gen-
erate realizations {wpost,`, ` = 1, . . . , νpost} of the posterior
model of W for which the only available information con-
sist of the initial dataset DNd associated with a prior model
of W and of the experimental dataset Dexp

nr .

4 Scaling the initial dataset

Initial dataset DNd can be made up of heterogeneous nu-
merical values and must be scaled for performing computa-
tional statistics. Let xmax = maxj{xjd}, xmin = minj{xjd},
and βx = xmin be a vector in Rn. The diagonal (n× n) real
matrix [αx]kk′ = (xmax

k −xmin
k )δkk′ is invertible. The scaling
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of random vector X with values in Rn is the random vector
X with values in Rn such that

X = [αx]X + βx , X = [αx]
−1(X− βx) . (3)

From Eq. (3), the scaled random variables Q and W with
values in Rnq and Rnw can directly be deduced,

Q = [αq]Q + βq , Q = [αq]
−1(Q− βq) , (4)

W = [αw]W + βw , W = [αw]
−1(W− βw) . (5)

TheNd realizations of X are then {xjd}j with xjd = [αx]
−1(xjd−

βx). The scaled initial dataset is then defined by

DNd = {xjd = (qjd,w
j
d), j = 1, . . . , Nd} ,

in which qjd = [αq]
−1(qjd−βq) and wjd = [αw]

−1(wjd−βw).
The collection of these Nd vectors {xjd}j in Rn is repre-
sented by the matrix [xd] such that

[xd] = [x1d . . . x
Nd
d ] ∈Mn,Nd .

In the following, we will use the scaled random variable
X = (Q,W) with values in Rn = Rnq × Rnw . The ex-
perimental dataset Dexp

nr defined in Section 3 is scaled using
Eq. (4), yielding the scaled experimental dataset,

Dexp
nr = {qexp,r, r = 1, . . . , nr} ,

in which qexp,r = [αq]
−1(qexp,r −βq). If Q = f(W,U) (see

the example of stochastic function F presented in Section 3),
then Q can be rewritten as

Q = f(W,U) , (6)

in which f corresponds to the transformation of mapping f.

5 Generating additional realizations for the prior
probability model using the probabilistic learning on
manifolds

As explained in Section 1.2, the framework of this paper is
the Bayesian approach for the small-data challenge because
Nd is assumed to be small. The Bayesian method allows for
updating the prior pdf pW on Rnw of W using experimen-
tal dataset Dexp

nr relative to Q with values in Rnq in order to
obtain the posterior pdf ppost

W on Rnw . Clearly, the posterior
pdf strongly depends on the joint pdf pQ,W on Rnq × Rnw .
Consequently, a bigger dataset Dνar (that we have called
”learned dataset” in Section 2),

Dνar = {x`ar = (q`ar,w
`
ar), ` = 1, . . . , νar} ,

which is made up of νar � Nd independent realizations of
X = (Q,W), is required for the two following reasons:
- a better estimate of prior pdf pW has to be constructed using
Dνar instead of DNd .

- the non-Gaussian conditional pdf q 7→ pQ|W(q|w) on Rnq
of Q for given W = w in Rnw has to be correctly estimated
thus requiring a big dataset such asDνar . The use ofDNd for
such an estimation would not be sufficiently ”good” because
Nd is assumed to be small.

In this paper, only DNd and Dexp
nr are known. In addi-

tion, DNd is assumed to be constituted of numerical sim-
ulations performed with a large-scale computational model
represented by Q = f(W,U) (see Eq. (6)) in which U is
not an ”observation noise and model discrepancy”, but is for
instance (as explained in Section 1.2), the spatial discretiza-
tion of a non-Gaussian tensor-valued random field that ap-
pears as a coefficient in a partial differential operator in a
stochastic boundary value problem. In this framework, it
is important to preserve the non-Gaussian character of the
conditional pdf pQ|W(·|w), which is the pdf of random vec-
tor f(w,U). Since f and U are unknown (only DNd is as-
sumed to be known), we propose to construct the big dataset
(learned dataset) Dνar of additional realizations using the
probabilistic learning on manifolds [63]. In order to facili-
tate the reading of this paper, a summary of this algorithm is
given in Supplementary material, Appendix A, in which
we propose numerical values and identification methods for
the parameters involved in the algorithm.

6 Reduced-order representations for Q and W using the
learned dataset

As explained in Section 1.2, dimension n = nq + nw of
random vector X can be high. It is thus necessary to decrease
the numerical cost of the MCMC generator of ppost

W . For that
and as explained in Section 2-(ii), a statistical reduction of
Q and W is performed using a PCA for which the learned
dataset Dνar is used.

6.1 PCA of random vector Q

Let qar ∈ Rnq and [CQ,ar] ∈ M+0
nq be the empirical es-

timates of the mean vector and the covariance matrix of
Q, constructed using the additional realizations {q`ar, ` =

1, . . . , νar}. The PCA representation, Q(νq), of Q at order
1 ≤ νq ≤ νar is written as

Q(νq) = qar + [ϕq] [µq]
1/2 Q̂ , (7)

in which [ϕq] ∈ Mnq,νq is the matrix of the eigenvectors
of [CQ,ar] associated with its νq largest eigenvalues µq,1 ≥
µq,2 ≥ . . . ≥ µq,νq > 0, represented by the diagonal matrix
[µq] ∈Mνq . The value of νq is classically calculated in order
that the L2-error function νq 7→ errQ(νq) defined by

errQ(νq) =
E{‖Q−Q(νq)‖2}
E{‖Q− qar‖

2}
= 1−

∑νq
α=1 µq,α

tr [CQ,ar]
, (8)
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be smaller than εq > 0. In Eq. (8), Q stands for Q(nq). Since
[ϕq]

T [ϕq] = [Iνq ], the random variable Q̂ with values in Rνq
and its νar independent realizations are written as

Q̂ = [µq]
−1/2 [ϕq]

T (Q− qar) ,

q̂` = [µq]
−1/2 [ϕq]

T (q`ar − qar) , ` = 1, . . . , νar . (9)

It can then be deduced that the empirical estimate q̂ ∈ Rνq

of the mean vector of Q̂, and the empirical estimate [CQ̂] ∈
M+
νq of its covariance matrix are such that

q̂ = 0 , [CQ̂] = [Iνq ] . (10)

Therefore, the components Q̂1, . . . , Q̂νq of Q̂ are centered
and uncorrelated but they are statistically dependent because,
in general, Q̂ is not a Gaussian vector.

6.2 Projection of experimental dataset Dexp
nr

Using the representation of Q (at convergence) defined by
Eq. (7), the experimental dataset Dexp

nr is transformed into
the data set D̂exp

nr such that

D̂exp
nr = {q̂exp,r

, r = 1, . . . , nr} , (11)

in which q̂exp,r ∈ Rνq is given by

q̂exp,r
= [µq]

−1/2 [ϕq]
T (qexp,r − qar). (12)

6.3 PCA of random vector W

Similarly to the PCA of Q, let war ∈ Rnw and [CW,ar] ∈
M+0
nw be the empirical estimates of the mean vector and the

covariance matrix of W, which are constructed using the ad-
ditional realizations {w`ar, ` = 1, . . . , νar}. The PCA repre-
sentation, W(νw), of W at order 1 ≤ νw ≤ νar is written
as

W(νw) = war + [ϕw] [µw]
1/2 Ŵ , (13)

in which [ϕw] ∈Mnw,νw is the matrix of the eigenvectors of
[CW,ar] associated with its νw largest strictly positive eigen-
values µw,1 ≥ µw,2 ≥ . . . ≥ µw,νw > 0, represented by the
diagonal matrix [µw] ∈ Mνw . The value of νw is calculated
in order that the L2-error function νw 7→ errW(νw) defined
by

errW(νw) =
E{‖W−W(νw)‖2}
E{‖W− war‖2}

= 1−
∑νw
α=1 µw,α

tr [CW,ar]
, (14)

be smaller than εw > 0. As previously, in Eq. (14), W
stands for W(nw). Since [ϕw]

T [ϕw] = [Iνw ], the random
variable Ŵ with values in Rνw and its νar independent real-
izations are written as

Ŵ = [µw]
−1/2 [ϕw]

T (W− war) , (15)

ŵ` = [µw]
−1/2 [ϕw]

T (w`ar−war) , ` = 1, . . . , νar . (16)

The empirical estimates ŵ ∈ Rνw and [CŴ] ∈ M+
νw of the

mean vector and the covariance matrix of Ŵ are such that

ŵ = 0 , [CŴ] = [Iνw ] . (17)

As for Q̂, the components Ŵ1, . . . , Ŵνw of Ŵ are centered,
uncorrelated, and statistically dependent (in the general case).

6.4 Mean-square convergence of the sequence
{X(νq,νw)}νq,νw

Let X(νq,νw) = (Q(νq),W(νw)) be the random variable with
values in Rn = Rnq × Rnw and let

errX(νq, νw) = E{‖X−X(νq,νw)‖2}/E{‖X−xar‖2}

be the L2-error function in which xar = (qar,war) ∈ Rn =

Rnq × Rnw . In Supplementary material, Appendix B, it
is proven that if νq and νw are such that errQ(νq) ≤ εq and
errW(νw) ≤ εw, then

errX(νq, νw) ≤ εq + εw .

6.5 Learned dataset for the random vector X̂ = (Q̂, Ŵ)

For a fixed value of εq + εw, which defines the level of the
mean-square convergence of the PCA of Q and W, we intro-
duce the learned dataset D̂νar constituted of the νar indepen-
dent realizations defined by Eqs. (9) and (16) for the random
vector X̂ = (Q̂, Ŵ) with values in Rν (ν = νq + νw), such
that

D̂νar = {x̂
`
= (q̂`, ŵ`) , ` = 1, . . . , νar} . (18)

The methodology consists in constructing a MCMC gener-
ator of independent realizations {ŵpost,`

, ` = 1, . . . , νpost}
(for a given νpost as big as we want) of the posterior model

Ŵ
post

of Ŵ, for which the pdf is ppost
Ŵ

, using the learned

dataset D̂νar defined by Eq. (18) and the experimental dataset
D̂exp
nr defined by Eq. (11). As soon as these νpost realizations

have been generated, the corresponding independent real-
izations {wpost,` , ` = 1, . . . , νpost} of Wpost, given experi-
mental dataset Dexp

nr for Q, are calculated using Eq. (13) and
(5), by

wpost,` = war + [ϕw] [µw]
1/2 ŵpost,`

, (19)

wpost,` = [αw]wpost,` + βw . (20)
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7 Bayesian formulation for the posterior

The classical Bayes formula is used for constructing the pdf
ppost

Ŵ
of the posterior model Ŵ

post
of Ŵ with values in Rνw

given the datasets D̂νar defined by Eq. (18) and D̂exp
nr defined

by Eq. (11). It is assumed that the mean-square convergence
level of X(νq,νw) is sufficient for substituting X(νq,νw) by X
or equivalently, substituting Q(νq) by Q and W(νw) by W.
The pdf pX̂ of X̂ with respect to the Lebesgue measure dx̂
on Rν is replaced by its nonparametric estimate using the
learned dataset D̂νar . The use of Eqs. (7) and (13) allows for
deducing the measurable mapping f̂ from Rνw × Rnu into
Rνq such that

Q̂ = f̂(Ŵ,U) ,

in which U is the Rnu -valued random variable defined in
Section 3, which is statistically independent of Ŵ. Let w 7→
ŵ = h(w) be the continuous mapping from Rnw into Rνw
defined by Eqs. (5) and (15), that is to say, h(w) = [µw]

−1/2

[ϕw]
T (w−war) with w = [αw]

−1(w−βw). Let Cŵ = h(Cw)

be the subset of Rνw such that

Cŵ = {ŵ ∈ Rνw ; ŵ = h(w) , w ∈ Cw ⊂ Rnw} .

Consequently, the support of the prior pdf ŵ 7→ pŴ(ŵ) on
Rνw of random variable Ŵ is Cŵ ⊂ Rνw . The conditional
pdf q̂ 7→ pQ̂|Ŵ(q̂|ŵ) of Q̂ given Ŵ = ŵ is defined for
ŵ ∈ Cŵ. Taking into account all the hypotheses previously
introduced, pdf ppost

Ŵ
is given by the Bayes formula that is

written, for all ŵ in Cŵ, as

ppost
Ŵ

(ŵ) = c0 {
nr∏
r=1

pQ̂|Ŵ(q̂exp,r|ŵ)} pŴ(ŵ) , (21)

in which c0 is a positive constant of normalization. Let pQ̂,Ŵ

be the joint pdf of Q̂ and Ŵ with respect to the Lebesgue
measure dq̂ dŵ on Rνq×Rνw . Then, for all ŵ in Cŵ, Eq. (21)
can be rewritten as

ppost
Ŵ

(ŵ) = c0 {
nr∏
r=1

pQ̂,Ŵ(q̂exp,r
, ŵ)} pŴ(ŵ)1−nr . (22)

8 Nonparametric statistical estimation of the posterior

Many works have been published concerning the multidi-
mensional Gaussian kernel-density estimation method [19,
18,21,76]. However, for the high dimensional case, we pro-
pose to use a constant covariance matrix that is parameter-
ized by the Silverman bandwidth.

8.1 Formulation proposed and its difficulties

Taking into account Eq. (22), we have to characterize the
joint pdf pQ̂,Ŵ that can be deduced from an estimation of the

pdf pX̂ of X̂ = (Q̂, Ŵ). The estimate of pX̂ is constructed us-
ing the Gaussian kernel-density estimation method with the
learned dataset D̂νar defined by Eq. (18). The construction
proposed involves the empirical covariance matrix [CX̂] of
X̂ given by

[CX̂] =
1

νar − 1

νar∑
`=1

(x̂`−x̂) (x̂`−x̂)T , x̂ =
1

νar

νar∑
`=1

x̂`. (23)

Taking into account Eqs. (10) and (17), it can be deduced
that x̂ = (q̂, ŵ) = 0. Matrix [CX̂] is an element of M+0

ν or
in M+

ν , and can be expressed in block decomposition as,

[CX̂] =

[
[ Iq ] [Cqw]

[Cqw]
T [Iw]

]
, (24)

in which [Cqw] ∈ Mνq,νw is the covariance matrix of ran-
dom vectors Q̂ and Ŵ. By the Cauchy-Schwarz inequality,
we have

| [Cqw]jk | ≤ 1 , j ∈ {1, . . . , νq} , k ∈ {1, . . . , νw} . (25)

Random vectors Q̂ and Ŵ are statistically dependent and
are also correlated because we have introduced independent
PCA decompositions for Q and W. The following two com-
ments are appropriate at this point.

(i)- If [CX̂] was invertible, the estimate p(νar)

X̂
of pX̂ would be

written, for all x̂ in Rν , as [7,56],

p
(νar)

X̂
(x̂) =

c1
νar

νar∑
`=1

exp{− 1

2s2ar
< [CX̂]

−1(x̂−x̂`), (x̂−x̂`)>},

(26)

in which c1 = ( (2π)ν/2sνar
√
det[CX̂] )

−1 and where sar is
the Silverman bandwidth that is written as

sar =

(
4

νar(ν + 2)

)1/(ν+4)

. (27)

With such a hypothesis, from Eq. (26), it is easy to deduce
p
(νar)

Q̂|Ŵ
and p(νar)

Ŵ
.

(ii)- Unfortunately, in high dimensions, matrix [CX̂] can some-
times be singular. More critically, and also more commonly,
[CX̂] is invertible in the computational sense but it is slightly
ill-conditioned. All the numerical experiments that have been
conducted have shown that, if [CX̂] is slightly ill-conditioned
(for instance, with a condition number of the order 103 or
104, which is much smaller that the usual tolerance on the
condition number for computing the inverse of a matrix),
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and if its inverse [CX̂]
−1 is still used, then the estimate of

p
(νar)

X̂
defined by Eq. (26) induces some difficulties for the

MCMC generator of the posterior pdf defined by Eq. (21).
Consequently, we propose to introduce a regularization of
[CX̂] that should be viewed as an essential part of the con-
struction of the estimation p(νar)

X̂
of pX̂.

8.2 Construction of a regularization model of [CX̂]

Let [Ĉε] be a regularization model in M+
ν of [CX̂] such that

its condition number is of order 1. Therefore, [Ĉε]−1 is in
M+
ν and its condition number is also of order 1. This reg-

ularization depends on a hyperparameter ε ∈ [εmin, 1[ were
εmin > 0 controls the regularization and whose value will
be of close to 0.5. The methodology for choosing the value
of ε will be presented in Section 10. The proposed regular-
ization is constructed as follows and additional explanations
can be found in Supplementary material, Appendix C. Let
us consider the following classical spectral representation of
matrix [CX̂],

[CX̂] = [Φ] [λ] [Φ]T , (28)

in which the real eigenvalues are in decreasing order, λ1 ≥
λ2 ≥ . . . ≥ λν ≥ 0 and where [Φ] is the matrix in Mν of the
corresponding eigenvectors. Due to Eqs. (24) and (25), it is
proven that these eigenvalues are such that

0 ≤ λj ≤ 2 , j ∈ {1, . . . , ν} . (29)

If [Cqw] was the zero matrix in Mνq,νw , then matrix [CX̂]

would be the identity matrix and therefore, all the eigenval-
ues would be equal to 1. Since [Cqw] is not the zero matrix
and taking into account Eq. (29), there exists and we define
(by construction of the regularization model) the integer ν1,
such that,

λν1 ≥ 1 , λν1+1 < 1 , ν1 + 1 ≤ ν . (30)

The regularization, [Ĉε] of [CX̂] is defined by

[Ĉε] = [Φ] [Λε] [Φ]
T , (31)

in which the diagonal matrix [Λε] is such that

[Λε]jj= λj , 1 ≤ j ≤ ν1 ; [Λε]jj= ε2 λν1 , ν1+1 ≤ j ≤ ν,
(32)

in which ε ∈ [εmin, 1[ were εmin > 0 is a hyperparameter that
controls the regularization and whose value will be of close
to 0.5. The methodology for choosing the value of ε will be
presented in Section 10. The following properties can then
easily be deduced:

[Ĉε] ∈M+
ν , [Ĉε]

−1 = [Φ] [Λε]
−1 [Φ]T ∈M+

ν . (33)

The condition numbers of [Ĉε] and [Ĉε]
−1 are thus equal to

λ1/(ε
2λν1), and satisfy the following equation,

cond([Ĉε]) = cond([Ĉε]
−1) ≤ 2

ε2
.

For ε close to 0.5, the condition number is less that 8. We
next make four observations relevant to the proposed regu-
larization.

8.3 Construction of the regularized estimate p(νar)

X̂
of the

pdf pX̂ of X̂

The regularized estimate of p(νar)

X̂
defined by Eq. (26) is ob-

tained by using the procedures detailed in Section 8.2. For ε
fixed in [εmin, 1[, let [G] be the (ν × ν) real matrix such that

[G] = [Ĉε]
−1 ∈M+

ν , [G]−1 = [Ĉε] ∈M+
ν , (34)

In these conditions, the regularized expression of p(νar)

X̂
de-

fined by Eq. (26) is written (keeping the same notation) as

p
(νar)

X̂
(x̂) =

c2
νar

νar∑
`=1

exp{− 1

2s2ar
< [G](x̂− x̂`), (x̂− x̂`)>} ,

(35)

in which sar is the Silverman bandwidth defined by Eq. (27)
and where

c2 =

√
det[G]

sνar (2π)
ν/2

. (36)

In Eqs. (34) and (36), matrix [G] and pdf p(νar)

X̂
depend on ε,

which will be omitted for notational clarity. Let X̂
1
, . . . , X̂

νar

be νar independent copies of random variable X̂ whose pdf
is pX̂. For all x̂ fixed in Rν , let Pνar(x̂) be the estimator
(positive-valued random variable) corresponding to the es-
timation p(νar)

X̂
(x̂) defined by Eq. (35), such that

Pνar(x̂) =
c2
νar

νar∑
`=1

exp{− 1

2s2ar
< [G](X̂

`
− x̂), (X̂

`
− x̂)>}.

(37)

It is proven in Supplementary material, Appendix E that,

E{(Pνar(x̂)− P νar(x̂))
2}

≤
{

1

νar

}4/(ν+4){
ν+2

4

}ν/(ν+4)√
det[G]

(2π)ν/2
P νar(x̂) , (38)

in which P νar(x̂) = E{Pνar(x̂)} is the mean value that tends
to pX̂(x̂) when νar goes to infinity and consequently, the esti-
mator is asymptotically unbiased and consistent. Due to the
mean-square convergence of the sequence of random vari-
ables {Pνar(x̂)}νar , as implied by Eq. (38), this sequence of
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estimators converges in probability to pX̂(x̂).

Remark. Below, for notational clarity, p(νar)

X̂
(x̂) will simply

be denoted by pX̂(x̂), which also means that νar is chosen
sufficiently large for writing that p(νar)

X̂
' pX̂. The νar-depend-

ence of pQ̂,Ŵ, pQ̂|Ŵ, and pŴ will also be omitted.

8.4 Deducing the pdf pQ̂,Ŵ of (Q̂, Ŵ) and the pdf pŴ of Ŵ

Vector x̂ and realization x̂` in Rν can be decomposed as
x̂ = (q̂, ŵ) and x̂` = (q̂`, ŵ`) in which (q̂, ŵ) and (q̂`, ŵ`)
belong to Rνq×Rνw with ν = νq+νw. The (νq×νw) block
notation of matrix [G] is introduced as

[G] =

[
[Gq] [Gqw]

[Gqw]
T [Gw]

]
. (39)

Since [G] ∈M+
ν , we have

[Gq] ∈M+
νq , [Gw] ∈M+

νw . (40)

From Eq. (35) and taking into account Eqs. (39)-(40), the
joint pdf pQ̂,Ŵ of Q̂ and Ŵ (with respect to the Lebesgue
measure dq̂ dŵ on Rνq×Rνw ) can be written, for all q̂ ∈ Rνq
and ŵ ∈ Rνw , as

pQ̂,Ŵ(q̂, ŵ) =
c2
νar

νar∑
`=1

exp{− 1

2s2ar
ψ(q̂−q̂`, ŵ−ŵ`)}, (41)

in which the real-valued function (q̂, ŵ) 7→ ψ(q̂, ŵ) defined
on Rνq × Rνw is defined as

ψ(q̂, ŵ) =< [Gq] q̂ , q̂> +2 < [Gqw]
T q̂ , ŵ>

+ < [Gw] ŵ , ŵ> . (42)

Moreover, the prior pdf pŴ of Ŵ (with respect to dŵ) can
be expressed as,

pŴ(ŵ) =

∫
Rνq

pQ̂,Ŵ(q̂, ŵ) dq̂ . (43)

From Eqs. (41) to (43), since matrix [G] is positive definite,
the right-hand side of Eq. (43) can be explicitly calculated
[51] and yields,

pŴ(ŵ) =
c3
νar

νar∑
`=1

exp{− 1

2s2ar
< [G0](ŵ−ŵ`), (ŵ−ŵ`)>} ,

(44)

in which c3 is the constant of normalization and where [G0]

is a positive-definite matrix that is constructed as the follow-
ing Schur complement,

[G0] = [Gw]− [Gqw]
T [Gq]

−1 [Gqw] ∈M+
νw . (45)

9 Hamiltonian MCMC generator for the posterior

In Section 9.2, an MCMC generator of the posterior model
Ŵ

post
of Ŵ is presented, which is based on a nonlinear Itô

stochastic differential equation (ISDE) corresponding to a
stochastic dissipative Hamiltonian dynamical system for a
stochastic process {[U(t)], t ∈ R+} with values in Mνw,Ns .
The number, Ns, of columns of [U(t)] is chosen sufficiently
large (but such that Ns ≤ νar) in order to increase the ex-
ploration of space Rνw by the MCMC algorithm and to fa-
cilitate the construction of a reduced-order nonlinear ISDE
using the diffusion-maps basis.

The posterior pdf ppost
Ŵ

defined by Eq. (22) with Eqs. (35)
and (41) could require a large number of increments in the
MCMC generator if the ”distance” of experimental dataset
Dexp
nr to initial dataset DNd is too large. For decreasing the

computational burden, the nonlinear ISDE has to be adapted
with respect to the covariance matrix of Ŵ

post
. Neverthe-

less, this covariance matrix is unknown and consequently,
an appropriate method has to be developed for estimating an
approximation of it. Such a relatively classical problem has
been addressed for the case of Gaussian likelihoods (see for
instance [22]) and more recently, for non-Gaussian likeli-
hoods in [3] within the parametric framework. In the present
work devoted to the non-Gaussian likelihood in high dimen-
sion and in a nonparametric framework, the proposed ap-
proach consists in constructing a nonlinear ISDE adapted to
the mean value and to the covariance matrix of Ŵ

post
, which

we will call, adapted nonlinear ISDE. The use of an affine
transformation, Ŵ

post
= uT + [A]−T Spost (constructed in

Section 9.2), which introduces the matrix-valued stochas-
tic process {[S(t)], t ∈ R+} such that [U(t)] = [uT ] +

[A]−T [S(t)], will transform the adapted nonlinear ISDE re-
lated to the MCMC generator of Ŵ

post
into a nonlinear ISDE

for the MCMC generator of Spost that is a non-Gaussian
Rνw -valued random variable Spost, ”close to” a centered ran-
dom vector with an identity covariance matrix.

Finally, in order to avoid the data scattering during the
generation of independent realizations of [S], in Section 9.3,
the nonlinear ISDE related to stochastic process {[S(t)], t ∈
R+} will be projected on a diffusion-maps basis similarly to
the methodology of PLoM summarized in Supplementary
material, Appendix A. The final generation of realizations
Ŵ

post
is summarized in Section 9.4.

9.1 Criteria for choosing a value of Ns

A natural choice would be Ns = νar. Nevertheless, in gen-
eral, the number νar of additional realizations generated by
the PLoM is chosen very large in order to obtain a good
convergence of the statistical estimate of the probability dis-
tribution of the posterior model. Although such a choice is
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always possible, it will always induce a significant increase
in computational requirements, often without attaining com-
mensurate gains for the MCMC generator. The choice,Ns =
Nd, is logical and efficient because the generation of the ad-
ditional realizations is done with this value by the PLoM.
The choice can also be highlighted by the following crite-
rion. The empirical estimate [CŴ] of the covariance matrix
of Ŵ, performed with {ŵ`, ` = 1, . . . , νar}, is the identity
matrix (see Eq. (17)). Let [CNs

Ŵ
] be the empirical covariance

matrix estimated with {ŵνar−j+1
, j = 1, . . . , Ns}. Integer

Ns can then be chosen such that ‖[CNs
Ŵ

]−[Iνw ]‖F /‖[Iνw ]‖F <
εNs . It can easily be seen that there exists 0 < εNs < 1

such that Ns = Nd (for instance when Nd = 200 and
νar = 30 000, εNs = 0.05). Alternatively, a value of Ns can
be assessed, using this same criterion, for a predetermined
value of εNs .

9.2 Adapted nonlinear ISDE as the MCMC generator

The nonlinear ISDE of the MCMC generator of Ŵ
post

is
constructed as proposed in [59,60], which is based on the
works [58] (in which more general stochastic Hamiltonian
dynamical systems are analyzed, in particular with a general
mass operator that we use hereinafter). The adapted nonlin-
ear ISDE is deduced from it using a similar normalization as
the one proposed by Arnst [3]. Nevertheless, in the present
non-Gaussian case, the drift vector of the nonlinear ISDE is
completely different and the affine transformation for cen-
tering and normalizing the posterior model is not the same.
We then introduce the matrix [A] that appears in the affine
transformation Ŵ

post
= uT+[A]−T S mentioned above. The

method presented in Section 9.3 for constructing [K] (and
thus, [A]) is also different. Let [K] be a given matrix in M+

νw

and let us consider its Cholesky factorization

[K] = [A] [A]T . (46)

Consequently, the inverse matrices [K]−1 and [A]−1 exist.
As explained above, matrix [K], which is constructed in
Section 9.3, will be an approximation of the inverse of the
covariance matrix of Ŵ

post
. We consider, for t > 0, the non-

linear stochastic dissipative Hamiltonian dynamical system
represented by the following nonlinear ISDE,

d[U(t)] = [K]−1 [V(t)] dt , (47)

d[V(t)] = [L([U(t)])] dt− 1

2
f post
0 [V(t)] dt

+

√
f post
0 [A] d[Wwien(t)] , (48)

with the initial condition at t = 0,

[U(0)] = [ŵ0] , [V(0)] = [v̂0] , a.s. , (49)

in which:

(i) f post
0 > 0 is a free parameter allowing the dissipation to

be controlled in the stochastic dynamical system. This
parameter is chosen such that f post

0 < 4. The value, 4, of
the upper bound corresponds to the critical damping rate
for the linearized ISDE in terms of stochastic process [S]
(see Section 9.3.3).

(ii) {[Wwien(t)], t ∈ R+} is the stochastic process, defined
on (Θ, T ,P), indexed by R+, with values in Mνw,Ns ,
for which the columns of [Wwien(t)] are Ns indepen-
dent copies of the Rνw -valued normalized Wiener pro-
cess {Wwien(t), t ∈ R+} whose matrix-valued autocor-
relation function is such that [RWwien(t, t′)]=E{Wwien(t)

Wwien(t′)T } = min(t, t′) [Iνw ].
(iii) [u] 7→ [L([u])] is a mapping from Mνw,Ns into Mνw,Ns ,

which depends on ppost
Ŵ

and which is defined as follows.

The posterior pdf ppost
Ŵ

defined by Eq. (22) is written as

ppost
Ŵ

(ŵ) = c0 p(ŵ) ,

p(ŵ) = {
nr∏
r=1

pQ̂,Ŵ(q̂exp,r
, ŵ)} pŴ(ŵ)1−nr . (50)

Let ŵ 7→ V(ŵ) be the potential function on Rνw , which
is such that

p(ŵ) = e−V(ŵ) , V(ŵ) = − log p(ŵ) . (51)

The matrix [u] is written as [u1 . . . uNs ] with uj = (uj1,

. . . ujνw) ∈ Rνw . Thus, mapping [L] is defined, for all
[u] in Mνw,Ns , for all k = 1, . . . , νw, and for all j =

1, . . . , Ns, as

[L([u])]kj = −
∂

∂ujk
V(uj) , (52)

which can be rewritten as

[L([u])]kj =
1

p(uj)
{∇ujp(uj)}k . (53)

For j fixed in {1, . . . , Ns}, the Hamiltonian of the asso-
ciated conservative homogeneous dynamical system re-
lated to stochastic process {(Uj(t),Vj(t)), t ∈ R+} is
thus written as H(uj , vj) = 1

2 < [K]−1vj , vj> +V(uj).

(iv) [ŵ0] ∈Mνw,Ns is defined by [ŵ0] = [ŵνar ... ŵνar−Ns+1
],

in which theNs columns correspond to theNs last addi-
tional realizations {ŵνar−j+1

, j = 1, . . . , Ns} generated
by the PLoM (See Section 5).

(v) [v̂0] ∈ Mνw,Ns is any realization of a random matrix
[V̂0] independent of process [Wwien], for which the col-

umns {V̂
j

0, j = 1, . . . , Ns} are Ns independent Gaus-
sian centered Rνw -valued random variables such that the
covariance matrix of V̂

j

0 is [K]−1 for all j.
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It can be proven (see Theorems 4 to 7 in Pages 211 to 216
and the invariant measure Page 240 of [58]) that the non-
linear ISDE defined by Eqs. (47) to (49) admits the unique
invariant measure,

⊗Nsj=1 {p
post
Ŵ

(uj) pV̂(v
j) duj dvj} , (54)

with pV̂(v
j) = (2π)−νw/2 exp{−1/2 < [K]−1vj , vj>}. In

addition, these Theorems can be used to show that Eqs. (47)
to (49) have a unique solution {([U(t)], [V(t)]), t ∈ R+},
which is a second-order diffusion stochastic process that is
asymptotic for t→ +∞ to the stationary stochastic process
{([Ust(tst)], [Vst(tst)]), tst ∈ R+} for the right-shift semi-
group on R+. For all fixed tst, the joint probability distri-
bution of the random matrices [Ust(tst)] and [Vst(tst)] is the
invariant measure defined by Eq. (54) and the probability
distribution of random matrix [Ust(tst)] is

⊗Nsj=1 p
post
Ŵ

(uj) duj ,

that is to say, is the probability distribution of the random
matrix [Ŵ

post
] with values in Mνw,Ns , for which the columns

Ŵ
post,1

, . . . , Ŵ
post,Ns

are Ns independent copies of random
vector Ŵ

post
whose pdf is ppost

Ŵ
defined by Eq. (50). It can

then be deduced that, for any fixed tst,

[Ŵ
post

] = [Ust(tst)] = lim
t→+∞

[U(t)] . (55)

Equation (55) implies that Eqs. (47) to (49) represent an
MCMC generator for ppost

Ŵ
. The free parameter f post

0 allows
for controlling the transient response generated by the ini-
tial condition for quickly reaching the stationary solution
(the invariant measure is independent of f post

0 ). It can also
be proven that the asymptotic stationary solution is ergodic.

Expression of the mapping [L] adapted to computation. An
explicit algebraic expression is constructed in Supplemen-
tary material, Appendix F, for the mapping [u] 7→ [L([u])]

defined by Eq. (53). This expression shows the presence of a
summation of exponential terms (summation over the num-
ber νar of realizations q̂` and ŵ` of Q̂ and Ŵ). Consequently,
an adapted algebraic representation must be developed in or-
der to minimize the numerical cost for each evaluation of
[L([u])] and to avoid numerical noise, overflow, and under-
flow during the computation.

9.3 Transformation of the adapted nonlinear ISDE for the
generation of Ŵ

post

In this section, we construct the transformation introduced at
the beginning of Section 9, we deduce the nonlinear ISDE
from the adapted nonlinear ISDE, we verify that the con-
struction proposed satisfies the criteria, and finally, we pre-
sent the numerical aspects for the computation.

9.3.1 Construction of the transformation

The covariance matrix of Ŵ
post

can neither explicitly be cal-
culated using pdf ppost

Ŵ
nor estimated by computational statis-

tics. Indeed such an estimation would require an integration
on Rnw , integration that has to be estimated using the Monte
Carlo method [30,61] with respect to a pdf for which a large
number of realizations would be drawn (for instance using
the νar additional realizations of the prior model of W, or
using a uniform pdf). The use of ppost

Ŵ
is not possible since

the generator is under construction and as of yet unknown.
Even in relatively high dimension, this approach can be pro-
hibitive since the normalization constant c0 of ppost

Ŵ
is un-

known and has to be numerically estimated. Consequently,
an approximation of the covariance matrix of Ŵ

post
is per-

formed using a linearization of mapping [u] 7→ [L([u])]

around an approximation, denoted by ŵexp, of the mean value
E{Ŵ

post
} of Ŵ

post
that is also unknown (because only ex-

perimental realizations {q̂exp,r
, r = 1, . . . , nr} of Q̂ are as-

sumed to be available. Let us assume that ŵexp is a given
vector in Rnw , which will be identified in Section 9.3.5. For
given vector u in Rνw , let L(u) = (L1(u), . . . , Lνw(u))
be the vector in Rνw such that, for k = 1, . . . , νw and for
j = 1, . . . , Ns, the component Lk(uj) of L(uj) is

Lk(uj) = [L([u])]kj , [u] = [u1 . . . uNs ] , (56)

in which [L([u])] is defined by Eq. (52). Matrix [K] ∈M+
νw

introduced in Section 9.2, for which the factorization [K] =

[A] [A]T is given by Eq. (46), is then defined for all k and k′

in {1, . . . , νw}, as

[K]kk′ =

{
∂2V(u)
∂uk∂uk′

}
u=ŵexp

=−
{

∂

∂uk′
Lk(u)

}
u=ŵexp

. (57)

From this definition, matrix [K] is symmetric, but it is not
necessarily positive definite for any value of ŵexp, because
function u 7→ V(u) defined by Eq. (51), is not, a priori, con-
vex on Rνw for the non-Gaussian pdf ppost

Ŵ
. However, it can

be assumed that u 7→ V(u) is locally convex in the neighbor-
hood of u = ŵexp if this vector is correctly estimated (see
Section 9.3.5). Therefore, [K] will be in M+

νw (this prop-
erty will effectively be checked numerically in the algorithm
(see Section 9.3.4)). The first-order Taylor development of
u 7→ L(u) around u = ŵexp is written as

L(u) = L(ŵexp
)+[∇uL(u)]u=ŵexp(u−ŵexp

)+o(‖u−ŵexp‖) ,

which yields the following linearized expression,

Llin(u) = L(ŵexp
)− [K] (u− ŵexp

) ,

[K] = −[∇uL(u)]u=ŵexp . (58)

Let uT ∈ Rνw be the solution of the equation Llin(uT ) = 0,
which is such that

uT = ŵexp
+ [K]−1 L(ŵexp

) . (59)
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The transformation of stochastic process {[U(t)], [V(t)], t ∈
R+}, involved in the adapted nonlinear ISDE defined by
Eqs. (47) to (49), is written as

[U(t)] =[uT ] + [A]−T [S(t)] , (60)

[V(t)] =[A] [R(t)] , (61)

in which [uT ] = [uT . . . uT ] ∈ Mνw,Ns , where [A] is de-
fined by Eq. (46), and where {([S(t)], [R(t)]), t ∈ R+} is
the new stochastic process with values in Mνw,Ns×Mνw,Ns ,
such that

[S(t)] =[A]T ([U(t)]− [uT ]) , (62)

[R(t)] =[A]−1 [V(t)] . (63)

9.3.2 Nonlinear ISDE for stochastic process
{([S(t)], [R(t)]), t ∈ R+}

Substituting Eqs. (60) and (61) into Eqs. (47) and (48), us-
ing Eqs. (62) and (63) for transforming the initial conditions
defined by Eq. (49), simple algebraic manipulations yield,
for t > 0, the following nonlinear ISDE,

d[S(t)] = [R(t)] dt , (64)

d[R(t)] = [L̃([S(t)])] dt− 1

2
f post
0 [R(t)] dt

+

√
f post
0 d[Wwien(t)] , (65)

with the almost-sure initial condition at t = 0,

[S(0)] = [s0] , [R(0)] = [r0] .

The matrices [s0] and [r0] in Mνw,Ns are given by

[s0] =[A]T ([ŵ0]− [uT ]) , (66)

[r0] =[A]−1 [v̂0] . (67)

The mapping [s] 7→ [L̃([s])] from Mνw,Ns into Mνw,Ns is
written as

[L̃([s])] = [A]−1 [L([uT ] + [A]−T [s])] . (68)

9.3.3 Verifying that the linearized ISDE is well adapted for
stochastic process {([S(t)], [R(t)]), t ∈ R+}

This verification is performed in Supplementary material,
Appendix G, and shows that the nonlinear ISDE defined by
Eqs. (64) to (68) is well adapted to the covariance matrix of
the asymptotic stochastic process {[S(tst)], tst ∈ R+} and
therefore, to the covariance of [Wpost] via the transformation
defined by Eqs. (60) and (61). It can be seen that f post

0 =

4 corresponds to the critical damping rate of the linearized
dynamical system.

9.3.4 Numerical aspects for computing matrix [K]

Assuming that ŵexp is given in Rνw , we must calculate [K]

defined by Eq. (57). Although the algebraic calculation can
actually be carried out, the corresponding numerical imple-
mentation carries a numerical cost that is greater than the di-
rect numerical calculation of the gradient. This last approach
will thus be pursued. Let {∆tα, α = 1, 2, . . .} be a decreas-
ing sequence of positive real numbers that goes to zero. Let
[Kα] be the sequence of matrices in Mνw such that

[Kα]kk′ = −
1

∆tα
(Lk(ŵ

exp
+
∆tα
2

ek
′
)−Lk(ŵexp−∆tα

2
ek

′
)),

in which {e1, . . . , eνw} is the canonical basis of Rνw and
where Lk is defined by Eq. (56). Matrix [K] is then defined
as [Kαopt ] in which, for all α > αopt, the symmetrization
error is sufficiently small for the Frobenius norm and all the
eigenvalues are strictly positive.

9.3.5 Estimating ŵexp

The algorithm proposed for estimating ŵexp is based on a
predictor-corrector method. The predictor is based on the
fact that the size νar of the learned dataset, Dνar , constructed
in Section 5 using the PLoM, can be chosen as large as re-
quired.

(i)- Predictor. The predictor of ŵexp is the vector ŵexp,pred ∈
Rνw such that

ŵexp,pred
= E{Ŵ | Q̂ = q̂exp} ,

in which q̂exp
= (1/nr)

∑nr
r=1 q̂exp,r is the vector in Rνq

where q̂exp,r is defined by Eq. (12). Therefore, we have

ŵexp,pred
=

∫
Rνw ŵ pQ̂,Ŵ(q̂exp

, ŵ) dŵ∫
Rνw pQ̂,Ŵ(q̂exp

, ŵ) dŵ
, (69)

where pQ̂,Ŵ is defined by Eqs. (41) and (42). The calcula-
tion of the integrals in Eq. (69) can be explicitly evaluated
yielding,

ŵexp,pred
=

∑νar
`=1 w̃`2 ζ`2∑νar
`=1 ζ

`
2

, (70)

in which w̃`2 belongs to Rνw and is written as

w̃`2 = ŵ` − [Gw]
−1 [Gqw]

T (q̂exp − q̂`) ,

and where ζ`2 is positive and such that

ζ`2 = exp{− 1

2s2ar
< [G1] (q̂

exp − q̂`) , q̂exp − q̂`>} .

The matrix [G1] is the Schur complement defined by

[G1] = [Gq]− [Gqw] [Gw]
−1 [Gqw]

T ∈M+
νq .
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(ii)- Corrector. We introduce the maximum log-likelihood
of the posterior model,

ŵexp
= max

ŵ∈Rνw
log ppost

Ŵ
(ŵ) .

Using Eq. (50) for ppost
Ŵ

with Eqs. (41) and (42) for pQ̂,Ŵ,
and Eq. (44) for pŴ, the non convex optimization problem
can be rewritten as

ŵexp
= max

ŵ∈Rνw
J(ŵ) , (71)

in which J(ŵ) is written as

J(ŵ) = (1− nr) log{
νar∑
`=1

ζ`0(ŵ)}+
nr∑
r=1

log{
νar∑
`=1

ζr`1 (ŵ)} ,

where ζ`0(ŵ) and ζr`1 (ŵ) are defined by Eqs. (29) and (30)
of Appendix F in Supplementary material. The corrector
of ŵexp,pred is the vector ŵexp that is constructed by solving
the nonconvex optimization problem defined by Eq. (71) us-
ing the interior-point algorithm for which the initial point is
chosen as ŵ0 = ŵexp,pred that is computed using Eq. (70).

9.4 Projection of the nonlinear ISDE for stochastic process
{([S(t)], [R(t)]), t ∈ R+} using a diffusion-maps basis

In order to avoid a possible scattering of the generated real-
izations constructed by solving the nonlinear ISDE defined
by Eqs. (64) to (68) and in order to preserve a possible
concentration of the measure P

Ŵpost(dŵ) = p
Ŵpost(ŵ) dŵ

on Rνw , a projection of the ISDE is carried out using the
diffusion-maps basis following the methodology of the PLoM.
We then obtain a reduced-order nonlinear ISDE.

9.4.1 Construction of the diffusion-maps basis for the
posterior model

The diffusion-maps basis is represented by the matrix

[gs] = [g1s . . . g
mpost
s ] ∈MNs,mpost ,

with 1 < mpost ≤ Ns ≤ νar, which is constructed using
the set of independent realizations {sj , j = 1, . . . , Ns} that
result from the transformation defined by Eq. (62) of the
set {ŵνar−j+1

, j = 1, . . . , Ns} extracted form the learned
dataset D̂νar (see Eq. (18)). We then have,

sj = [A]T (ŵνar−j+1 − uT ) ∈ Rνw , j = 1, . . . , Ns, (72)

in which uT ∈ Rνw is defined by Eq. (59). The construction
of this diffusion-maps basis is summarized in Supplemen-
tary material, Appendix H.

9.4.2 Reduced-order nonlinear ISDE

The reduced-order nonlinear ISDE is obtained by projection
on diffusion-maps basis [gs] ∈ MNs,mpost of the nonlinear
ISDE relative to the (Mνw,Ns×Mνw,Ns)-valued stochastic
process {([S(t)], [R(t)]), t ∈ R+} defined by Eqs. (64) to
(68). We then introduced the (Mνw,mpost×Mνw,mpost)-valued
stochastic process {([Z(t)], [Y(t)]), t ∈ R+} such that,

[S(t)] = [Z(t)] [gs]T , [R(t)] = [Y(t)] [gs]T , t ≥ 0. (73)

Stochastic process {([Z(t)], [Y(t)]), t ∈ R+} is then the
solution of the reduced-order nonlinear ISDE (obtained by
projection) such that, for all t > 0,

d[Z(t)] = [Y(t)] dt , (74)

d[Y(t)] = [L̃([Z(t)])] dt− 1

2
f post
0 [Y(t)] dt

+

√
f post
0 d[Wwien(t)] , (75)

with the almost-sure initial condition at t = 0,

[Z(0)] = [z0] , [Y(0)] = [y0] . (76)

The matrices [z0] and [y0] in Mνw,mpost are written as

[z0] = [s0] [as] , [y0] = [r0] [as] ,

in which matrices [s0] and [r0] in Mνw,Ns are defined by
Eqs. (66) and (67), and where [as] is the matrix such that

[as] = [gs] ([gs]
T [gs])

−1 ∈MNs,mpost .

In Eq. (75), [L̃([Z(t)])] is such that

[L̃([Z(t)])] = [L̃([Z(t)] [gs]T )] [as] ,

in which [L̃([s])] is defined by Eq. (68), and where

[Wwien(t)] = [Wwien(t)] [as] .

9.5 Construction of realizations of Ŵ
post

The independent realizations {ŵpost,`
, ` = 1, . . . , νpost} (used

in Eq. (19)) of Ŵ
post

whose pdf is ppost
Ŵ

defined by Eq. (50),
are constructed using the discretization of the reduced-order
ISDE defined by Eqs. (74) to (76). The number, νpost, of re-
alizations is reparameterized as

νpost = npost
MC ×Ns ,

in which npost
MC is a given integer. Let [Wwien(·; θ)] with θ ∈ Θ

be a realization of the Wiener stochastic process [Wwien]

defined in Section 9.2-(ii). Let {([Z(t; θ)], [Y(t; θ)]), t ∈
R+} be one realization of the (Mνw,mpost×Mνw,mpost)-valued
stochastic process {([Z(t)], [Y(t)]), t ∈ R+}, which is com-
puted by solving Eqs. (74) to (76) with the Störmer-Verlet
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scheme detailed in Supplementary material, Appendix I,
for which the sampling step is ∆t. Let `post

0 be the inte-
ger such that, for t ≥ `post

0 ∆t, the solution of Eqs. (74) to
(76) is asymptotic to the stationary solution. Therefore, the
independent realizations of Ŵ

post
can be generated as fol-

lows. Let M post
0 be a given positive integer. Using Eqs. (60)

and (73), for n = 1, . . . , npost
MC and for t`′ = `′∆t with

`′ = `post
0 + nM post

0 , we have, for j = 1, . . . , Ns and for
k = 1, . . . , νw,

ŵpost,`
k = [u`

′
]kj , ` = j + (`′ − 1)Ns ,

[u`
′
] = [uT ] + [A]−T [s`

′
] , [s`

′
] = [Z(t`′ ; θ)] [gs]T .

In this method of generation, only one realization θ is used
and M post

0 is chosen sufficiently large in order that [Z(t`′)]
and [Z(t`′+M post

0
)] be two random matrices that are approx-

imatively independent.

10 Choice of the value of the regularization parameter ε

The regularization introduced in Section 8.2 and detailed in
Supplementary material, Appendix C, was aimed to fa-
cilitate the nonparametric statistical estimation of the pdf
pX̂ of random variable X̂ = (Q̂, Ŵ) with values in Rν =

Rνq × Rνw , using the multidimensional Gaussian kernel-
density estimation (see Eq. (35)). As already explained in
that section, the proposed regularization depends on the pa-
rameter ε and on the criterion for selecting ν1. Consequently,
posterior pdf ppost

Ŵ
of Ŵ, which is directly deduced from pX̂,

depends on ε. There is no prior information constraining ε
chosen, which is typical when regularization is introduced.
Further, a mathematical exploration of Eq. (38), aimed at
deducing such constraints, seems intractable.

It may seem possible to compute an optimal value of ε
by minimizing the L1-norm of the difference between the
pdf of Q̂

post
and the pdf of Q̂

exp
. This is not possible if nr

is small, because the quality of the nonparametric estimation
of the pdf of Q̂

exp
would not be sufficiently good. If nr is suf-

ficiently large for obtaining a good estimation of Q̂
exp

, then
an algorithm could proceed as follows. For a given value of
ε, the first stage would consist of using the algorithm pre-
sented in this paper for estimating the pdf of Ŵ

post
and then

generating the νpost realizations {ŵpost,`
, ` = 1, . . . , νpost} of

Ŵ
post

(which depend on ε). The second stage would consist
of estimating the pdf of Q̂

post
using the conditional pdf of

Ŵ
post

given Q̂ = q̂, which has to be evaluated for the νpost

realizations {ŵpost,`
, ` = 1, . . . , νpost} (and not, using the

conditional pdf of Ŵ given Q̂ = q̂, which should then be
evaluated for the experimental realizations of Ŵ, which are
not available). Note that the complexity of such an approach
would be similar to the one that we have used for estimating

the pdf of Ŵ
post

. The pdf of Q̂
post

that would be estimated
would depend on ε. The third stage would consist of solving
an optimization problem with respect to ε for which the ob-
jective function would be the L1-norm of the error. Such a
non convex optimization problem would be relatively tricky
and numerically expensive.

Consequently, we propose to fix the value of ε to an ”av-
erage value” that has been estimated by numerical experi-
ments. In order to estimate this ”average” value, the follow-
ing method has been used. Let ppost

W be the posterior pdf of
W that is estimated with the νpost realizations {wpost,`, ` =

1, . . . , νpost} that are deduced from {ŵpost,`
, ` = 1, . . . , νpost}

computed in Section 9.5, using Eqs. (19) and (20).

The methodology used for validating the range of the
values of ε consists in estimating an optimal value of ε,
which minimizes a ”distance” between the pdf ppost

Wk
of com-

ponent Wpost
k , for k = 1, . . . , nw (which depends on ε),

and an experimental reference, pexp
Wk

, that is assumed to be
known for the applications used for the validation. Obvi-
ously, in the framework of the Bayesian inference, the fam-
ily of {pexp

Wk
, k = 1, . . . , nw} are unknown and consequently,

cannot be used for estimating ε a priori. It is recalled that
only nr experimental realizations {qexp,r, r = 1, . . . , nr} of
Q are available and that the corresponding experimental re-
alizations {wexp,r, r = 1, . . . , nr} of W are not available.
We thus introduce the error function, ε 7→ OVL(ε), defined
by

OVL(ε) =
1

nw

nw∑
k=1

∫
R |p

post
Wk

(w)− pexp
Wk

(w)| dw∫
R p

exp
Wk

(w) dw
. (77)

Let p = (p1, . . . , pnw) be a function in the spaceL1(R,Rnw)
equipped with the L1-norm,

‖p‖L1 =

∫
R
|p(w)‖1 dw =

∫
R

nw∑
j=1

|pj(w)| dw .

Introducing the functions ppost = (ppost
W1
, . . . , ppost

Wnw
) and pexp

= (pexp
W1
, . . . , pexp

Wnw
) that belong to L1(R,Rnw), it can be

seen that

‖ppost − pexp‖L1

‖pexp‖L1

≤ nw OVL(ε) ,

because, for j = 1, . . . , nw, we haveAj/(a1+ . . .+anw) ≤
Aj/aj for aj > 0 and Aj > 0. All the numerical exper-
iments that have been conducted, in particular the applica-
tions presented in Section 12, show that the value 0.5 seems
an appropriate value for ε. However, this value of 0.5 cor-
responds to an ad-hoc estimate deduced to a large number
of numerical calculations. Further applications and/or new
mathematical results are needed to strengthen the arguments
concerning this point.
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11 Summary of the main steps for implementing the
algorithm

In order to help the understanding of the proposed method,
we summarize hereinafter the main steps of the algorithm.

Data
1. Scaled initial dataset DNd = {xjd = (qjd,w

j
d), j = 1, . . . ,

Nd} defined in Section 4.
2. Scaled experimental datasetDexp

nr = {qexp,r, r = 1, . . . , nr}
defined in Section 4.

Steps of computation
Step 1. For νar � Nd, generating the learned datasetDνar =

{(q`ar, w`ar) = x`ar, ` = 1, . . . , νar} for the prior probability
model using the PLoM with initial dataset DNd (see Sec-
tion 5).

Step 2.1. Computing the realizations {q̂`, ` = 1, . . . , νar} of
the PCA Q̂ of Q using {q`ar, ` = 1, . . . , νar} (see Eqs. (7)
and (9)), and controlling the mean-square convergence.

Step 2.2. Computing the realizations {ŵ`, ` = 1, . . . , νar} of
the PCA Ŵ of W using {w`ar, ` = 1, . . . , νar} (see Eqs. (13)
and (16)), and controlling the mean-square convergence.

Step 2.3. Deducing the learned dataset {x̂` = (q̂`, ŵ`), ` =
1, . . . , νar} for the random vector X̂ = (Q̂, Ŵ) (see Eq. (18)).

Step 2.4. Computing the projection {q̂exp,r
, r = 1, . . . , nr}

of the experimental realizations (see Eq. (12)).

Step 3.1. Estimating the covariance matrix [CX̂] of X̂ using
the realizations {x̂`, ` = 1, . . . , νar} (see Eq. (23)).

Step 3.2. For ε = 0.5, constructing the regularized matrix
[Ĉε] of [CX̂] using the method presented in Supplementary
material, Appendix C.

Step 3.3. Computing matrix [G] = [Ĉε]
−1 (see Eq. (34)).

Deducing matrices [Gq] and [Gw] from matrix [G] (see Eq.
(39)). Computing matrix [G0] as a Schur complement us-
ing Eq. (45) and matrix [G0w] = (1 − nr)[G0] + nr[Gw].
Computing matrices [L0], [Lq], and [Lw] by Cholesky fac-
torization of matrices [G0], [Gq], and [Gw].

Step 4. Computing ŵexp using the predictor-corrector method
detailed in Section 9.3.5. Computing matrix [K] and vector
uT for the normalization with respect to the covariance ma-
trix of the posterior Ŵ

post
: matrix [K] is calculated using the

algorithm given in Section 9.3.4 and then, uT is calculated
with Eq. (59).

Step 5. For a fixed value of Ns such that Ns ≤ νar and
chosen as explained in Section 9.1, computing the realiza-
tions {sj , j = 1, . . . , Ns} using Eq. (72). Then, computing
the diffusion-maps basis [gs] for the posterior model with
1 < mpost ≤ Ns ≤ νar using the realizations {sj , j =

1, . . . , Ns} (see Section 9.4.1).

Step 6. For a fixed value νpost (such that νpost = npost
MC ×

Ns in which npost
MC is given), computation of the realizations

{ŵpost,`
, ` = 1, . . . , νpost} of the posterior model Ŵ

post
us-

ing the algorithm detailed in Section 9.5, which is based on
the solution of the reduced-order nonlinear ISDE defined in
Section 9.4.2 for which the Störmer-Verlet scheme is used.

Step 6. From realizations {ŵpost,`
, ` = 1, . . . , νpost}, com-

puting the realizations {wpost,`, ` = 1, . . . , νpost} of the pos-
terior model Wpost using Eq. (19).

12 Applications (AP1) and (AP2)

Two applications, referenced as (AP1) and (AP2), are pre-
sented in Supplementary material. These applications, which
can easily be reproduced, allow for performing the valida-
tion of the methodology and algorithms presented.

13 Application (AP3)

In this section, the methodology is applied to the ultrasonic
wave propagation in biological tissue for which W is the
vector of the spatial discretization related to the non-Gaussian
tensor-valued random elasticity field of a damaged cortical
bone due to osteoporosis. This application will be referred to
(AP3). All the data concerning this application are described
in order that the application can be reproduced.

13.1 Stochastic boundary value problem

This application deals with the numerical simulation of the
axial transmission technique that is used in biomechanics
for the identification of the cortical bone microstructure. The
principle of the axial transmission technique is illustrated in
Fig. 1. An impulse is generated by a transmitter placed on
the skin of a patient and then, the backscattered pressure
field is recorded at distant receivers in the ultrasonic range.

Probe

transmitter receiver

Cortical layer of a long bone

soft tissue
coupling gel Transmitter

Transmitter

Receivers

Bone

Fig. 1 Application AP3: scheme of the axial transmission technique.
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Fig. 2 Application AP3: Geometry of the multilayer system for the
boundary value problem.

Boundary value problem The 2D physical space is equipped
with a cartesian frame (O, e1, e3) in which the coordinates
of a point are denoted by (x1, x3). A boundary value prob-
lem has been introduced [15,16] for modeling the ultrasonic
wave propagation in human cortical bone. It consists of a
2D semi-infinite multilayer medium in the e1 longitudinal
direction (see Fig. 2). The model consists of an elastic semi-
infinite layer Ω (cortical bone) with thickness h in the e3 ra-
dial direction. This elastic semi-infinite layer is sandwiched
between two acoustical fluid layers, Ω1 (skin and soft tis-
sues) and Ω2 (bone marrow) with thicknesses h1 and h2 in
the e3 radial direction. The media occupying domains Ω1

and Ω2 are homogeneous while the cortical bone that oc-
cupies domain Ω is heterogeneous in the e3 direction. The
probe (transmitter and receivers) is located in Ω1.

A mean (nominal) boundary value problem is written
in time and space domains considering the three coupled
layers: linear acoustic wave equation formulated with the
pressure field P1(x, t) and P2(x, t) in domains Ω1 and Ω2,
and linear elastodynamics equation formulated with the dis-
placement field D(x, t) in domain Ω. Such a formulation
requires to define,
(1) for the heterogeneous cortical bone Ω, its mass density
ρ(x3) and its (3× 3) matrix-valued effective elasticity field
{[C(x3)] , x3 ∈]− h, 0[};
(2) for the acoustic fluids Ω1 and Ω2, their mass densities
ρ1 = ρ2 = 1000 kg.m−3, and their sound velocities c1 =

c2 = 1500m.s−1. Note that the acoustic fluid Ω2 can also
be viewed as an elastic solid for which the non zero compo-
nents of its (3 × 3) elasticity matrix, denoted as [CF ], are
equal to ρ2 c22.

Introducing a and b such that −h < b < a < 0 (see
Fig. 2 in which z = −h). In case of osteoporosis, there is a
gradient of porosity in domain Ω in the e3 direction:
(1) for −h < x3 < b, the cortical bone is a damaged mate-
rial mostly made up of an acoustic fluid, which has the same
behavior as the acoustic fluid Ω2.
(2) for a < x3 < 0, the cortical bone is an elastic solid
that is modeled by a homogeneous transverse isotropic elas-
tic medium for which its (3× 3) elasticity matrix is denoted

by [CS ]: the transverse Young modulus and the Poisson co-
efficient are ET = 9.8GPa and νT = 0.4; the longitudi-
nal Young modulus, the Poisson coefficient, and the shear
modulus are respectively EL = 17.7GPa, νL = 0.38, and
GL = 4.79GPa; its mass density is ρS = 1600Kg.m−3.
(3) for b ≤ x3 ≤ a, there is a gradient of porosity in the
cortical bone.

The model proposed in [16] is used for constructing the
mean (nominal) model, based on the hypotheses defined in
paragraphs (1) to (3) above, which is written, for all x3 ∈
]− h, 0[, as

ρ(x3) = (1− f(x3)) ρS + f(x3) ρ2 ,

[C(x3)] = βC

(
(1− f(x3)) [CS ] + f(x3) [C

F ]
)
, (78)

in which βC is a parameter that allows a bias to be intro-
duced in the model, where f(x3) = 1 if x3 < b, f(x3) = 0

if x3 > a, and f(x3) = α0 + α1 x3 + α2 x
2
3 + α3 x

3
3

if b ≤ x3 ≤ a in which α0 = a2 (a − 3 b)/(a − b)3,
α1 = 6 a b/(a − b)3, α2 = −3(a + b)/(a − b)3, and α3 =

2/(a− b)3.

Prior stochastic model of the matrix-valued effective elastic-
ity field of the cortical bone In practice, the effective elas-
ticity field of the cortical bone, which occupies domain Ω,
is a non-Gaussian random field and is modeled by a (3 ×
3) matrix-valued random field {[C(x3)] ,∈] − h, 0[} whose
mean value is the field [C(x3)] defined by Eq. (78),

E{[C(x3)]} = [C(x3)] , ∀x3 ∈]− h, 0[ .

The prior probabilistic model of this non-Gaussian random
field is taken in the set SFE+ introduced in [61]. The con-
struction of this set of non-Gaussian matrix-valued random
fields is based on the use of the Maximum Entropy principle
for constructing a set of positive-definite random matrices.
This prior probabilistic model depends only on two hyperpa-
rameters, a dispersion coefficient δS and a spatial correlation
length `S .

Stochastic model for the acoustical source The transmitter
is an acoustic point source located in domain Ω1, which de-
livers a random acoustical impulse, and is modeled by a ran-
dom acoustical source density Q such that

∂Q

∂t
(x, t) = ρ1 F (t)δ0(x1)δ0(x3) ,

in which δ0 is the Dirac function on the real line at the origin
and F (t) = f0 sin(2πFc t) e

−4(t Fc−1)2 in which Fc is the
random central frequency whose probability distribution is
uniform on [800, 1200] kHz and where f0 = 100N. At time
t = 0, the system is assumed to be at rest. For each given re-
alization of random field [C], the corresponding realization
of (1) the random displacement field D and its associated
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Von Mises stresses fields SVM are computed in Ω, (2) the
random pressure fields P1 and P2 are computed in Ω1 and
Ω2. These numerical calculations are performed using the
fast and efficient hybrid solver detailed in [15]. It involves
a spatial Fourier transform of the random boundary value
problems into the longitudinal direction (e1 direction) and a
1D finite element discretization into the radial direction (e3
direction).

13.2 Illustration of results obtained with the stochastic
boundary value problem

This section deals with an illustration of the ultrasonic wave
propagation in the three-layers system using the stochastic
boundary value problem defined in Section 13.1, but for
which the following particular configuration and parame-
terization are used. Note that, in presence of a gradient of
porosity, the ultrasonic wave propagation is complex and the
plot of such waves is difficult to interpret; consequently, for
this illustration, it will be assumed that there is a damaged
cortical bone without porosity gradient, which means that
−h < b = a < 0. We consider the case h1 = 10−2 m,
h = 8 × 10−3 m, h2 = 10−2 m, b = a = −h/2, and z =

−h (obviously, for generating the initial dataset used by the
probabilistic learning and for generating the experimental
dataset required for the Bayesian approach, we will consider
a porosity gradient (−h < b < a < 0)). The calculation has
been performed with βC = 1 and ρS = 1722Kg.m−3. For
this illustration, parameters δS , `S , and Fc are considered
deterministic (that will not be the case for generating the ini-
tial dataset) and are such that δS = 0.2, `S = 3 × 10−3 m,
and Fc = 1000 kHz. The acoustical point source (trans-
mitter) is located in Ω1 with coordinates (x1 = 0, x3 =

0.001)m. In the e3 radial direction, the number of nodes
used in the finite element interpolation of fields P1, P2, and
D are 101, 101, and 82, respectively. The Monte Carlo nu-
merical simulation method is used as stochastic solver. The
sampling time step is ∆t = 2.94 × 10−6 s and the number
of time sampling points is 330. The sampling spectral step
is ∆k = 15.70 rad.m−1 and the number of spectral sam-
pling points is 1024. At observation time t = 9.72×10−6 s,
Fig. 3 displays the mean and variance of random fields P1,
SVM, and P2. Figure 3 shows the lateral wave (or head wave)
propagating from the fluid-solid interface (plane wave front,
which links the reflected P-wave front and the interface).

13.3 Generation of the initial dataset

Using the stochastic boundary value problem defined in Sec-
tion 13.1, the objective is to generate the initial dataset DNd =

{xjd = (qjd,w
j
d), j = 1, . . . , Nd} (see Eq. 1) relative to ran-

dom variable X = (Q,W) in which Q = (Q1, . . . ,Qnq ) and

Fig. 3 Application AP3: Propagation of the mean (top) and variance
(down) of the random wave in the three layers at t = 9.72 × 10−6s
with for h1 = 10−2 m, h = 8 × 10−3 m, h2 = 10−2 m. Ver-
tical direction: x3. In grey color, mean and variance of wave fields
(x1, x3) 7→ P1(x1, x3, t) (upper layer), (x1, x3) 7→ SVM(x1, x3, t)
(sandwiched layer), (x1, x3) 7→ P2(x1, x3, t) (bottom layer).

W = (W1, . . . ,Wnw). We then have to define the vector-
valued random QoI, Q, the vector-valued random system pa-
rameter, W, and the Rnu -valued random variable U, which
are such that

Q = f(U,W) .

The mapping f cannot explicitly be described because this
mapping is associated with the solution of the boundary value
problem. The generation is carried out with Nd = 200.
(i) Initial dataset DNd is constructed for the case analyzed
in [16], that is to say, for a damaged cortical bone with
a gradient of porosity such that h1 = 2× 10−3 m, h =

8×10−3 m, h2 = 10−2 m, a = −h/2, b = −h, z = −h
and ρS = 1600Kg.m−3. The acoustical point source (trans-
mitter) is located in Ω1 with coordinates (x1 = 0, x3 =

0.001)m. The dispersion coefficient δS and the spatial cor-
relation length `S are modeled by random variables with
uniform probability distributions on [0, 0.7977] and [1, 8]×
10−3 m respectively. The central frequency Fc is the uni-
form random variable defined in Section 13.1. The is no
bias introduced in the model and consequently, βC = 1 in
Eq. (78).
(ii) The number of nodes for the finite element discretization
of P1, P2, and D in the e3 radial direction are 21, 101, and
162, respectively. The sampling time step is ∆t = 4.2565×
10−6 s and the sampling spectral step is∆k=44.88rad.m−1.
The number of time sampling points is 300 and the number
of spectral sampling points is 2048.
(iii) Let Q be the random vector of the 300 time sampling
points of the random pressure fieldP1 at positions {(x`1, x3 =

10−3 m), ` = 1, . . . , 14} (14 receivers) in which x`1 = 13.1×
10−3 + `∆x1 with ∆x1 = 0.8×10−3 m. Thus, Q is a Rnq -
valued random vector with nq = 4200.
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(iv) Let W be the random vector of all the random variables

{[L(x`3)]ij , 1 ≤ i < j ≤ 3}∪{log([L(x`3)]jj) , 1 ≤ j ≤ 3} ,

in which {[L(x`3)]ij}ij are the entries of the random up-
per triangular matrix [L(x`3)] constructed by the following
Cholesky factorization, [C(x`3)] = [L(x`3)]T [L(x`3)]. The
points {x`3, 1 ≤ ` ≤ 120} are the coordinates for the `-th in-
tegration points of the finite element mesh of interval [−h, 0]
(see Fig. 1). Thus, W is a Rnw -valued random vector with
nw = 720.
(v) The R3-valued random variable U is written as U =

(δs, `s, Fc).

13.4 Generation of the experimental dataset

The experimental dataset Dexp
nr is generated with nr = 200

independent experimental realizations {qexp,r, r = 1, . . . nr}
of Qexp = (Qexp

1 , . . . ,Qnq ), which are such that

Qexp = f(Uexp,Wexp) , (79)

in which the deterministic mapping f is the same as the one
used in Eq. (78) and corresponds to the use of the boundary
value problem defined in Sections 13.1 and 13.3. The ran-
dom vectors Uexp and Wexp are constructed as independent
copies of random vectors U and W define in Sections13.1
and 13.3, but the bias on the mean model of the random ef-
fective elasticity matrix introduced in Eq. (78) is chosen as
βC = 0.9. It should be noted that the nr independent real-
izations {wexp,r, r = 1, . . . nr} of random vector Wexp are
generated in order to construct the simulated experiments
{qexp,r, r = 1, . . . nr} using Eq. (79), but these realizations
are not used in the Bayesian approach proposed. Neverthe-
less, these realizations of Wexp will be used for estimat-
ing the probability density functions {w 7→ pexp

Wk
(w)}k of

the components {Wexp
k }k of Wexp in order to validate the

methodology proposed (comparing pexp
Wk

to the posterior pdf
ppost
Wk

).

13.5 Values of the numerical parameters, observed
quantities for convergence analyses, and validation

The values of the numerical parameters introduced in the
algorithm are summarized in Table 1. All the given values
of the numerical parameters have been obtained by using
the criteria introduced in the theory or have been estimated
by performing a local convergence analysis. The quantities
used for validating the choice of the value of the regulariza-
tion parameter ε, for studying the convergence in probability
distribution of the probabilistic learning with respect to Nd,
and for validating the method proposed, are similar to those
introduced in Section 12 for Applications (AP1) and (AP2).
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Fig. 4 Application AP3: validation of the choice ε = 0.5. For Nd =
200, graph of ε 7→ OVL(ε) (top) and graph of ε 7→ convstd(ε) (down).
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Fig. 5 Application AP3: convergence of the probabilistic learning with
respect toNd. For ε = 0.5, graph ofNd 7→ OVL(Nd) (top) and graph
of Nd 7→ convstd(Nd) (down).

13.6 Results and comments for application (AP3)

The results are presented in Figs. 4 to 6.
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Fig. 6 Application AP3: pdf w 7→ pdWk
(w) of Wk estimated with the

initial dataset DNd of Nd = 200 realizations (thin black line), pdf
w 7→ p

exp
Wk

(w) of Wk estimated with the experimental dataset Dexp
nr

of nr = 200 realizations (thick red dashed line), pdf w 7→ p
post
Wk

(w)

of Wpost
k estimated with ε = 0.5, Nd = 200, and νpost = 40000

realizations (thick blue line), for k = 5 (a), k = 6 (b), k = 13 (c), and
k = 14 (d).

(i) Concerning the validation of the choice ε = 0.5 of the
regularization parameter, Fig. 4 shows that function ε 7→
OVL(ε) has effectively a minimum in the neighborhood of

ε = 0.5, as obtained for applications (AP1) and (AP2) (see
Section 12).

(ii) Concerning the convergence in probability distribution
of the probabilistic learning with respect to size Nd of the
initial dataset that is used in all the calculations detailed in
Sections 4 to 9, Fig. 5 shows the results obtained for the
functions Nd 7→ OVL(Nd) and Nd 7→ convstd(Nd) with
ε = 0.5. The convergence of the learning is slower and a
best convergence could certainly be obtained by increasing
the maximum value of Nd that should be considered, but as
already explained, this slower convergence of the learning
with respect to Nd does not interfere with the validation of
the proposed methodology (see Section 12).

(iii) Concerning the validation of the method proposed, it
can be seen in Fig.4 that, for Nd = 200 and ε = 0.5, the
norm convstd(ε) of the vector of the standard deviations, nor-
malized by its counterpart for the experiments, is close to
1. Figure 6 shows, for selected components Wk of random
vector W, the comparison of three probability density func-
tions: the pdf w 7→ pdWk

(w) of Wk estimated with the initial
dataset DNd with Nd = 200, the pdf w 7→ pexp

Wk
(w) of Wk

estimated with the experimental dataset Dexp
nr with nr = 200,

and the pdf w 7→ ppost
Wk

(w) of the posterior Wpost
k estimated

with ε = 0.5, Nd = 200, and νpost = 40 000. For each
value of k that is considered, the comparison between pdWk

and pexp
Wk

shows that there are significant differences (mean
value, standard deviation, non-Gaussianity) between these
two pdf’s, which justifies the use of the Bayesian approach
for improving pdWk

with ppost
Wk

. An important element for the
validation is the comparison between ppost

Wk
and pexp

Wk
.

We can see that the results are good considering the in-
trinsic difficulty of this inverse statistical problem that is in
very high dimension. The small differences that can be seen
are analyzed from a general point of view in the discussion
presented in Section 14. In addition to the general arguments
given in this discussion, which explain part of the differ-
ences induced by the proposed methodology, there is an ad-
ditional difficulty intrinsic to the inverse statistical problem
for this application (AP3) and which partly affects the qual-
ity of the results. For the inverse statistical problem of this
physical system, this difficulty is independent of the method
used to solve it. This is the sensitivity of the quantities of in-
terest with respect to certain components of the elastic ten-
sor field at certain spatial points of the elastic medium of the
dynamical fluid-structure coupled system. If these observed
quantities of interest are not very sensitive to the realizations
of Wk, which represent random values at a certain spatial
point of a certain component of the tensor of elasticity, then
the identification of their probability density functions is a
little more difficult.
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Table 1 For application (AP3), the table defines the values of all the
parameters introduced in the algorithm, and which are used in compu-
tations.

Parameters (AP3)

nq 4 200

nw 720

n 4 920

Nd ≤ 200

maxNd 200

nr 200

Learning νx 164

(Appendix A in εdiff 350

Supplementary material) m 166

f0 1.5

nMC 150

νar 30 000

∆t 0.2163

M0 100
`0 100

PCA of νq 125

Q and W errQ(νq) 3.9e−4
νw 72

errW(νw) 2.7e−4
Posterior ν 197

ν1 125

ε 0.5

Ns 200

εNs 0.0433

f post
0 10−3

εpost
diff 300 000

mpost 69

npost
MC 200

νpost 40 000

∆t 0.05854

M post
0 100

` post
0 120

14 Discussion and conclusion

In this paper, we have presented a methodology for im-
plementing the Bayesian inference in the framework of the
small-data challenge using the probabilistic learning on man-
ifolds under the following hypotheses: the likelihood prob-
ability distribution is not Gaussian and cannot be approxi-
mated by a Gaussian measure, the problem can be in high
dimension, the number of given realizations in the initial
dataset of the prior model is assumed to be small, which cor-
responds, for instance, to the use of an expensive computer
code for generating the initial data set (training), the number
of experimental realizations is also small, and the number
of posterior realizations can be arbitrarily large. For solv-
ing these difficult problem, a novel methodology has been

developed. The method and the associated algorithms have
been adapted to take into account all the constraints induced
by the given framework. Three applications have been pre-
sented for validating the approach proposed: two are rela-
tively simple and can easily be reproduced, and the third
one corresponds to a difficult statistical inverse problem.
The method proposed will have to be tested for many other
applications for confirming its robustness and its capability
to treat problems in high dimension and in the framework of
the small-data challenge.

The results obtained for the three applications presented
are good. Nevertheless, the small differences obtained in
the third application require further discussion. Below, we
discuss from a general point of view the main steps of the
proposed Bayesian identification methodology, highlighting
their possible impact on the quality of the results.

The first step of the methodology is the use of the PLoM
method, increasing the number of realizations of the initial
dataset, which is not enough to obtain the convergence of the
statistical estimators. This step is not an approximation but
rather a modeling choice, which makes it possible to tackle a
key obstacle in the context of small-data. Obviously, this en-
richment must also be correct. This property has been shown
for many published applications and recently, its properties
have been proven mathematically.

The second step is the use of a PCA representation, on
the one hand for the quantities of interest (the outputs) and
on the other hand for the control parameters (the inputs).
The approximation errors thus introduced can be, and are,
reduced to a level as small as desired. There are therefore no
errors introduced by this step.

The third step is that of the regularization of the covari-
ance matrix of the vector of the concatenated coordinates of
the two PCAs. This step is clearly an approximation, which
can introduce an irreducible error and therefore, affects the
quality of the results. Indeed although the error induced by
the introduced regularization is minimized in the construc-
tion of the proposed method, this error cannot be estimated
and controlled. This regularization is the price to pay to ad-
dress the second obstacle induced by the high dimension in
the Bayesian framework. We cannot introduce a single PCA,
which would solve the difficulty of high dimension with-
out having to introduce a regularization, but which would
then not allow the calculation of the likelihood function.
The choice of the introduction of two PCAs solves the prob-
lem of the high dimension and allows the calculation of the
likelihood function. On the other hand, this method requires
the introduction of a regularization whose model is arbitrary
although the one proposed herein results from an in-depth
analysis.

The fourth step is again the use of the PLoM method
to generate the realizations of the posterior probability mea-
sure. An affine transformation of the posterior probability



22 C. Soize, R.G. Ghanem, C. Desceliers

measure is constructed to improve the exploration of the
support of this measure, which can still live in a high-dimen-
sional set (despite the PCA reductions introduced). This trans-
formation does not introduce errors. It simply improves the
exploration by the MCMC generator, which is based on the
reduced-order Itô stochastic differential equation, obtained
by projection on the diffusion-maps basis, in order to gener-
ate the realizations of the posterior model.

Finally, following this discussion, it appears that the only
point that can generate an irreducible error is the regulariza-
tion. This question on the choice of regularization remains
an open problem.
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12 Applications (AP1) and (AP2)

In this section, two applications are presented and are used
for performing the validation of the methodology and al-
gorithms presented. All the random variables are defined
on probability space (Θ, T ,P). These two applications will
be referenced as (AP1) and (AP2) for application 1 and 2.
These two applications are relatively simple and can be eas-
ily reproduced.

12.1 Stochastic model and simulated experiments for appli-
cations (AP1) and (AP2)

Stochastic model for (AP1) and (AP2) The stochastic model
used for generating the initial dataset DNd = {xjd = (qjd,w

j
d),

j = 1, . . . , Nd} (see Eq. (P-1)) relative to random vari-
able X = (Q,W) in which Q = (Q1, . . . ,Qnq ) and W =

(W1, . . . ,Wnw), is written, for (AP1) and (AP2), as

Q = [B(U)] (W+ V b) ,

in which U, V , and W are independent random variables.
The maximum value of Nd is 200 and nw = 20. We have
nq = 200 for (AP1) and nq = 20 000 for (AP2). The de-
terministic vector b in Rnw is written as b = 0.2u + 0.9 in
which all the components of u belongs to ]0, 1[ (generated
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with the Matlab script: rng(’default’); u = rand(nw, 1)).
The real-valued random variable V = 0.2U +0.9 for (AP1)
and V = 0.2U − 0.1 for (AP2) in which U is a uniform
random variable on [0, 1]. The random vector U = (U1, . . . ,

Unu) with nu = 6 is written, for α = 1, . . . , nu, as Uα =

2uα Uα + 1 − uα in which U1, . . . ,Unu are nu indepen-
dent uniform random variables on [0, 1] and where, uα =

0.2(α−1)/(nu−1) for (AP1) and uα = 0.7(α−1)/(nu−1)
for (AP2). The entries [B(U)]kj of the (nq × nw) random
matrix are

[B(U)]kj =
nu∑
α=1

λα(Uα)ϕαk (Uα)ϕαk (Uα)ϕαj+nq/2(Uα) .

For (AP1), ϕαk (Uα) = sin{αkπ/(nq + 1)} is independent
of Uα (deterministic) and λα(Uα) = 1/(αUα)2. For (AP2),
ϕαk (Uα) = sin{αUα kπ/(nq + 1)} and λα(Uα) = 5(1 −
Uα) + 1/(αUα)2. The random vector W is written as W =∑3
β=1

√
µβ φ

β ηβ , in which µβ = 1/β2 andφβ = (φβ1 , . . . ,

φβnw) with φβj = sin{βπj/(1 + nw)}. The non-Gaussian
centered random vector η = (η1, η2, η3) is written as η =∑27
γ=1 yγ ψ

α
(γ)
1

(Ξ1)ψα(γ)
2

(Ξ2) in which Ξ1 and Ξ2 are in-
dependent normalized Gaussian random variables. The in-
dices α(γ)

1 and α(γ)
2 are such that 0 < α

(γ)
1 + α

(γ)
2 ≤ 6,

and ψ
α

(γ)
1

(Ξ1) and ψ
α

(γ)
2

(Ξ2) are the polynomial Gaussian

chaos. The matrix [y] = [y1 . . . y27] is such that [y] [y]T =

[I3] and is generated using the Matlab script: rng(’default’);
a1 = randn(27,27); [a2, ] = eig(a1*(a1)′); a2(: , 4:27) = [];
[y] = (a2)

′.

Simulated experiments for (AP1) and (AP2) The experimen-
tal dataset Dexp

nr is generated with nr = 200 independent
experimental realizations {qexp,r, r = 1, . . . nr} of Qexp =

(Qexp
1 , . . . ,Qexp

nq ). As already explained, we also generate the
independent experimental realizations {wexp,r, r = 1, . . . nr}
of Wexp = (Wexp

1 , . . . ,Wexp
nw) in order to validate the choice

of the regularization parameter ε (see Section P-10). The ex-
perimental model is written, for (AP1) and (AP2), as

Qexp = [B(Uexp)] (Wexp + V exp b) ,

in which Uexp, V exp, and Wexp are independent random vari-
ables that are also independent of U, V , and W. The real-
valued random variable V exp = 0.2U exp + 0.9 for (AP1)
and V exp = 0.2U exp − 0.1 for (AP2) in which U exp is a
uniform random variable on [0, 1] independent of U . The
random vector Uexp = (Uexp

1 , . . . ,Uexp
nu ) is written, for α =

1, . . . , nu, as Uexp
α = 2uexp

α U exp
α +1−uexp

α in which U exp
1 , . . . ,

U exp
nu are nu independent uniform random variables on [0, 1]

and where, uexp
α = 0.3(α − 1)/(nu − 1) for (AP1) and

uα = 0.7(α−1)/(nu−1) for (AP2). Note that for (AP1), the
coefficient is 0.3 and not 0.2 as in the stochastic model. The

mapping u 7→ [B(u)] is the same as the one of the stochas-
tic model. The random vector Wexp is written as Wexp =

0.2× 1+ W̃exp in which 1 ∈ Rnw is the vector whose com-
ponents are equal to 1 and where W̃exp is an independent
copy of the stochastic model of W.

12.2 Values of the numerical parameters for the computation
of (AP1) and (AP2)

Table 1 summarizes the values of all the numerical parame-
ters introduced in the algorithms. Except for regularization
parameter ε and for the convergence of the learning in prob-
ability distribution with respect to dimension Nd of initial
dataset DNd (theses two parameters will be the subject of
a particular analysis presented later), the other values of the
numerical parameters have been obtained by using the exist-
ing criteria or by performing a local convergence analysis.
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Fig. 1 Application AP1: validation of the choice ε = 0.5. For Nd =
200, graph of ε 7→ OVL(ε) (up) and graph of ε 7→ convstd(ε) (down).

12.3 Quantities used for validating the choice of ε and for
studying the convergence in probability distribution of the
probabilistic learning

Definition of the graphs that are plotted As already explain-
ed in Section P-10, we propose the value 0.5 for the regular-
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Table 1 For applications (AP1) and (AP2), Table 1 defines the values
of all the parameters introduced in the algorithm, and which are used
in computations.

Parameters (AP1) (AP2)

nq 200 20 000

nw 20 20

n 220 20 020

Nd ≤ 200 ≤ 200

maxNd 200 200

nr 200 200

Learning νx 9 15

(Appendix A) εdiff 48 120

m 12 17

f0 1.5 1.5

nMC 150 150

νar 30 000 30 000

∆t 0.1649 0.0903

M0 100 100

`0 100 100

PCA of νq 6 12
Q and W errQ(νq) 4.3e−5 5.3e−5

νw 3 3

errW(νw) 3.7e−15 5.3e−15
Posterior ν 9 15

ν1 6 12

ε 0.5 0.5

Ns 200 200

εNs 0.0422 0.0322

f post
0 10−5 10−5

εpost
diff 4 000 3 000

mpost 9 11

npost
MC 200 200

νpost 40 000 40 000

∆t 0.0277 0.03384

M post
0 100 100

` post
0 10 000 10 000

ization parameter ε. In order to validate this choice, for the
applications and for Nd fixed, we have plotted:

(i) the graph of function ε 7→ OVL(ε) defined by Eq. (P-77),
which has to be minimum in the neighborhood of ε = 0.5;

(ii) the graph of function ε 7→ convstd(ε) that is defined here-
inafter and whose value should be close to 1 in the neighbor-
hood of ε = 0.5. Letσpost

W (ε) = (σpost
W1

(ε), . . . , σpost
Wmw

(ε)) be
the vector of the standard deviations estimated with the νpost

realizations of the components of random vector Wpost (esti-
mated with the νpost realizations) and let σexp

W = (σexp
W1
, . . . ,

σexp
Wmw

) be the standard deviations of the components of ran-
dom vector W (estimated with experimental dataset Dexp

nr ).
The function convstd is convstd(ε) = ‖σpost

W (ε)‖/‖σexp
W ‖.
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Fig. 2 Application AP1: convergence of the probabilistic learning with
respect to Nd. For ε = 0.5, graph of Nd 7→ OVL(Nd) (up) and graph
of Nd 7→ convstd(Nd) (down).

Studying the convergence of the probabilistic learning for
the posterior model For ε fixed at 0.5, the convergence in
probability distribution of the probabilistic learning is ana-
lyzed with respect to Nd by studying the function Nd 7→
OVL(Nd) defined by Eq. (P-77) (replacing ε by Nd) and the
functionNd 7→ convstd(Nd) that is defined by convstd(Nd) =

‖σpost
W (Nd)‖/‖σexp

W ‖.

Validating the proposed method In addition to the quanti-
ties just described and for several components of index k,
we will compare the graph of the pdf w 7→ pdWk

(w) of Wk

estimated with the initial dataset DNd of Nd = 200 realiza-
tions, with the graph of the pdf w 7→ pexp

Wk
(w) of Wk esti-

mated with the experimental dataset Dexp
nr realizations, and

with the graph of the pdf w 7→ ppost
Wk

(w) of Wpost
k estimated

for ε = 0.5 and Nd = 200, and νpost = 40 000 realizations.
The pdf w 7→ ppost

Wk
(w) should be close to w 7→ pexp

Wk
(w) (the

reference).

12.4 Results and comments for applications (AP1) and (AP2)

The results are presented in Figs. 1 to 3 for application (AP1)
and in Figs. 4 to 6 for application (AP2).
(i) Concerning the validation of the choice ε = 0.5 of the
regularization parameter, Figs. 1 and 4 show that function
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Fig. 3 Application AP1: pdf w 7→ pdWk
(w) of Wk estimated with the

initial dataset DNd of Nd = 200 realizations (thin black line), pdf
w 7→ p

exp
Wk

(w) of Wk estimated with the experimental dataset Dexp
nr

of nr = 200 realizations (thick red dashed line), pdf w 7→ p
post
Wk

(w)

of Wpost
k estimated with ε = 0.5, Nd = 200, and νpost = 40000

realizations (thick blue line), for k = 1 (a), k = 37 (b), k = 145 (c),
and k = 613 (d).

ε 7→ OVL(ε) has effectively a minimum in the neighborhood
of ε = 0.5 for these two applications.
(ii) For the two applications with ε = 0.5, the convergence
in probability distribution of the probabilistic learning with
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Fig. 4 Application AP2: validation of the choice ε = 0.5. For Nd =
200, graph of ε 7→ OVL(ε) (up) and graph of ε 7→ convstd(ε) (down).
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Fig. 5 Application AP2: convergence of the probabilistic learning with
respect to Nd. For ε = 0.5, graph of Nd 7→ OVL(Nd) (up) and graph
of Nd 7→ convstd(Nd) (down).

respect to the size Nd of the initial dataset that is used in all
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Fig. 6 Application AP2: pdf w 7→ pdWk
(w) of Wk estimated with the

initial dataset DNd of Nd = 200 realizations (thin black line), pdf
w 7→ p

exp
Wk

(w) of Wk estimated with the experimental dataset Dexp
nr

of nr = 200 realizations (thick red dashed line), pdf w 7→ p
post
Wk

(w)

of Wpost
k estimated with ε = 0.5, Nd = 200, and νpost = 40000

realizations (thick blue line), for k = 5 (a), k = 6 (b), k = 13 (c), and
k = 14 (d).

the calculations detailed in Sections P-4 to P-9, Figs. 2 and 5
show the results obtained for the functions Nd 7→ OVL(Nd)
and Nd 7→ convstd(Nd). For application (AP2), the conver-
gence of the learning is slower and a best convergence could

certainly be obtained by increasing the maximum value of
Nd that should be considered. Nevertheless, this slower con-
vergence of the learning with respect to Nd does not inter-
fere with the validation of the proposed methodology, be-
cause, for a fixed value of Nd, the results obtained show
that the posterior model that is estimated allows the prior
model to be significantly improved; a better convergence of
the learning with respect to Nd would lead to even greater
improvement of the posterior model.
(iii) Concerning the validation of the proposed method, Figs.
1 and 4 show that, for Nd = 200 and ε = 0.5, the norm
convstd(ε) of the vector of the standard deviations, normal-
ized by its counterpart for the experiments, is close to 1. For
these two applications, Figs. 3 and 6 show, for selected com-
ponents Wk of random vector W, the comparison of three
probability density functions: the pdf w 7→ pdWk

(w) of Wk

estimated with the initial dataset DNd with Nd = 200, the
pdf w 7→ pexp

Wk
(w) of Wk estimated with the experimental

dataset Dexp
nr with nr = 200, and the pdf w 7→ ppost

Wk
(w)

of the posterior Wpost
k estimated with ε = 0.5, Nd = 200,

and νpost = 40 000. For each value of k that is considered,
the comparison between pdWk

and pexp
Wk

shows that there are
significant differences (mean value, standard deviation, non-
Gaussianity) between these two pdf’s, which justify the use
of the Bayesian approach for improving pdWk

with ppost
Wk

. The
values of k selected for plotting, for each application, corre-
spond to the greatest difference between these two pdfs. An
important element for the validation is the comparison be-
tween ppost

Wk
and pexp

Wk
. It can be seen that the results are quite

good for these two applications.

Appendix A. Summary of the algorithm of the proba-
bilistic learning on manifolds

In this Appendix, we summarize the algorithm of the prob-
abilistic learning on manifolds (PLoM) that is used in Sec-
tion P-5. This algorithm has been introduced in [16]. Com-
plementary developments can be found in [3,17–19]. Ap-
plications and validations can be found in [4,5,20,15]. In
addition, we give the formula for estimating the values of
the two hyperparameters that control the algorithm of the
PLoM.

Let {xjd = (qjd,w
j
d), j = 1, . . . , Nd} be the set of the Nd

independent realizations given in Rn = Rnq × Rnw with
n = nq + nw, which constitute the initial data set DNd . Let
X = (Q,W) be the random variable with values in Rn =

Rnq×Rnw for which {xjd, j = 1, . . . , Nd} constitutesNd in-
dependent realizations. The objective of the PLoM is to gen-
erate νar � Nd additional realizations {x`ar, ` = 1, . . . , νar}
of random vector X. As soon as the set {x`ar, ` = 1, . . . , νar}
has been constructed, the additional realizations for Q and
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W can be extracted as (q`ar,w`ar) = x`ar for ` = 1, . . . , νar,
which constitute the learned dataset Dνar .

A.1. Normalization of the initial dataset. The Nd indepen-
dent realizations {xjd, j = 1, . . . , Nd} of X with values in
Rn can be represented by the matrix [xd] = [x1

d . . . x
Nd
d ] in

Mn,Nd . Let [X] = [X1, . . . ,XNd ] be the random matrix with
values in Mn,Nd , whose columns areNd independent copies
of random vector X. Therefore, [xd] is one realization of ran-
dom matrix [X]. The normalization of random matrix [X] is
attained with the random matrix [H] = [H1, . . . , HNd ] with
values in Mνx,Nd with νx ≤ n, obtained by using the princi-
pal component analysis of random vector X. Consequently,
random matrix [X] is written as,

[X] = [x] + [ϕ] [λ]1/2 [H] ,

in which [λ] is the (νx × νx) diagonal matrix of the νx
positive eigenvalues of the empirical estimate of the covari-
ance matrix of X (computed using x1d, . . . , x

Nd
d ), where [ϕ]

is the (n × νx) matrix of the associated eigenvectors such
[ϕ]T [ϕ] = [Iνx ], and where [x] is the matrix in Mn,Nd

with identical columns, each one being equal to the empir-
ical estimate x ∈ Rn of the mean value of random vector
X (computed using x1

d, . . . , x
Nd
d ). The columns of [H] are

Nd independent copies of a random vector H wit values in
Rνx . The realization [ηd] = [η1 . . .ηNd ] ∈ Mνx,Nd of [H]

(associated with the realization [xd] of [X]) is computed by
[ηd] = [λ]−1/2[ϕ]T ([xd] − [x]). When n is small, νx can
be chosen as n. If some eigenvalues are zero, they must be
eliminated and then νx < n. When n is high, a statistical
reduction can be done as usual and therefore νx < n in such
a case.

A.2. Diffusion-maps basis. This is an algebraic basis of vec-
tor space RNd , which is constructed using the diffusion maps
proposed in [2]. Let [b] be the positive-definite diagonal real
matrix in MNd such that [b]ij = δij

∑Nd
j′=1[K]jj′ in which

[K]jj′ = exp(− 1
4 εdiff
‖ηj − ηj′‖2), depending on a real

smoothing parameter εdiff > 0. Let [P] be the transition ma-
trix in MNd of a Markov chain such that [P] = [b]−1 [K].
For 1 < m ≤ Nd, let g1, . . . , gm be the right eigenvec-
tors in RNd of matrix [P] such that [P] gα = Λα gα, whose
eigenvalues are real and such that 1 = Λ1 > Λ2 > . . . >

Λm. The normalization condition of these eigenvectors is
[g]T [b] [g] = [Im], in which [g] = [g1 . . . gm] ∈ MNd,m

is the diffusion-maps basis. The eigenvector g1 associated
with the largest eigenvalue Λ1 = 1 is a constant vector.
For m = Nd, the diffusion-maps basis is an algebraic basis
of RNd . The right-eigenvalue problem of the nonsymmetric
matrix [P] can be performed solving the eigenvalue prob-
lem [b]−1/2 [K] [b]−1/2Φα = ΛαΦ

α related to a positive-
definite symmetric real matrix, and with the normalization
[Φ]T [Φ] = [Im], in which [Φ] = [Φ1 . . .Φm]. Therefore,

gα can be deduced from Φα by gα = [b]−1/2Φα. The
construction introduces two hyperparameters: the dimension
m ≤ Nd and the smoothing parameter εdiff > 0. An algo-
rithm is proposed in [17] for estimating their values. Most
of the time, m and εdiff can be chosen as follows. Let εdiff 7→
m̂(εdiff) be the function from R+∗ =]0 ,+∞[ into N such
that

m̂(εdiff) = arg min
α |α≥3

{
Λα(εdiff)

Λ2(εdiff)
< 0.1

}
. (1)

If function m̂ is a decreasing function of εdiff in the broad
sense (if not, see [17]), then the optimal value εopt

diff of εdiff

can be chosen as the smallest value of the integer m̂(εopt
diff)

such that

{m̂(εopt
diff)< m̂(εdiff) ,∀εdiff ∈ ]0, εopt

diff [ }∩ {m̂(εopt
diff) = m̂(εdiff) ,

∀εdiff ∈ ]εopt
diff , 1.5 ε

opt
diff [ } . (2)

The corresponding optimal value mopt of m is then given by
mopt = m̂(εopt

diff).

A.3. Reduced-order representation of random matrices [H ]

and [X ]. The diffusion-maps vectors g1, . . . , gm ∈ RNd
span a subspace of RNd that characterizes, for the optimal
values mopt and εopt

diff of m and εdiff, the local geometry struc-
ture of the dataset {ηj , j = 1, . . . , Nd}. The reduced-order
representation is obtained by projecting each column of the
MNd,νx -valued random matrix [H]T on the subspace of RNd ,
spanned by {g1, . . . , gm}. Let [Z] be the random matrix with
values in Mνx,m such that

[H] = [Z] [g]T . (3)

Since the eigenvector g1 is a constant vector and since ran-
dom matrix [H] is centered, this eigenvector can be removed
from the basis. As the matrix [g]T [g] ∈Mm is invertible, the
least-squares approximation of [Z] is written as [Z] = [H] [a]

in which

[a] = [g] ([g]T [g])−1 ∈MNd,m ,

and the realization [zd] ∈Mνx,m of [Z] is written as

[zd] = [ηd] [a] ∈Mνx,m .

A.4. Generation of additional realizations {η`ar, ` = 1, . . . ,

νar} of random vector H.
An MCMC generator for random matrix [H] is construc-

ted using the approach proposed in [13,14] belonging to the
class of Hamiltonian Monte Carlo methods [13,6,7]. The
generation of additional realizations [z1ar], . . . , [z

nMC
ar ] of ran-

dom matrix [Z] is carried out by using an unusual MCMC
method based on a reduced-order Itô stochastic differential
equation (ISDE) that is constructed as the projection on the
diffusion-maps basis of the ISDE related to a dissipative
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Hamiltonian dynamical system for which the invariant mea-
sure is the pdf of random matrix [H] constructed with the
Gaussian kernel-density estimation method and [ηd]. This
method preserves the concentration of the probability mea-
sure and avoids the scatter phenomenon. Let {([Z(t)], [Y(t)]),
t ∈ R+} be the unique asymptotic (for t→ +∞) stationary
diffusion stochastic process with values in Mνx,m×Mνx,m,
of the following reduced-order ISDE (stochastic nonlinear
second-order dissipative Hamiltonian dynamical system), for
t > 0,

d[Z(t)] = [Y(t)] dt ,

d[Y(t)] = [L([Z(t)])] dr−1

2
f0 [Y(t)] dt+

√
f0 [dWwien(t)] ,

with the initial condition [Z(0)] = [zd] and [Y(0)] = [N ] [a]

almost surely.

(i) The random matrix [L([Z(t)])] with values in Mνx,m is
such that [L([Z(t)])] = [L([Z(t)] [g]T )] [a]. For all [u] =
[u1 . . . uNd ] in Mνx,Nd with uj = (uj1, . . . , u

j
ν) in Rνx , the

matrix [L([u])] in Mνx,Nd is defined, for all k = 1, . . . , νx
and for all j = 1, . . . , Nd, by

[L([u])]kj =
1

p(uj)
{∇uj p(uj)}k ,

p(uj) =
1

Nd

Nd∑
j′=1

exp{− 1

2ŝ 2
νx

‖ ŝνx
sνx
ηj

′
− uj‖2} ,

∇uj p(uj)=
1

ŝ 2
νx Nd

Nd∑
j′=1

(
ŝνx
sνx
ηj

′
− uj)

exp{− 1

2ŝ 2
νx

‖ ŝνx
sνx
ηj

′
− uj‖2} ,

in which ŝνx is the modified Silverman bandwidth sνx , which
has been introduced in [14],

ŝνx =
sνx√

s2νx +
Nd−1
Nd

, sνx =

{
4

Nd(2 + νx)

}1/(νx+4)

.

(ii) [Wwien(t)] = [Wwien(t)] [a] where {[Wwien(t)], t ∈ R+}
is the Mνx,Nd -valued normalized Wiener stochastic process.
(iii) [N ] is the Mνx,Nd -valued normalized Gaussian random
matrix that is independent of stochastic process [Wwien].
(iv) The free parameter f0, such that 0 < f0 < 4, allows
the dissipation term of the nonlinear second-order dynami-
cal system (dissipative Hamiltonian system) to be controlled
in order to kill the transient part induced by the initial con-
ditions. A common value is f0 = 1.5.
(v) We then have [Z] = limt→+∞ [Z(t)] in probability dis-
tribution, which allows for generating the additional realiza-
tions, [z1ar], . . . , [z

nMC
ar ], and then, generating the additional

realizations [η1ar], . . . , [η
nMC
ar ] by using Eq. (3), such that [η`ar] =

[z`ar] [g]
T (see Section A.6).

A.5. Algorithm for solving the reduced-order ISDE. LetM =

nMC ×M0 be the positive integer in which nMC and M0 are
integers. The reduced-order ISDE is solved on the finite in-
terval R = [0 ,M ∆t], in which ∆t is the sampling step of
the continuous index parameter t. The integration scheme
is based on the use of the M + 1 sampling points t`′ such
that t`′ = `′∆t for `′ = 0, . . . ,M for which [Z`′ ] =

[Z(t`′)], [Y`′ ] = [Y(t`′)], and [Wwien
`′ ] = [Wwien(t`′)],

with [Z0] = [zd], [Y0] = [N ] [a], and [Wwien
0 ] = [0νx,m].

For `′ = 0, . . . ,M − 1, let [∆Wwien
`′+1] = [∆Wwien

`′+1] [a]

be the sequence of random matrices with values in Mνx,m,
in which the increments [∆Wwien

1 ], . . . , [∆Wwien
M ] are M in-

dependent random matrices with values in Mνx,Nd . For all
k = 1, . . . , νx and for all j = 1, . . . , Nd, the real-valued
random variables {[∆Wwien

`′+1]kj}kj are independent, Gaus-
sian, second-order, and centered random variables such that

E{[∆Wwien
`′+1]kj [∆Wwien

`′+1]k′j′} = ∆t δkk′ δjj′ .

For `′ = 0, . . . ,M − 1, the Störmer-Verlet scheme applied
to the reduced-order ISDE yields

[Z`′+ 1
2
] = [Z`′ ] +

∆t

2
[Y`′ ] ,

[Y`′+1] =
1− b
1 + b

[Y`′ ]+
∆t

1 + b
[L`′+ 1

2
]+

√
f0

1 + b
[∆Wwien

`′+1] ,

[Z`′+1] = [Z`′+ 1
2
] +

∆t

2
[Y`′+1] ,

with the initial condition defined before, where b = f0∆t /4,
and where [L`′+ 1

2
] is the Mνx,m-valued random variable

such that

[L`′+ 1
2
] = [L([Z`′+ 1

2
])] = [L([Z`′+ 1

2
] [g]T )] [a] .

A.6. Additional realizations {x`ar, ` = 1, . . . , νar} of random
vector X. The reduced-order ISDE is then used for generat-
ing nMC additional realizations, [z1ar], . . . , [z

nMC
ar ] in Mνx,m,

of random matrix [Z], and therefore, for deducing the nMC

additional realizations, [η1ar], . . . , [η
nMC
ar ] in Mνx,Nd of ran-

dom matrix [H], such that [η`ar] = [z`ar] [g]
T for ` = 1, . . . , nMC.

The computation is performed as follows. Let νar = nMC ×
Nd, in which nMC is a any given integer. Let [Wwien(·; θ)]
with θ ∈ Θ be a realization of the Wiener stochastic process
[Wwien] defined in Section A.4-(ii). Let {([Z(t; θ)], [Y(t; θ)]),
t ∈ R+} be one realization of the (Mνx,m×Mνx,m)-valued
stochastic process {([Z(t)], [Y(t)]), t ∈ R+}, for which its
time-sampling is computed using the algorithm presented in
Section A.5. Let `0 be the integer such that, for t ≥ `0∆t,
the solution is asymptotic to the stationary solution. There-
fore, the independent realizations {η`, ` = 1, . . . , νar} of H
are generated as follows. Let M0 be a given positive integer.
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For κ = 1, . . . , nMC and for t`′ = `′∆t with `′ = `0 +

κM0, we have, for j = 1, . . . , Nd and for k = 1, . . . , νx,
η`k = {[Z(t`′ , θ)] [g]T }kj with ` = j + (`′ − 1)Nd. In
this method of generation, only one realization θ is used
and M0 is chosen sufficiently large in order that [Z(t`′)]
and [Z(t(`′+M0))] be two random matrices that are approx-
imately independent. The realizations {x`ar, ` = 1, . . . , νar}
of random vector X are then calculated by x`ar = x+[ϕ] [λ]1/2

η` with η` = (η`1, . . . , η
`
ν).

Appendix B. Proof of the mean-square convergence of
the random sequence X(νq,νw).

Since X = (Q,W), xar = (qar,war), and X(νq,νw) = (Q(νq),

W(νw)), we have

E{‖X− xar‖2} = E{‖Q− qar‖
2}+ E{‖W− war‖2} ,

that is equal to tr [CQ]+ tr [CW], in which X, Q, and W stand
for X(nq,nw), Q(nq), and W(nw). We also have

E{‖X−X(νq,νw)‖2}=E{‖Q−Q(νq)‖2}+E{‖W−W(νw)‖2} ,

that can be rewritten, using Eqs. (P-8) and (P-14), as

E{‖X− X(νq,νw)‖2}
= errQ(νq)E{‖Q−qar‖

2}+errW(νw)E{‖W−war‖2} .

Since tr [CQ] > 0 and tr [CW] > 0, it can then be deduced
that

errX(νq, νw) =
errQ(νq)

1 + tr [CW]/tr [CQ]
+

errW(νw)

1 + tr [CQ]/tr [CW]
.

Defining ζ = max{(1 + tr [CW]/tr [CQ])
−1, (1 + tr [CQ]/

tr [CW])−1}> 0 yields errX(νq, νw) ≤ ζ (errQ(νq)+errW(νw)).
Since ζ < 1, we then obtain

errX(νq, νw) ≤ errQ(νq) + errW(νw) . (4)

Appendix C. Construction of the regularization model of
covariance matrix [CX̂ ] defined by Eq. (P-24)

Let [Ĉε] be a regularization model in M+
ν of [CX̂] such that

its condition number is of order 1. Therefore, [Ĉε]−1 is in
M+
ν and its condition number is also of order 1. The pro-

posed regularization is constructed as follows. Let us con-
sider the following classical spectral representation of ma-
trix [CX̂],

[CX̂] = [Φ] [λ] [Φ]T , (5)

in which the real eigenvalues are in decreasing order, λ1 ≥
λ2 ≥ . . . ≥ λν ≥ 0 and where [Φ] is the matrix in Mν of the
corresponding eigenvectors. Due to Eqs. (P-24) and (P-25),

it is proven in Appendix D that these eigenvalues are such
that

0 ≤ λj ≤ 2 , j ∈ {1, . . . , ν} . (6)

If [Cqw] was the zero matrix in Mνq,νw , then matrix [CX̂]

would be the identity matrix and therefore, all the eigenval-
ues would be equal to 1. Since [Cqw] is not the zero matrix
and taking into account Eq. (6), there exists and we define
(by construction of the regularization model) the integer ν1,
such that,

λν1 ≥ 1 , λν1+1 < 1 , ν1 + 1 ≤ ν . (7)

The regularization, [Ĉε] of [CX̂] is defined by

[Ĉε] = [Φ] [Λε] [Φ]
T , (8)

in which the diagonal matrix [Λε] is such that

[Λε]jj= λj , 1 ≤ j ≤ ν1 ; [Λε]jj= ε2 λν1 , ν1+1 ≤ j ≤ ν,
(9)

in which ε ∈ [εmin, 1[ were εmin > 0 is a hyperparameter
that controls the regularization and whose value will be of
close to 0.5. The methodology for choosing the value of ε
will be presented in Section P-10. The following properties
can then easily be deduced:

[Ĉε] ∈M+
ν , [Ĉε]

−1 = [Φ] [Λε]
−1 [Φ]T ∈M+

ν . (10)

The condition numbers of [Ĉε] and [Ĉε]
−1 are thus equal to

λ1/(ε
2λν1), and satisfy the following equation,

cond([Ĉε]) = cond([Ĉε]
−1) ≤ 2

ε2
.

For ε close to 0.5, the condition number is less that 8. We
next make four observations relevant to the proposed regu-
larization.

(i) Remark concerning the Tikhonov regularization The Tik-
honov regularization [Ĉγ ] of [CX̂] with respect to its inverse
(see for instance [22]), would be such that ŷγ = [Ĉγ ]

−1 x̂,
in which ŷγ is the unique solution in Rν of the optimization
problem,

ŷγ = min
ŷ∈Rν
{‖[CX̂] ŷ− x̂‖2 + γ2‖x̂‖2} , (11)

for any given x̂ in Rν , where γ > 0 is the regularization pa-
rameter. The unique solution is such that ([CX̂]

2+γ2 [Iν ]) ŷγ
= [CX̂] x̂, which yields [Ĉγ ]−1 = ([CX̂]

2 + γ2 [Iν ])
−1 [CX̂].

Therefore, for j = 1, . . . , ν, the eigenvalues of [Ĉγ ]−1 are
λj/(λ

2
j +γ

2) while those of [Ĉγ ] are λj +γ2/λj . This reg-
ularization shows that [Ĉγ ]−1 is not positive definite if the
rank of [CX̂] is less that ν, and that, if the rank of [CX̂] were
ν, then the condition number cond([Ĉγ ]−1) of [Ĉγ ]−1, which
is equal to {λ1/λν} × {(λν + γ2)/λ1 + γ2}, goes to infin-
ity as λν goes to zero, which is antinomic with the property
sought. Consequently, the regularization that is constructed
with Eq. (11) cannot be used.
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(ii) Interpretation of the proposed regularization model as
a Tikhonov regularization Let us assume that the eigenval-
ues λ1, . . . , λν of [CX̂] are such that, for ε ∈ [εmin, 1[ with
εmin > 0, and for ν1 defined by Eq. (7), we have ε2 λjλν1 −
λ2j ≥ 0 for all j ≥ ν1 + 1. Let γ1, . . . , γν be the real num-
bers defined by γj = 0 for j = 1, . . . , ν1 and by γj =

(ε2 λjλν1 − λ2j )
1/2 for j = ν1 + 1, . . . , ν. Let [Γ ] be the

matrix in M+0
ν defined by [Γ ] = [Φ] [γ] [Φ]T in which [γ] is

the diagonal matrix such that [γ]jk = γjδjk. It can then be
seen that the regularization [Ĉε] defined by Eq. (8) is such
that, for all x̂ in Rν , ŷε = [Ĉε] x̂ in which ŷε is given by

ŷε = min
ŷ∈Rν
{‖ [CX̂] ŷ− x̂ ‖2 + ‖ [Γ ] x̂ ‖2} .

(iii) Choice of the value of hyperparameter ε that controls
the regularization The choice of the value of hyperparame-
ter ε is presented in Section P-10.

(iv) Other remarks concerning the possible regularization
models Other types of regularization models could a priori
be used.

(1) If the rank of [CX̂] is less than ν, the generalized
inverse (or pseudo-inverse) of [CX̂] (see for instance Chap-
ter 6, pp. 163-226 in [10]) could be used. Such an approach
would lead us to introduce a new parameterization of a sub-
manifold for X̂ whose dimension would be the rank of [CX̂].
The estimation p(νar)

X̂
of pdf pX̂ could then be constructed by

using, for instance, the approach proposed in [8]. Neverthe-
less, not only the construction of the pdf p(νar)

Ŵ
of W would

require an integration on the submanifold, which would in-
duce difficulties, but above all, the ”separation” of the rep-
resentations of Q̂ and Ŵ would be lost, and such a ”separa-
tion” is necessary for our purpose. Moreover, this approach
would be equivalent to doing a PCA of random vector X
instead of two PCAs, one on Q and the other one on W, a
method that cannot be done as we have explained in Sec-
tion P-6.

(2) A more classical regularization of [CX̂] would consist
in taking [Ĉη] = [CX̂] + [Cη] with [Cη] a covariance matrix
in M+

ν . A choice could be [Cη] = η2 [Iν ]. Such a model
corresponds to the introduction of an additional Gaussian
noise represented by the random vector B̂η independent of
X̂, such that X̂η = X̂+ B̂η (taking into account the Gaussian
kernel-density estimation used for the estimate p(νar)

Ŵ
of pX̂

defined by Eq. (P-26). The numerical evaluation of such a
regularization has been used for the applications presented
in Sections 12 and P-13, and has demonstrated a lack of ro-
bustness when used with the MCMC generator of ppost

Ŵ
.

(3) A regularization of the probability measure p(νar)

X̂
(x̂)

dx̂ could also be constructed using the Rao metric between
two probability distributions [11], which involves the Fisher
information matrix. Nevertheless, the algebraic expression

of p(νar)

X̂
given by Eq. (P-26) is not easy due to the pres-

ence of the summation over the νar realizations. In a similar
framework, another way would have been to use the Rie-
mann metric related to the geodesic distance on the man-
ifold related to the positive-definite matrices [1], which is
particularly well adapted to the Gaussian case as proposed,
for instance in [21], but which induces difficulties for the
non-Gaussian probability measure p(νar)

X̂
(x̂) dx̂.

Appendix D. Proof of the range of the values of covari-
ance matrix [CX̂ ] defined by Eq. (P-24)

Since matrix [CX̂ ] is positive or positive definite, we have
<[CX̂ ] x̂, x̂>≥ 0 for all x̂ = (q̂, ŵ) in Rν = Rνq × Rνw .
Using Eq. (P-24) yields

2 <[Cqw]
T q̂ , ŵ> +‖q̂‖2 + ‖ŵ‖2 ≥ 0 . (12)

For all q̂ in Rνq , we can choose ŵ = −[Cqw]T q̂ in Eq. (12),
which yields

‖[Cqw]T q̂‖2 ≤ ‖q̂‖2 ,

which can be rewritten as

<[Cqw] [Cqw]
T q̂ , q̂> ≤ ‖q̂‖2 , ∀ q̂ ∈ Rνq . (13)

Let Λ1 ≥ . . . ≥ Λνq ≥ 0 be the eigenvalues of the positive
matrix [Cqw] [Cqw]

T . Equation (13) shows that

1 ≥ Λ1 ≥ . . . ≥ Λνq ≥ 0 . (14)

Let us consider the eigenvalue problem [CX̂] ϕ̂ = λ ϕ̂ (see
Eq. (5) in which the columns of matrix [Φ] are the eigenvec-
tors ϕ̂). Using the block decomposition defined by Eq. (P-
24) and ϕ̂ = (ϕ̂q, ϕ̂w) yield

ϕ̂q + [Cqw] ϕ̂w = λ ϕ̂q , (15)

[Cqw]
T ϕ̂q + ϕ̂w = λ ϕ̂w . (16)

Eliminating ϕ̂w between Eqs. (15) and (16) yields

[Cqw] [Cqw]
T ϕ̂q = (1− λ)2 ϕ̂q .

Consequently, (1−λ)2 appears as the eigenvalue Λ of [Cqw]
[Cqw]

T . Taking into account Eq. (14), it can be deduced that
−1 ≤ 1 − λ ≤ 1, which proves that any eigenvalue λ of
matrix [CX̂ ] is such that 0 ≤ λ ≤ 2.
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Appendix E. Proof of Eq. (P-38) for the consistency of
the estimator defined by Eq. (P-37) corresponding to the
estimation defined by Eq. (P-35)

The proof is inspired of [9], is slightly different, is adapted
to the Gaussian kernel-density, and the upper bound defined
by Eq. (P-38) is not the same. The Silverman bandwidth
sar is defined by Eq. (P-27) and x̂ is a point fixed in Rν .
Let x̂ 7→ κ(x̂) be the Gaussian pdf, centered, with invert-
ible covariance matrix [Ĉε] defined by Eq. (8), such that
[G] = [Ĉε]

−1 ∈ M+
ν , and let x̂ 7→ κνar(x̂) be the function

on Rν , such that,

κ(x̂) =
√

det[G]

(2π)ν/2
exp{−1

2
<[G] x̂ , x̂>} ,

κνar(x̂) =
1

sνar
κ(

x̂
sar

) . (17)

Using the change of variable x̂ = [Φ] η̂ with [G] = [Φ] [Λε]
−1

[Φ]T (see Eq. (10)) and since sar → 0 when νar → +∞, it
can be seen that we have the following limit in the space of
measures on Rν ,

lim
νar→+∞

κνar(x̂) dx̂ = δ0(x̂) , (18)

in which dx̂ is the Lebesgue measure on Rν and δ0(x̂) is the
Dirac measure on Rν at point x̂ = 0.

(i) Sequence of estimators of pX̂. Let X̂
1
, . . . , X̂

νar
be νar

independent copies of random variable X̂ whose pdf is pX̂.

Therefore, x̂` is a realization of X̂
`
. For x̂ fixed in Rν , the se-

quence of estimators of pX̂(x̂), whose an estimation is p(νar)

X̂
(x̂)

defined by Eq. (P-35), is the sequence {Pνar(x̂)}νar of positive-
valued random variables defined by

Pνar(x̂) =
1

νar

νar∑
`=1

κνar(X̂
`
− x̂) .

(ii) Mean value P νar(x̂) of Pνar(x̂). The mean value of ran-
dom variable Pνar(x̂) is written as E{Pνar(x̂)} = 1

νar

∑νar
`=1

E{κνar(X̂
`
− x̂)}, which yields

P νar(x̂) =
∫
Rν
κνar(x̃− x̂) pX̂(x̃) dx̃ . (19)

Assuming that pX̂ is a continuous function in x̂ ∈ Rν , using
Eq. (18) yields

lim
νar→+∞

P νar(x̂) = pX̂(x̂) . (20)

(iii) Variance of Pνar(x̂). Since the random variables X̂
1
, . . . , X̂

νar

are independent copies of X̂, and using Eq. (17), the variance
of Pνar(x̂) is such that

E{(Pνar(x̂)−P νar(x̂))
2}= 1

νar
E{(κνar(X̂−x̂))2}− 1

νar
(P νar(x̂))

2

≤ 1

νar
E{(κνar(X̂− x̂))2}

=
1

νar

∫
Rν
(κνar(x̃− x̂))2 pX̂(x̃) dx̃ .

Since ∀ x̂, supx̃ κνar(x̃−x̂) = 1
sνar

√
det[G]

(2π)ν/2
and using Eqs. (17)

and (19), we have

E{(Pνar(x̂)− P νar(x̂))
2} ≤ 1

νarsνar

√
det[G]

(2π)ν/2
P νar(x̂) . (21)

Substituting sar given by Eq. (P-27) into the right-hand side
of Eq. (21) yields

E{(Pνar(x̂)− P νar(x̂))
2}

≤
{

1

νar

}4/(ν+4){
ν+2

4

}ν/(ν+4)√
det[G]

(2π)ν/2
P νar(x̂) . (22)

(iv) Properties of the sequence of estimators. It can be seen
that

E{(Pνar(x̂)− pX̂(x̂))
2}

= E{(Pνar(x̂)− P νar(x̂))
2}+ (P νar(x̂)− pX̂(x̂))

2 . (23)

Using Eqs. (20), (22), and (23) for νar → +∞, it can be seen
that the estimator Pνar(x̂) is asymptotically unbiased and is
consistent because

lim
νar→+∞

E{(Pνar(x̂)− pX̂(x̂))
2} = 0 . (24)

The mean-square convergence corresponding to Eq. (24) im-
plies the convergence in probability.

Appendix F. Expression of the mapping [L] defined by
Eq. (P-53) adapted to computation

An explicit algebraic expression is constructed for the map-
ping [u] 7→ [L([u])] defined by Eq. (P-53), using Eqs. (P-50)
for p, Eqs. (P-41) and (P-42) for pQ̂,Ŵ, and Eqs. (P-44) and
(P-45) for pŴ. These equations show the presence of a sum-
mation of exponential terms (summation over the number
νar of realizations q̂` and ŵ` of Q̂ and Ŵ). Consequently, an
adapted algebraic representation must be developed in or-
der to minimize the numerical cost for each evaluation of
[L([u])] and to avoid numerical noise, overflow, and under-
flow during the computation. Several expressions have been
developed and evaluated. We present the most efficient one
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with respect to the above criteria. For k = 1, . . . , νw, for
j = 1, . . . , Ns, and for [u] = [u1, . . . ,uNs ] in Mνw,Ns ,

[L([u])]kj =
1

s2ar
{−[G0w]uj − bexp

+ (1− nr) a0(uj) +
nr∑
r=1

ar1(u
j)}k , (25)

where a0(uj) = (a0,1(uj), . . . , a0,νw(uj)) and ar1(uj) =

(ar1,1(uj), . . . , ar1,νw(u
j)) are vectors in Rνw such that

a0(uj) = (

νar∑
`=1

w̃`0 ζ
`
0(u

j)) /

νar∑
`=1

ζ`0(u
j) , (26)

and for r ∈ {1, . . . , nr},

ar1(u
j) = (

νar∑
`=1

w̃`1 ζ
r`
1 (uj)) /

νar∑
`=1

ζr`1 (uj) . (27)

In Eq. (25), the symmetric (νw × νw) real matrix [G0w] is
given by

[G0w] = (1− nr) [G0] + nr [Gw] . (28)

From Eqs. (P-46) and (P-51), it can be deduced that [G0w] ∈
M+
νw for nr ≥ 2. The vector bexp ∈ Rνw is given by

bexp = [Gqw]
T

nr∑
r=1

q̂exp,r
.

In Eq. (26), for all ` ∈ {1, . . . , νar}, we have

w̃`0 = [G0] ŵ` ∈ Rνw ,

ζ`0(u
j) = exp{− 1

2s2ar
‖ [L0] (uj − ŵ`)‖2} ∈ R+ , (29)

in which the upper triangular (νw × νw) real matrix [L0]

follows from the Cholesky factorization, [G0] = [L0]
T [L0].

In Eq. (27), for all ` ∈ {1, . . . , νar}, we have

w̃`1 = [Gw] ŵ` + [Gqw]
T q̂` ∈ Rnw ,

and for r ∈ {1, . . . , nr},

ζr`1 (uj) = exp{− 1

2s2ar
(pr`0 + pr`1 (uj))} ∈ R+ , (30)

in which the positive real number pr`0 is expressed as

pr`0 = ‖ [Lq] (q̂exp,r − q̂`)‖2 ,

with [Lq] the real upper triangular (νq×νq) Cholesky factor,
[Gq] = [Lq]T [Lq], and where

pr`1 (uj) = ‖ [Lw] (uj − ŵ`)‖2

+ 2 < [Gqw]
T (q̂exp,r − q̂`} ,uj − ŵ`> ,

where the upper triangular (νw×νw) real matrix [Lw] is ob-
tained from the Cholesky factorization, [Gw] = [Lw]T [Lw].
The numerical experiments that have been carried out have
shown that, for computation of ζr`1 (uj) defined by Eq. (30),
the term in the exponential must be computed before expo-
nentiation in order to avoid underflow and numerical noise.

Appendix G. Verifying that the linearized ISDE is well
adapted for stochastic process {([S(t)], [R(t)]), t ∈ R+}

Using Eqs. (P-58) and (P-59), the linearization [s] 7→ [L̃lin([s])]

of function [s] 7→ [L̃([s])] defined by Eq. (P-68) is such that
[L̃lin([s])] = −[s]. From Eqs. (P-64) and (P-65), it can be
deduced that the linearized ISDE is written as

d[Slin(t)] = [Rlin(t)] dt ,

d[Rlin(t)] = −[Slin(t)])] dt− 1

2
f post
0 [Rlin(t)] dt

+

√
f post
0 d[Wwien(t)] .

Let us write [Slin(t)] = [Slin,1(t) . . . Slin,Ns(t)] whose columns
are statistically dependent for t > 0 due to the coupling
by the initial conditions defined by Eqs. (P-66) and (P-67).
Nevertheless, for the asymptotic solution (t → +∞), de-
noted as {([Slin(tst)], [Rlin(tst)]), tst ∈ R+}, these are sta-
tistically independent and it is known (see for instance Page
241 of [12]) that each column {Slin,j(tst), tst ∈ R+} of {[Slin

(tst)], tst ∈ R+} is a Gaussian, stationary, centered stochas-
tic process whose covariance matrix [C lin] = E{Slin,j(tst)

Slin,j(tst)
T } is independent of j and such that [C lin] = [Iνw ].

This result shows that the nonlinear ISDE defined by Eqs. (P-
64) to (P-68) is well adapted to the covariance matrix of the
asymptotic stochastic process {[S(tst)], tst ∈ R+} and there-
fore, to the covariance of [Wpost] via the transformation de-
fined by Eqs. (P-60) and (P-61).

Appendix H. Construction of the diffusion-maps basis
for the posterior model

The construction, based on [2], is the one presented in [16]
and is summarized in Appendix A.2, using the Ns indepen-
dent realizations {sj , j = 1, . . . , Ns} defined by Eq. (P-72).
Let [Ps] = [bs]−1 [Ks] be the matrix in MNs such that, for
all i, j and j′ in {1, . . . , Ns}, [Ks]jj′ = exp(− 1

4 εpost
diff
‖sj −

sj
′‖2) and [bs]ij = δij

∑Ns
j′=1[Ks]jj′ depending on a posi-

tive parameter εpost
diff whose value depends on dataset {sj , j =

1, . . . , Ns}. Therefore, [Ps] is a transition matrix of a Markov
chain. For 1 < mpost ≤ Ns, let g1s, . . . , g

mpost
s be the right

eigenvectors in RNs , of the eigenvalue problem [Ps] gαs =

Λs,α gαs with the normalization condition [gs]
T [bs] [gs] =

[Impost ] and where the associated mpost ≤ Ns positive eigen-
values are such that 1 = Λs,1 > Λs,2 > . . . > Λs,mpost .
The diffusion-maps basis is represented by the matrix [gs] =

[g1s . . . g
mpost
s ] ∈ MNs,mpost . The eigenvector g1s associated

with the largest eigenvalue Λs,1 = 1 is a constant vector
that has to be kept because stochastic process [S] is not cen-
tered (it is [Slin] that is a centered stochastic process). For
mpost = Ns, the diffusion-maps basis is an algebraic ba-
sis of RNs . The right-eigenvalue problem of the nonsym-
metric matrix [Ps] can be performed solving the eigenvalue
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problem [bs]−1/2 [Ks] [bs]−1/2 Φαs = Λs,α Φ
α
s related to a

positive-definite symmetric real matrix with the normaliza-
tion ‖Φαs ‖ = 1. Therefore, gαs can be deduced from Φαs by
gαs = [bs]−1/2 Φαs . The construction introduces two hyper-
parameters: the dimension mpost ≤ Ns and the smoothing
parameter εpost

diff > 0. The algorithm for estimating the opti-
mal values of εpost

diff and mpost is detailed in [17]. Most of the
time, these optimal values can be calculated using Eqs. (1)
and (2) in which εdiff has to be replaced by εpost

diff .

Appendix I. Störmer-Verlet scheme for solving the reduced-
order ISDE

Let npost
MC and M post

0 be the given integers defined in Sec-
tion P-9.5. The reduced-order ISDE defined by Eqs. (P-74)
to (P-76) is solved for t ∈ [0, tmax] with tmax = (`0 +

npost
MC M

post
0 )∆t in which ∆t is the sampling step and where

`0 is chosen in order that the solution of Eqs. (P-74) to (P-76)
has reached the stationary regime. For ` = 0, 1, . . . , npost

MC ×
M post

0 , we consider the sampling points t` = `∆t and the
following notations: [Z`] = [Z(t`)], [Y`] = [Y(t`)], and
[Wwien

` ] = [Wwien(t`)]. The Störmer-Verlet scheme is used
for solving the reduced-order ISDE, which is written, for
` = 0, 1, . . . , npost

MC M
post
0 , as

[Z`+ 1
2
] = [Z`] +

∆t

2
[Y`] ,

[Y`+1] =
1− β
1 + β

[Y`]+
∆t

1 + β
[L̃`+ 1

2
]+

√
f post
0

1 + β
[∆Wwien

`+1] ,

[Z`+1] = [Z`+ 1
2
] +

∆t

2
[Y`+1] ,

with the initial condition defined by Eq. (P-76), where β =

f post
0 ∆t /4, and where [L̃`+ 1

2
] is the Mνw,mpost -valued ran-

dom variable such that

[L̃`+ 1
2
] = [L̃([Z`+ 1

2
])] = [L̃([Z`+ 1

2
] [gs]

T )] [as] .

In the above equation, [∆Wwien
`+1] = [∆Wwien

`+1] [as] is a ran-
dom variable with values in Mνw,mpost , in which the incre-
ment [∆Wwien

`+1] = [Wwien
`+1]−[Wwien

` ]. The increments are sta-
tistically independent. For all k = 1, . . . , νw and for all j =
1, . . . , Ns, the real-valued random variables {[∆Wwien

`+1]kj}kj
are independent, Gaussian, second-order, and centered ran-
dom variables such that

E{[∆Wwien
`+1]kj [∆Wwien

`+1]k′j′} = ∆t δkk′ δjj′ .
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