N
N

N

HAL

open science

An end user development approach for mobile web
augmentation

Gabriela Bosetti, Sergio Firmenich, Silvia Gordillo, Gustavo Rossi, Marco
Winckler

» To cite this version:

Gabriela Bosetti, Sergio Firmenich, Silvia Gordillo, Gustavo Rossi, Marco Winckler. An end user de-
velopment approach for mobile web augmentation. Mobile Information Systems, 2017, 2017 (2525367),

pp.1-28. 10.1155/2017/2525367 . hal-02640406

HAL Id: hal-02640406
https://hal.science/hal-02640406
Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02640406
https://hal.archives-ouvertes.fr

OATAO

Open Archive Toukouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freelv available over the web where possible

This is a publisher’s version published in: http://oatao.univ-toulouse.fr/22212

Official URL:
https://doi.org/10.1155/2017/2525367

To cite this version:

Bosetti, Gabriela and Firmenich, Sergio and Gordillo, Silvia and Rossi, Gustavo
and Alba Winckler, Marco Antonio*= An end user development approach for
mobile web augmentation. (2017) Mobile Information Systems, 2017 (2525367). 1-
28.1SSN 1574-017X.

Any correspondence concerning this service should be sent
to the repositorv administrator: tech-oatao@listes-diff.ino-toulouse.fr

Hindawi

Mobile Information Systems

Volume 2017, Article ID 2525367, 28 pages
https://doi.org/10.1155/2017/2525367

Research Article

Hindawi

An End User Development Approach for

Mobile Web Augmentation

Gabriela Bosetti,' Sergio Firmenich,"” Silvia E. Gordillo,"”

Gustavo Rossi,”> and Marco Winckler*

'LIFIA, Facultad de Informatica, UNLPB, La Plata, Argentina

2Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
3Comisién de Investigaciones Cientificas, Buenos Aires, Argentina

[CS-IRIT, University of Toulouse 3, Toulouse, France

Correspondence should be addressed to Gabriela Bosetti; gabriela.bosetti@lifia.info.unlp.edu.ar

Received 12 October 2016; Revised 5 December 2016; Accepted 26 December 2016; Published 20 February 2017

Academic Editor: Jose M. Barcelo-Ordinas

Copyright © 2017 Gabriela Bosetti et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The trend towards mobile devices usage has made it possible for the Web to be conceived not only as an information space but also
as a ubiquitous platform where users perform all kinds of tasks. In some cases, users access the Web with native mobile applications
developed for well-known sites, such as, LinkedIn, Facebook, and Twitter. These native applications might offer further (e.g.,
location-based) functionalities to their users in comparison with their corresponding Web sites because they were developed with
mobile features in mind. However, many Web applications have no native counterpart and users access them using a mobile Web
browser. Although the access to context information is not a complex issue nowadays, not all Web applications adapt themselves
according to it or diversely improve the user experience by listening to a wide range of sensors. At some point, users might want
to add mobile features to these Web sites, even if those features were not originally supported. In this paper, we present a novel
approach to allow end users to augment their preferred Web sites with mobile features. We support our claims by presenting a

framework for mobile Web augmentation, an authoring tool, and an evaluation with 21 end users.

1. Introduction

The increasing growth of both the Web and mobile technol-
ogy has raised new forms of participation of end users. Mobile
devices started to be used as personal computers, competing
and even replacing desktop computers for daily life tasks and,
while the resources of these devices increased, so did, and
still does, the number of innovative functionalities they can
benefit from. Today, it is usual that end users interact with
the same Web applications from both, desktop computers and
mobile devices.

Some of the most popular Web applications (like Face-
book, Twitter, YouTube, and others) provide native mobile
applications, and some of them (like Booking) also provide
nice location-based features to profit from the mobile nature
of user devices. However, many Web sites are still accessed
from Web browsers in the device, and they do not provide
any mobile features. For instance, you can observe that there

are search engines of popular Web sites (we choose them from
http://www.alexa.com/topsites) like IMDB, Amazon, Google,
or Reddit that do not offer different results while the user is
performing the search in noisy or silent environments. A pos-
sible benefit from this feature is giving priority to audio-visual
content when the user is in a quiet places and textual content
when he is in noisy environments. Providing users with access
and desktop versions of Web sites is not enough; they might
need to be designed to meet the particular requirements of
their context of use, as explained in [1]. This phenomenon
might be caused either by economic reasons (to build the
native application), by the difficulties to modify the Web
application to support the mobile features, or just for lack of
interest. In any case, end users lack the possibility of better
access the information and services provided by these appli-
cations.

This situation is worse for Web applications providing
information that is naturally location-based, such as the one

http://www.alexa.com/topsites
https://doi.org/10.1155/2017/2525367

Mobile Information Systems

TaBLE 1: Total scripts and installations by three popular userscripts communities.

Userscripts-mirror

Greasyfork (https://greasyfork.org/fr/scripts)

Openuserjs (https://openuserjs.org/?p=1)

Total scripts 130956 13603 3919

Installations 1203605530 1259866 13305857

presented by museums, city halls, or tourist applications. In 30000 035730
these cases, accessing parts of such information in-situ (e.g., 25000

visiting the museum with a smart-phone) could certainly

enrich the visit, providing the end user with locative media 20000 Zh0s 2.
experiences, as it has been shown in dozens of cases [2, 3]. 15000 g . ¥16460

Some of these institutions provide a location-based feature by 1413 19696

adding QR codes to some of the points of interest (artworks, 10000 R S
monuments) so users can explore some information with 5000 O S -
their devices, for example, by using QRpedia (http://qrpedia e =3 ‘ ‘ /zﬂ'mi. 2030
.org/). More complex scenarios, like itinerant or temporary 1232 o

exhibitions, might complicate things further. In this paper
we present an approach which aims to empower end users
to implement mobile Web applications by profiting from
information (and services) already existing in the original
Web sites, but enriching them with different kinds of mobile
functionality. The underlying philosophy of our approach is
the one provided by the concept of Web augmentation.

During the last years, end users started to, unofficially,
add new functionalities to Web applications when some of
their requirements were not contemplated originally [4]. Big
communities of userscripts and browser extensions (as the
ones at https://addons.mozilla.org/ or https://chrome.google
.com/webstore/category/extensions) support this claim. For
instance, userscripts used to be a repository that recorded a
large number of scripts per year. The site shut down in 2014
but a mirror (http://userscripts-mirror.org/) is still accessible,
and it registers a total of 130956 scripts and 1203605530
installs (accumulated among all scripts) (we obtained the
numbers on December 18, by running a script on Grease-
monkey for traversing all the site’s pages and obtaining such
numbers by analysing their DOM. In the same way, we got the
values presented in Table 1). In Table 1, we present these quan-
tities also for other two similar repositories that remained
active since 2014.

The existence of these sites shows that the consumption of
scripts to adapt the Web is a trend and grows quickly. From
the Greasyfork site, we could also know that 4224 scripts were
created in 2014, 4276 in 2015, and 5103 in 2016. This means
that the quantity of scripts in that site grew more than three
times since 2014 to date. In addition, we also got the number
of latest updates per year of such scripts (see Figure 1), which
demonstrates that most scripts tend to be updated by the
community over time.

In this way, users not only began to participate under the
role of consumers of Web applications, but also learned how
to become producers of their own solutions. Being a producer
is not necessarily synonymous with having, or not, technical
knowledge or expertise. Within this category of end users,
you can find people with skills for textual or visual program-
ming, as well as those who do not have much technical knowl-
edge but can also build their applications by using simple

0
2004 2006 2008 2010 2012 2014 2016

—&— Userscripts-mirror
—o— Greasyfork
Openuserjs

FIGURE 1: Number of «last updates>> by scripts.

or assisted tools, as form-based wizards or tools supporting
Programming By Example [5].

A very popular practice for adapting existing third-party
Web applications is Web augmentation (WA) [6, 7], and there
are different strategies for achieving it; one of them is client-
side scripting, which consists in manipulating the applica-
tions” user interface (UI) when a particular site is already
loaded on the browser. WA makes it possible to change the
content, style, structure, and functionality of a Web page
without the need for changing the source code at server-side.
The scripts that perform a specific adaptation are called aug-
menters [7], and it is usual that their creators have some level
of expertise in JavaScript. The amount of features that can be
opportunistically added to an existing application are count-
less, moreover, taking into account the possibility of consum-
ing information from a wide range of sources. For instance,
EBay products can be augmented with more information for
the user to decide whether to purchase it or not by summa-
rizing opinions on the sellers or checking the price of the
product in other sites. In the same way, books in Goodreads
can be augmented with more options for buying a copy,
promoting local online stores, and actors in IMDB may also
include pictures from Google Images in the case there are no,
or few, images in their profiles.

In this paper, we focus on mobile Web augmentation,
adding different kinds of mobile-based features to existing
Web applications. Applying Web augmentation on mobile
devices implies that, besides the common aspects that may be
adapted typically (e.g., look and feel, personalization, recom-
mendations), mobile and context-aware features can be con-
templated as well. For instance, we could take into account
the user’s position for augmenting a news portal with geo-
positioned and content-related videos and tweets. By taking

https://greasyfork.org/fr/scripts
https://openuserjs.org/?p=1
http://qrpedia.org/
http://qrpedia.org/
https://addons.mozilla.org/
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
http://userscripts-mirror.org/

Mobile Information Systems

the current user’s position through the Geoposition Web API
(https://developer.mozilla.org/en-US/docs/Web/API/Geolo-
cation), it is possible to use it for building geolocated que-
ries through the Data API of YouTube (https://developers.
google.com/youtube/v3/docs/search/list) and the REST
API of Twitter (https://dev.twitter.com/rest/reference/get/
geo/search). Then, the retrieved content could be injected
into a news portals Web page by using the Addon-SDK
(https://developer.mozilla.org/en-US/Add-ons/Firefox_for
_Android) of Firefox. We can listen for device’s orientation
changes (DeviceOrientationEvent (https://developer.mozilla
.org/en-US/docs/Web/API/DeviceOrientationEvent)) and
augment Google Maps® Web page with a real world view
(camera capture) and an arrow pointing to the target location
when the user tilts the device vertically. We can calculate the
perceived sound level by using the WebRTC API (https://
webrtc.github.io/samples/src/content/getusermedia/volume/)
for automatically adapting the volume of YouTube videos at
middle levels or stopping/resuming the reproduction at the
high ones.

Although there are already some approaches for aug-
menting Web applications from mobile Web browsers, such
as [8-10], they are aimed and limited to producers with
programming skills (from now on, developers). In a previ-
ous work, we have presented a mobile Web augmentation
(MoWA) approach [11, 12], which comprises a software
framework and a set of tools for developers. Basically, MoWA
provided developers with a framework for creating mobile
Web applications based on client-side adaptation, including
the addition of new (e.g., location-based) contents and func-
tionality (such as context-awareness) directly on the front-
end, that is, the Web browser. In this paper, by incorporating
EUD principles, we change our target audience from devel-
opers to broader ones: producers with no programming skills
(from now on just producers).

Providing producers with the tools for specifying how
their preferred applications should be augmented is a good
solution to help them to augment the Web from mobile
devices, thus, to create better mobile Web experiences. This
strategy is reasonable since many recent studies have demon-
strated that there is a global tendency of end users meeting the
concrete needs of domain-specific scenarios by creating their
own applications by using end user development (EUD) tools
13, 14].

In this work, we extended the MoWA approach with the
aim of creating a general purpose authoring tool, in such a
way that end users can develop their own applications with-
out the need for having programming skills or even having to
write a single line of code. As the main contributions of this
paper, we aim to

(i) analyse how to overcome the challenge of developing
mobile Web applications by using an EUD approach
based on augmentation;

(ii) outline an approach in which developers create
domain-specific components called builders, which
are composable constructs available through an
authoring tool, with the aim of empowering end users

(producers) with the capability of creating domain-
specific applications.

The remainder of this paper is structured as follows.
Section 2 presents some background in regard of the main
topics faced in this approach: End User Development, mobile
applications, Web augmentation, and our previous approach,
called MoWA [11, 12]. In Section 3, we present our contri-
bution: an end user development approach for mobile WA
applications. Section 4 presents our supporting tool and a
case study. Evaluation procedures and results are presented in
Section 5, involving participants with diverse characteristics:
education levels, fields of study, ages, genders, used to dif-
ferent mobile platforms, using mobile devices with different
frequencies, and having diverse levels of expertise in the use
of such technologies. Section 6 outlines the existing work
in EUD concerning Web applications, mobile applications
development, from both, desktop and mobile platforms, and
mobile Web applications development. Finally, Section 7
draws the conclusions of this work.

2. Background

2.1. End User Development. Some studies [13, 14] indicate that
there is a strong tendency demonstrating that the end user
is starting to create, modify, or extend their own software
artefacts by using programming environments that abstract,
somehow, the complexity of the development. This tendency
gave rise to what we actually call end user development
(EUD) [5, 15] and was motivated by the need of users to
quickly build their own solutions for the needs they have in
their daily lives or circumstantially. Different to «traditional»
software engineering approaches, in EUD, the same person
plays the role of developer and end user; he is the one who
knows his context and his needs better than anybody, and
who does not necessarily have formal education in develop-
ment processes. EUD comprises a set of methods, techniques,
and tools that empower the user with the capability of
creating, modifying, or extending software artefacts.

For achieving the aforementioned, EUD relies on some
well-known programming techniques, like Programming By
Example (a.k.a. by Demonstration) [16], Extended Annota-
tion (a.k.a. extended parametrization) [5], Visual Program-
ming [17], and Scripting Languages [5]. The first technique
consists in recording the sequence of actions of an end user in
a system, so the application is built on the specification of the
user’s demonstration, and it does not require the user to code.
The generated application should reproduce the commands
he executed and also allow him to parameterize some data
objects used in the demonstration. The main benefit is that
the user is writing programs through the user interface he is
already familiar with, but it limits the end user to use already
existing functionality in the base system or to add control
structures to the recorded program. The second one is about
associating a new functionality with the annotations the user
makes, for example, allowing the user to annotate the DOM
elements of a Web page and associating a specialized behav-
iour to the element, as in [18]. Visual Programming is another
set of techniques, all of them intended to build a program by

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/v3/docs/search/list
https://dev.twitter.com/rest/reference/get/geo/search
https://dev.twitter.com/rest/reference/get/geo/search
https://developer.mozilla.org/en-US/Add-ons/Firefox_for_Android
https://developer.mozilla.org/en-US/Add-ons/Firefox_for_Android
https://developer.mozilla.org/en-US/docs/Web/API/DeviceOrientationEvent
https://developer.mozilla.org/en-US/docs/Web/API/DeviceOrientationEvent
https://webrtc.github.io/samples/src/content/getusermedia/volume/
https://webrtc.github.io/samples/src/content/getusermedia/volume/

letting the user combine visual constructs. Languages here
have a visual counterpart, a representation of the available
conceptual entities and operations (the programming con-
structs). In contraposition, text-based languages cover just
one dimension and require the user to learn the construct
names and a syntax. Although this last technique can be a bit
confusing, because it is hard to imagine an end user writing
code, there are already widely used tools that implement
this technique and which are considered traditional examples
of EUD, such as applications created using formulas in
spreadsheets [13, 15].

EUD applications started spreading in the Web, where
large number of users joined different online communities
to create and share their applications through public repo-
sitories. For instance, the aforementioned Userscripts or
GreaseFork allow users to share Greasemonkey (http://www
.greasespot.net/) scripts that adapt and augment the Web.
Even traditional applications, such as desktop spreadsheets,
began to be conceived as part of the global Web scenario with
the use of online, shareable, and multiple access applications,
like Google Sheets (https://docs.google.com/spreadsheets/).
This application is a target not only for being considered an
EUD environment, but also because it can be augmented
through the mentioned techniques. EUD expanded its scope
to the mobile applications field and it represented new
challenges of integration with the possibility of providing
both, the development process and the resultant application,
with features based in diverse context types, like positioning,
orientation, or noise perception level. Studies like [19] have
been performed and it demonstrated, despite specific issues
concerning their respective work, the steady growth of this
new tendency.

2.2. Mobile Web Applications. One of the main benefits
brought by the development of mobile applications [20] was
the possibility of providing applications with mobile features
(e.g., location-based) to offer the users customized services
according to their environment. For instance, context-aware
applications [21] constantly monitor the users’ environment
and adapt the behaviour of the application accordingly.
mobile hypermedia applications [22] make use of the position
of the users and the points of interest (Pol) for assisting them
in their navigation through the real world. There are also
mobile augmented reality applications [23] that consider the
user’s position for computing the position of digital objects in
the real environment and draw them into a virtual layer.
During a long time, this kind of applications were devel-
oped with native code or specialized intermediate frame-
works, which allowed developers to create native or hybrid
applications [24]. The latter ones are Web-based but not pure
mobile Web applications, because they depend on native
components for providing the end user with Web content.
At that time, mobile Web applications had little significance
because there were not mechanisms for direct access to
the device’s internal services. Then, some works started to
develop strategies for allowing mobile Web applications to
access the context information. For example, in [25] the
authors presented a custom browser that interprets applica-
tions that are enhanced with specific XML tags. Such tags

Mobile Information Systems

’
| Web | Mobile Web app +
Mobile Web app == augmentation ==
technique Extra features

Lo quinua, un sustento de la agricultur
tamilier que busca posicianaria e la olerla

1} fher qu ——
mi Chenopodium
- quinoa

g g

FIGURE 2: Web augmentation technique exemplification on mobile.

requested specific context information, and the information
communication is achieved through the implementation of
RESTful web services or POST requests. In [9] the authors
adapt existing Web applications according to the context of
use, for example, sensing light and noise levels, hearth rate,
and user movements, but consuming the contextual infor-
mation through native applications, not the Web application
itself, called «context delegates» that notify the server-side
components for resolving the adaptation, which will be finally
delivered to the client Web browser.

Nevertheless, due to recent advances in mobile Web
browsers, Web applications can use the devices sensors values
for adapting their behaviour, and new and interesting func-
tionalities can be created. For instance, two of the most popu-
lar Web browsers provide each a Web API (Firefox Web
APL: https://developer.mozilla.org/en/docs/WebAPI, Google
Chrome’s Web API: https://developer.chrome.com/extensi-
ons/api-other) that allow regular Web applications to access
some contextual information (e.g. geolocation, proximity
status, battery status, audio, video, etc.). Moreover, the W3Cis
working on the standards of such APIs, for example, the ones
regarding the battery (https://w3c.github.io/battery/) and the
proximity (https://w3c.github.io/proximity/) sensor are cur-
rently an editor’s draft, and the geolocation API (https://www
.w3.org/TR/geolocation-API/) is already a Web standard.

2.3. Web Augmentation. Web augmentation (WA) [6, 7] is
a set of techniques for manipulating and enhancing existing
Web pages with new features. This makes it possible to meet
needs that were not contemplated when a Web application
was implemented, either because (a) there was no such need
at that time and could not be anticipated, (b) it was not
detected at the requirements elicitation stage, or (c) simply
because it was intentionally ignored. Augmentation is suit-
able for third-party stakeholders with very particular interests
that have not been implemented; augmentations might also
convey useful information for the owners of Web applica-
tions, because it can be used to identify uncovered needs of
customers. For example, in Figure 2 we can appreciate how
Télam, a news’ portal, can be augmented with the capability of
looking definitions in an online encyclopedia, when the user
holds a word on the screen of his mobile.

http://www.greasespot.net/
http://www.greasespot.net/
https://docs.google.com/spreadsheets/
https://developer.mozilla.org/en/docs/WebAPI
https://developer.chrome.com/extensions/api_other
https://developer.chrome.com/extensions/api_other
https://w3c.github.io/battery/
https://w3c.github.io/proximity/
https://www.w3.org/TR/geolocation-API/
https://www.w3.org/TR/geolocation-API/

Mobile Information Systems

e MoWA
@ weaver

End user
Uses
MoWA
application

Creates
P RE) MoWA
@ framework

Developer

Existing
Web pages

Augmentation
o Y layer

[
L) L
- o.
oo
Lux sensor

New experience

e.g., context
aware
experience

FIGURE 3: The MoWA approach.

There are several ways for implementing WA, but in
general terms, we can classify them according to where the
process takes place: at client-side or remotely (usually proxy
servers). In all cases, augmentations are usually materialized
through the manipulation of Web Sites DOM, which is
basically the UT that users perceive on client-side.

Web augmentation on client-side is appealing since differ-
ent users can share or eventually improve the same augmenter
on their own devices, without depending on third-party
proxy servers such as transcoding [7, 26]. On client-side,
there are several ways to address the deployment of such aug-
menters, but usually it implies installing some Web browser
extension. These extensions may be found in the correspond-
ing browsers markets (e.g. Firefox, Chrome, etc), and they are
usually designed for augmenting a specific Web application
(for instance, Amazon, YouTube, etc.). There are other kind
of extensions which act as weaving engines enabling the
execution of augmenters written in a Web browser agnostic
way. Such augmenters are usually referred as userscripts.
Most of these engines are available for all well-known Web
browsers; they allow the reuse of the augmenters, something
that is not possible with specific Web browser extensions.

Without taking into account the deployment strategy,
as we already mentioned in Section 1, we can find several
hundred thousand augmenters. The most used, such as magic
actions for YouTube (https://chrome.google.com/webstore/
detail/magic-actions-for-youtube/abjcfabbhatbcdfjoecdgepl-
Impfceif), have been downloaded more than two and a half
million times by users, others such as Flatbook (https://chr-
ome.google.com/webstore/detail/flatbook/kadbillinepbjlgen-
aliokdhejdmmlgp) (an extension for augmenting Facebook)
near to one million, and others less known around one hun-
dred thousand, such as Plus for Trello (https://chrome.google
.com/webstore/detail/plus-for-trello-time-trac/gjjpophepkb-
hejnglemkdnnecmaanojkf) or Koc Power Bot (https://greasy-
fork.org/es/scripts/892-koc-power-bot). There are even «offi-
cial» extensions that provide better experience to customers,

such as Amazon Assistant (https://chrome.google.com/web-
store/detail/amazon-assistant-for-chro/pbjikboenpthbbejgk-
oklgkhjpfogcam), with more than three million users. Besides
that, all these repositories allow users to contribute and send
feedback about the augmenters. The reader may see that for
the most used ones; there are hundreds of comments sug-
gesting changes or improvements. A deeper survey about
exiting artefacts for the augmented Web can be found in [7].

2.4. MoWA Framework for Developers. In a previous work
[11] we have presented an approach for augmenting existing
Web applications that originally do not contemplate mobile
features. The approach, called mobile Web augmentation
(MoWA), comprises an augmentation framework and a
weaver for running client-side scripts (MoWA applications)
on top of existing Web pages, after a Web page was parsed and
loaded into the browser. Developers instantiate the frame-
work classes and extend them with a new kind of MoWA
application, which can be finally instantiated. As shown in
Figure 3, applications are installed into the MoWA weaver,
a mobile browser extension, and their underlying augmenta-
tions are triggered either because the end user manually nav-
igated to a target page, or because it was loaded in response
to a change in the context (e.g., the user position). In both
cases, the weaver runs the corresponding MoWA applica-
tions, which, in general terms, modify the UI by adding extra
components. Such components reside in an augmentation
layer and they are adaptive to the user’s context; this means
that style, content, or behaviour may be adapted when some
context value changes.

MoWA relies on the definition of sensors as observers [27]
of context types [28] (e.g., location, time, and orientation).
At the same time, such sensors play the role of subject for
those MoWA applications that are subscribed to them; the
goal is to adapt the Web when a proper change in the observed
context happens. Such changes are performed by augmen-
tation components, introduced by MoWA applications over

https://chrome.google.com/webstore/detail/magic-actions-for-youtube/abjcfabbhafbcdfjoecdgepllmpfceif
https://chrome.google.com/webstore/detail/magic-actions-for-youtube/abjcfabbhafbcdfjoecdgepllmpfceif
https://chrome.google.com/webstore/detail/magic-actions-for-youtube/abjcfabbhafbcdfjoecdgepllmpfceif
https://chrome.google.com/webstore/detail/flatbook/kadbillinepbjlgenaliokdhejdmmlgp
https://chrome.google.com/webstore/detail/flatbook/kadbillinepbjlgenaliokdhejdmmlgp
https://chrome.google.com/webstore/detail/flatbook/kadbillinepbjlgenaliokdhejdmmlgp
https://chrome.google.com/webstore/detail/plus-for-trello-time-trac/gjjpophepkbhejnglcmkdnncmaanojkf
https://chrome.google.com/webstore/detail/plus-for-trello-time-trac/gjjpophepkbhejnglcmkdnncmaanojkf
https://chrome.google.com/webstore/detail/plus-for-trello-time-trac/gjjpophepkbhejnglcmkdnncmaanojkf
https://greasyfork.org/es/scripts/892-koc-power-bot
https://greasyfork.org/es/scripts/892-koc-power-bot
https://chrome.google.com/webstore/detail/amazon-assistant-for-chro/pbjikboenpfhbbejgkoklgkhjpfogcam
https://chrome.google.com/webstore/detail/amazon-assistant-for-chro/pbjikboenpfhbbejgkoklgkhjpfogcam
https://chrome.google.com/webstore/detail/amazon-assistant-for-chro/pbjikboenpfhbbejgkoklgkhjpfogcam

the content of a target Web page. To this end, the application
knows one or many URLs of the target Web pages to augment.
For instance, consider a MoWA application that augments
YouTube by adapting the application to changes in the noise
level perceived by the phone; the volume of a video could be
increased when it is being played in noisy environments and
decreased in the silent ones. Reusing content (from the target
Web page to augment and from some external ones) and
accessing the mobile sensors are possible because the frame-
work runs under the context of a mobile browser extension,
which has access to the proper low level APIs.

MoWA requires some basic knowledge of JavaScript to
instantiate and combine the framework features, and it offers
several hot spots [29] that are easy to extend. Some of them
address specific behaviour related to the supported context
types. For instance, supporting orientation requires imple-
menting a sensor but also a proper context type, in order to
define some concrete context values of interest for the appli-
cation. In this case, the context type is the PointInSpace class,
which has one attribute for each axis in the tridimensional
space, but other possible ContextTypes are lux, Decibel,
GeoLocation, QrBasedLocation, BatteryCharge, TelephonySta-
tus, UserProfile, and so on. Other hot spots deal with the aug-
mentation aspects, enabling the incorporation of new aug-
menters, interpreting new kinds of context values, or sup-
porting new context types representation systems (e.g., an
outdoors map, a 2D floor plan, a decibel scale, and a bright-
ness scale), domain functionalities, and so on.

As already mentioned, a MoWA application knows which
Web pages to augment and, for each of them, there are a set
of associated augmenters that developers can extend. What
an augmenter can do depends on what a developer wants
and can do; it could be as simple and generic as displaying a
new sentence (e.g., supporting a sticky note) or as complex
and specific as supporting a whole tour guide through a
city (whose points of interest have a digital counterpart). In
both cases, we are referring to augmentations related to the
addition of new content; in the latter, we are also attaching
new behaviour to the Web page. Nevertheless, other aug-
mentations are also possible in relation to the manipulation
of style and structure of the underlying Web documents.
For instance, consider visualizing an extra control on the
top of any Web page for increasing and decreasing the font
sizes, or for applying a new layout based on the selection of
some elements listed on the page. Moreover, each augmenter,
despite which context type it observes, can also have defined
a reference for external content. Therefore, it is possible to
conceive the same augmenter checking the current time and
ordering elements (which have an associated time) to be
reused in diverse contexts, as movies in a cinema Web site
or guided tours listed in the web site of a city Hall.

Summarizing, MoWA empowers developers with a set
of software features bringing together both the mobile and
the augmentation worlds and the underlying concepts for a
concrete MoWA application are

(i) an existing Web application to be augmented or
adapted with mobile features;

Mobile Information Systems

(ii) the specification of the context types that will be used
for the mobile experience; these types are based on
a particular mobile device capability, such as GPS
geolocalization or light sensors; context values are
made available to applications through software sen-
sors, which either are part of the MoWA framework
or can be defined by the developer; for instance, the
location, as a context type, can be tracked for assisting
the end user to traverse a tour’s path;

(iii) the association of sensors to a particular URL (through
a concrete MoWA application), to be opened and aug-
mented when interesting events are notified by those
Sensors;

(iv) a set of augmenters that specifically implement the
augmentation layer considering the underlying appli-
cation domain and the observed sensors.

While validating the approach [11], we gathered opinions
and suggestions from participants; they emphasized the need
of tools for automating some of the tasks they had to perform,
for example, gathering the information required for the
definition of the Pol and the positioning of their markers in
the map. Since such tasks imply a constant repetition of code
and actions, we decided to create a visual tool such that it
could be used not only by developers, but also by producers.

3. Our Approach

In our research, we aim to empower end users with (1)
the capability of augmenting existing Web sites with mobile
features and doing so (2) according to their own requirements
and (3) from their own mobile devices (although it may be
done form desktop computers). It is worth mentioning at this
point that there are some platforms allowing the authoring
process from mobile environments [30-33], but none of them
conceives the creation or adaptation of Web applications;
they depend, at some point, on a native or hybrid func-
tionality. There is also an approach contemplating the EUD
of augmentations [4] but not considering mobility for the
development process nor the resultant applications, and it is
based on a nonvisual language. Finally, there are applications
augmenting Web sites from mobile devices [8-10], but they
lack EUD support. None of them perform the enhancement
as part of the mobile browser, and their operation depends on
a native component (e.g., for sensing and propagating the
user’s position). We present further details concerning exist-
ing works in Section 6.

Our challenge was providing end users with a usable tool
for creating mobile Web augmented applications and finding
if they were able to easily understand and apply the required
concepts of the approach (listed in Section 2.4). In this direc-
tion, we developed a domain-specific authoring tool for cre-
ating mobile Web applications, to enable end users to create
their own experiences on-demand and in-situ. The benefit is
the users not only create their own solutions but also facilitate
the validation of functional requirements, since the same
person setting out the requirements for the application is also
in charge of meeting them under the same context in which
the application will be used.

Mobile Information Systems

Below, we present some possible scenarios to be faced
with our approach, the supported user roles, and the main
concepts of our approach.

3.1. Motivating Scenarios. We next present different scenarios
designed to show both the potential and the flexibility of our
approach. Although different scenarios may be combined, for
the sake of clarity, we separated them into two categories:
one focusing on the use of context-awareness in general and
another, more specific one, in tours, by connecting diverse
points of interest. We are aware that finer grained scenarios
can be devised and tools that are more specific can be
developed for this aim; we briefly comment this possibility
in Section 7.

3.1.1. Context-Aware Scenarios. The idea of augmenting exist-
ing Web applications with context-aware features is about
enabling mechanisms for retrieving context values from the
environment through the device sensors so the application
can adapt its content and behaviour accordingly. The follow-
ing scenarios are characterized, precisely, by using context
information in their augmentations.

(i) Mobile Multimedia: hundreds of Web sites con-
taining embedded multimedia resources (such as
YouTube/Vimeo videos) could be adapted in order to
play those resources according to some context types,
like light and noise levels.

(ii) Yellow Pages Web Sites: this kind of Web sites could
be improved considering the current user’s location.
In this way, the results for a specific search may be
enriched with a map showing how to reach some
of the resulting places from the current location.
The mobile experience could start a step before,
considering to (auto) fill the search form considering
the current user’s city.

(iii) Mobile Cinema portals: in many cities, the cinemas
make their billboard public in a common Web site
(e.g., in La Plata, http://www.cinemacity.com.ar). In
these sites, visitors may see the available movies and
their functions. We can adapt portals like Cinema
City into a full mobile Web application supporting
different functionality.

(a) Reordering movies according to the current
time: the movie schedules could be sorted to
give a quick overview of the ones that are
starting soon.

(b) Recommending the nearest cinema for a specific
movie: considering the walking time for the
movie that a user wants to see, the application
may recommend the best cinema to go.

(c) Adding a map showing the path to the cinema:
when the user chooses a cinema, the application
could add a map showing the path from the user
location.

3.1.2. Tour-Based Scenarios. Tour guides represent a typical
example of mobile applications; they provide people with
assistance and information about a set of Pol spread across
a city, museum, educational establishment, and so on. They
usually consider (1) a set of Pols, (2) a predefined path for
navigating among these Pols, and (3) a method for sensing
the user’s current position (QR codes, GPS, etc.). Below, we
present some examples.

(i) Fixed Indoor Exhibitions in Museums: some muse-
ums use QR codes to identify each piece of their
collection, and scanning them allows the mobile
device to access a digital counterpart of the object. For
instance, consider the codes generated by QRpedia
(http://qrpedia.org/) that allow redirecting to con-
crete articles in Wikipedia. However, these digital
counterparts of the pieces are not always linked, and
the user could benefit from having assistance for
touring the full or a concrete subset of the collection.

(ii) Itinerant exhibitions, designed to be performed at the
facilities of any building or open space, presenting a
collection focused in diverse kinds of artistic, histor-
ical, cultural manifestations that can be represented
no matter the place. The physical points of interest in
this kind of tours could be distributed, for example,
in different areas of a school, and could be linked
to a digital object, such as a Wikipedia article. Aug-
mentations can be offered based on the information
provided in the catalogue of the tour and also by
retrieving public comments to encourage discussion
and the development of a critical attitude in the
visitors.

(iii) Temporary exhibitions, where a single art gallery is
in continuous change, present different collections of
artistic works usually for periods of less than two
months. Augmentations can also be performed over
Wikipedia articles (if the exhibition does not have its
own Web site), adding quotations from the authors,
comments by the visitors, and touring assistance
along the way.

(iv) Outdoor tours through the most significant heritage
sites in a city, as the one presented by some city halls,
allow tourists to read about the best places for expe-
rience and appreciate the rich architectural history
of the city. Augmentations here can be performed
over each Pol Web page in the site, providing the
touring assistance and also retrieving public review
content through the some Trip Advisor Content API
(https://developer-tripadvisor.com/content-api/).

3.2. Targeted User Roles. Before deepening into details, it is
worth to make a clear distinction between two end user roles
that are considered by our approach. In this research, we
distinguish between

(i) producers, who create their own applications by using
an EUD programming environment,

(ii) consumers, the ones who install and execute applica-
tions (created by a developer or a producer).

http://www.cinemacity.com.ar
http://qrpedia.org/
https://developer-tripadvisor.com/content-api/

In order to understand which are the requirements for
being a producer, we have surveyed the literature to iden-
tify common learning barriers on end user programming
systems. According to [34] there are six learning barriers
(design, selection, coordination, use, understanding, and
information) in the context of end user programming sys-
tems. In this regard, and following some authors recommen-
dations and findings [32, 35, 36], we defined a producer’s
live programming environment, mainly based on prebuilt
widgets and forms. In this way, from our point of view, pro-
ducers require to know what kind of mobile experience they
want to have on a target Web site, and which context infor-
mation (and the associated sensors) they want to use. They
need to be capable of filling forms, placing widgets by drag
and drop and, in order to let producers to understand their
creation, they should be able to manage the preview of
the mobile augmentations in any moment to check if the
augmentations are working as expected.

For designing our solution, we took into account the
main variability issues listed in [35] (dynamic context model,
sensor support, and domain-specific adaptation) and adopted
a form-based assistant for the in-situ authoring process, as in
[32], as their work demonstrated that it is feasible for end
users with no programming skills (they conducted their
experiment with kids). While they allow students to incre-
mentally compose a story, so we do with the values of interest
for an application (e.g., concrete coordinates or lux levels)
and the augmentation units (e.g., to display a title, a Pol
information, and some walking links). They also offer a
mechanism for automatically retrieving the user’s current
position; we also contemplate it for a wide range of context
types (e.g., location, lux, dB, and orientation) but we did not
make it mandatory to use it. Due to the domain of the appli-
cations we present in this paper (case study and experiment
set-up), we also took into account the «display of anchors»
and «link traversal support» explained in [36].

3.3. Mobile Web Augmentation for End Users. The main idea
behind our approach comprises, at least, a producer creating
a mobile Web application with a domain-specific authoring
tool and a consumer using such application through a mobile
browser weaver. There are other possibilities such as develop-
ers extending or instantiating the framework and improving
the end user tool, but we will concentrate on the former for
the sake of clarity and conciseness.

We provide three tools to support this process: (1) MoWA
authoring, an extension to Firefox for Android, supporting
the creation of mobile Web applications at client-side; (2)
MoWA crowd, an online platform supporting crowdsourcing
and sharing services for MoWA artefacts; (3) MoWA weaver,
another extension to Firefox for Android supporting the
management and execution of MoWA applications.

As shown in Figure 4, a producer can interact with MoWA
authoring, basically, for creating mobile Web experiences
from existing Web applications. He can create such applica-
tions based on his own requirements, but he can also do so
upon the request of consumers, materialized in an app request
posted in MoWA crowd. In both cases, creating an application

Mobile Information Systems

may involve the extension of an existing one; to do so, the user
must select an existing application, either in the local storage
or in the remote repository. For the second option, he should
search and download one of his applications in the repository,
or a public one created by another user. The user may follow
a series of steps that we explain later in Section 4.1 and, at
the end of the process, it involves automatically saving a copy
of the created application in the local storage of the browser
extension, so it can be further edited or just executed in the
producer’s EUD environment. Finally, the producer has the
chance of sharing his application in MoWA crowd. He can do
so with the aim of sharing a new user experience, or for
completing the app request process started in the MoWA
crowd context.

A consumer can install MOWA weaver in his mobile
browser and start experiencing the augmented mobile Web.
To do so, he may execute MoWA applications that may be
retrieved from the MoOWA crowd repository or the ones he
already has in his local storage (in the case, he already has
imported any or if the same user plays both roles). If the con-
sumer cannot find an application facing his requirements in
the public repository, he can start a new app request in MoWA
crowd. Finally, a consumer can also manage their local
applications. For example, he can edit or delete them, change
the order of execution in relation to other applications, and
$O on.

4. Supporting the Authoring Process

In this section, we present the architecture of the tool
supporting our approach, the authoring process, and the
involved steps, and finally, we use our authoring tool for
solving and presenting a case study, by following each step
of the mentioned process.

4.1. The Authoring Control Flow. For supporting the author-
ing process of a mobile Web application (the «create Mobile
Web app» use case in Figure 4) we started by defining it as a
series of stages, represented as activities in Figure 5.

These stages are as follows.

(1) Setting the application base data: here, the tool asks
the user the base information for the application, like
aname, a namespace, a filename, etc. The builder is in
charge of getting the values that the end user should
provide: in this case, just the application name. The
rest of the required data is transparent for the end
user.

(2) Selecting the augmentation strategy. Two alternatives
are offered to the end user to specify what to do when
a context change is notified in the application. A first
strategy augments any Web page the end user is cur-
rently navigating, whether the URL matches the ones
defined for the application. A second strategy checks
if the sensed context value is contained in the list of
values of interest for the application and, if so, it opens
a concrete URL to augment and then applies the aug-
mentations.

Mobile Information Systems

MoWA authoring
Save as Shar
8,7 local app == are app
Sl == i
9 Qg 4 ¢ k&%‘e -7 I|
& - .
- m - Select «include» b
| Create mobile h==" existing app |
— web app ae i
Qo 7 I «extend» i
Producer ! = i ! i
i «extend» / i
! Extend u Get local 0
1 P
existing a . / Q| !
\ «include» sapp G 1 i i
l ! !
1 f !
- l\I MoWA crowd) I
[= b i
Y <]— ll
End user Apply for an Create an Get app Upload app
app request app request from repo to repo
N
AY
m MoWA weaver 'y «extend»
&) Execute mobile $e==ed Select
- @ web app «include» existing app
Consﬁmer - . «extend»
«extend» .
Reset
Manage application _ Get local
installed app o :(l_nfl_ufif): o2 app
FIGURE 4: A crowdsourcing platform for mobile Web augmentation.
‘ EE
! 2 ' 3 . @ Include Include context type
another? representation?
. Set app Select augmentation Select [true] 9
base data strate: sensor
= s ()
[true] [false]
0 & Define context
Include 7 / ~ type representation
another? 6 5
@ Define
augmenter Define digital Define context
counterpart value of interest
[true] fh P ‘+|

FIGURE 5: The supported process by the MoWA authoring tool.

(3) Selecting the sensor(s): then, for each selected context
type, the user is offered with a set of available sensors
for listening to their changes. For example, both a
GPS sensor and a QR sensor could be on charge of
sensing the user’s location; a lux sensor can notify
about changes in the level of light perceived by the
mobile device; a dB sensor can track changes in the
noise level in the ambient.

(4) Defining a context type representation: as will be
further explained in Section 4.2.2, some augmenters
may need to use a visual representation of the context
values. To do so, they need to be placed in the context
of a containing space, like a map for a marker (e.g.,
related to a QR-based location) or a scale for a lux
point (matching a lux value). As some augmenters

may not use this representation, this is an optional
step.

(5) Defining context values of interest for the application:
every sensor notifies changes of a context type to
the subscribed augmenters (that will be defined in a
following stage), but in order to support such aug-
menters to use the sensed context values, it is required
that the application knows which values are represen-
tative for its purposes. For example, as the end user
is building a pure mobile application, the application
needs essentially to know a set of locations for trigger-
ing the augmentations. Such locations are represented
as points of interest and they have some optional
properties that can be specified, for example, external
content related to every point of interest or the speci-
fication of a navigability order through the set of Pols.
In the same way, an application subscribed to a light
sensor needs to know what are the bounding values
that represent a significant change in the light level,

10

and optionally it could define some associated data
to every light level, as a default description of it.
Therefore, every application is capable of showing a
set of configurations according to the selected sensors.

(6) Defining digital counterparts: every context value has
associated a digital counterpart that knows a URL
of a Web page to augment, and a set of augmenters.
Moreover, a context value may have some user-
defined properties. For instance, imagine an end user
is creating a tour for La Plata city, a digital coun-
terpart may indicate that the URL to open and aug-
ment when the consumer is very close to the coordi-
nates «—34.920609, —57.954393» is https://es.m.wiki-
pedia.org/wiki/Plaza_Moreno (2) and an instance of a
TitleSection will be executed. Such augmenter will be
defined in the next step, but it can consume informa-
tion defined for the digital counterpart, for instance, a
name or some description the user manually entered
or has selected from an external Web page.

(7) Defining augmenters for a digital counterpart: at this
stage in the process, our tool asks the user to define a
set of augmenters for each Web page to augment. We
provide the producer with a set of augmenters accord-
ing to the sensors he has chosen, and the context
type representations he has defined; we suggest them
based on a simple tagging mechanism, defined as
metadata in the augmenter’s class file. Augmenters are
defined in the context of a digital counterpart, and the
producer can add as many as he wants. Each aug-
menter needs some input values to be properly exe-
cuted. We provide the end user with three alternatives
for defining such parameters’ values: (1) he can reuse
the defined data related to a concrete context value,
for example, the Pol name, by accessing the data
model and selecting a property; (2) he can manually
input such data in the form; or (3) he can use an
assistant for retrieving external content.

4.2. The Underlying Architecture

4.2.1. The Overall Picture. The software architecture sup-
porting the approach is presented in Figure 6. Two mobile
browser-based tools are shown at both sides of the figure;
they are in charge of enabling the authoring process and exe-
cuting the resultant applications. There are also server-side
components supporting application sharing and some crowd-
sourcing services, so consumers can demand for new solu-
tions and producers and developers can meet such need.

At the right of Figure 6, you can see the customer’s device,
which has installed the MoWA weaver extension. He can
import already defined applications from our repository and
use it for visiting existing Web sites with augmented features
(e.g., he can download applications solving the aforemen-
tioned scenarios in Section 3.1). Such applications can be cre-
ated in two ways: by client-side scripting (for developers) or
by using the authoring tool (for producers). The first ones are
downloaded from the repository as JavaScript files, and our
weaver has a specialized interpreter in charge of loading the

Mobile Information Systems

required classes for each application and instantiating them in
the context of a set of concrete Web pages [11]. In the second
case, another engine interprets authored applications, the
ones created with MoWA authoring, that are materialized as
an XML file, and specified according to the XSLTForms data
model. This engine is in charge of interpreting such specifi-
cation, instantiating the proper classes with the values in the
data model, and then also cloning such objects in the context
of the original Web page to augment.

Then, in the middle, we have MoWA crowd. It is an online
platform supporting crowdsourcing tasks management and
a repository of MoWA artefacts, among them, a collection
of applications ready to be installed and used by consumers.
Concerning the source of such applications, they can be both:
the ones created by developers, as discussed in [11], or the
ones created by producers with the MoWA authoring tool.

At left of the figure, the MoWA authoring tool archi-
tecture is presented. It is installed as an extension of the
mobile browser on the producer’s device. It comprises a set
of specialized classes that have a reference to the base classes
that compose a MoWA application and extend their function-
alities with the ability of asking the end users for the required
parameters through a form-based assisted process, in order
to instantiate such classes with the required values. For
every component of a MoWA application, we have a builder
supporting a part of the authoring process by helping end
users to configure the specific instances to run properly.

There is a main builder, the one in charge of orchestrating
the full authoring process: the Mobile Application Builder. It
knows all the builders in charge of the application’s construc-
tion process and their dependency to execute the application
while it is being authored. The order matters; consider an aug-
menter dependent on the user’s position. It cannot be prop-
erly set up if, at least, a Web page has not been defined and ifa
sensor has not been selected. Therefore, it is important not
to allow customers classes to access those subsystems directly.
This way, the Mobile Application Builder provides a unified
interface and delegates the configuration of the more spe-
cialized application’s components to other builders in the
subsystem, in a specific order.

Builders might also depend on some values of the user’s
context for configuring the underlying application’s compo-
nent. For example, consider a producer walking a city and
building a tour with MoWA authoring; he may want to
retrieve his current position for creating a marker in a map
or detecting noisy areas in the city for defining an augmenter
that increases the volume of a video. If the user is building an
indoor tour based on existing QR codes in the building, he
needs the tool to be capable of decoding those QR codes in
order to associate the data with a physical position. And if the
user selects a context-dependent augmenter for his applica-
tion, it also needs to be subscribed, somehow, to the changes
in such context type. This depicts how the builders supporting
the in-situ authoring process also depend on the MoWA sen-
sors to be notified when their values change; the application’s
components are not the only ones that need to be context-
aware.

Our authoring tool provides end user with the capability
of reusing existing content but not just taking it as a base

https://es.m.wikipedia.org/wiki/Plaza_Moreno
https://es.m.wikipedia.org/wiki/Plaza_Moreno

Mobile Information Systems

Producer’s device

N

1

Consumer’s device

MoWA authoring
MoWA weaver
It Applications manager client ’\\ MoWA crowd
/ i |- Applications manager client LN
3 Local storage ! Access control £ |
A ! 1 1
1
»
* Authored Authored .\\ " /,' Local storage .
application 1 application 2 AN i’ Applications oS i
1 U
management Scripting-
) . Authored deveﬁo eg q 4
. i
Context type Augmenter builders) application 2 I f
representations : SREEINO
XSLT External | b '
data content ! " $
" Sensors model extractor)
g I I I { XML interpreter Js code interpreter
i 7
y Mobile application builder ¥ Augmenters
!
| LTy i MoWA framework
i MoWA framework
[}
' H
| : Crowdsourcing
| Firefox for android |8
\ Firefox for Android *4 tasks support \

\ N\

\ 1

\ M
» ‘@ Local services S"O o *

!

*D Local services &O o r'/

FIGURE 6: High-level representation of the MoWA platform architecture.

for the augmentations; it also allows him to extract it from
external Web pages, usually third-party ones, to be injected
into a new context. For example, he can take the actors
profile at IMDB as target Web pages and augment them with
a carousel of related trailers from YouTube videos when the
device is in landscape orientation. The content extraction is
responsibility of a common component, available for every
builder, named External Content Extractor. Such component
is instantiated in the privileged context of the browser
extension, so it makes it possible to append extra behaviour
in any Web page, enabling user interactions for selecting their
DOM elements of interest. This allows the manipulation of
DOM elements to obtain their positioning data in the DOM
(e.g., the XPath) and dynamically consume their content,
even from external contexts (other Web pages that do not
share the same domain name).

4.2.2. The Authoring Tool. For deepening into details about
how we support the authoring process, it is appropriate to
present first the expected structure of a MoWA application.
As shown in Figure 7, a MoWA application knows how to be
subscribed to the full range of existing sensors. When some
subscription message of the application is called, let us say
suscribeToQrSensor(sensor), it asks the received sensor to add
herself as an observer [27] of the sensor, and it also instan-
tiates and keeps a reference to a concrete subclass of Con-
textValuesManager. This way, when a change in the context
is perceived by the sensor, it sends an update message to all
its listeners. A change in a sensor’s value may be manually
or automatically triggered; it depends on the implementation

of the sensor. For instance, a QrLocationsManager will be
manual, because the user needs to scan a QR code, but
a GpsBasedSensor can automatically watch the changes by
using the browser’s APL If the application is subscribed to
a QrBasedLocSensor, when a change is detected, the latter
calls the application’s updateQrLocation(sensor) message with
a reference to itself, so the subscribed applications can ask
the sensor for the current value. When the latter happens, the
application delegates the augmentation process to a concrete
strategy [27] (AugmentationStrategy), by passing the refer-
ence of the received sensor. We currently support two kinds
of strategies:

(1) MatchPageAndAugmentStrategy that simply checks if
the current Web page matches a series of URL defined
as augmentable and executes the augmenters;

(2) OpenAndAugmentStrategy that will run the augmen-
tation whether the sensed value matches one of the
values of interest defined in the MoWA application; to
do so, it asks to the concrete application’s Context Val-
uesManager (e.g., the QrLocationsManager) to com-
pare such a value against the ones it contains, and if it
matches, the proper URL is loaded in the browser by
adding it to its associated DigitalCounterpart. The last
one may also have a collection of custom properties
(DCPropery) defined by a developer or a producer,
but it contains for sure a set of augmenters (e.g., a
Panel, a TextAugmenter, a WalkingLinksAugmenter)
to be executed after the Web page is loaded. The case
study in Section 4.3 and the evaluation requirements
in Section 5 are based on the last strategy.

12

Mobile Information Systems

Augmentation — MobileApp —> QrLocationsManager
Strategy &
+suscribeToQrSensor(sensor) LuxesManager
+suscribeToLuxSensor(sensor)
+updateQrLocation(sensor) 1
OpenAnd +updateLux(sensor) ContextValuesManager A
AugmentStrategy i
*
Related
* . DcProperty
MatchPageAnd T ContextValue ;0. .
AugmentStrategy T * T 0..
S QrBasedLocation DigitalCounterpart
[| ‘ f ‘
QrBasedLocSensor LightSensor LuxRange rom N —
_—
to
%
TextAugmenter Panel —{> CompositeAugmenter Augmenter <
| 0.°
*
WalkingLinksAugmenter J—‘> LeafAugmenter —> ContextValueRepresentation
CustomFloorPlan ~—{> ContextTypeRepresentation ' ‘ ‘
T LightPointMarker MapMarker
0."
OutdoorsMap — LightScale

FIGURE 7: A MoWA application expected as a result of the authoring process.

The DigitalCounterpart may also have some a ContextVal-
ueRepresentation, and that implies that the ContextValues-
Manager has a ContextTypeRepresentation. Concrete sub-
classes of the first one implement a visual representation of a
space (e.g., a scale, a map) that will contain the representation
of a set of context values (e.g., a visual point in a scale, a
marker in a map). The reason of these components being
nonmandatory is that some augmenters may need such infor-
mation for implementing their features, so they should be
configured for that purpose. For instance, the TextAugmenter
and the Panel augmenters do not need such information; they
can show a text or contain leaf augmenters (see composite
pattern in [27]), respectively, with no need of displaying a
MapMarker in a CustomFloorPlan or a LightPointMarker in
a LightScale. However, a WalkingLinksAugmenter is in charge
of displaying the following Pol of a tour in a textual list, but
also in a map, so the user can understand where to go next.
In this case, the augmenter can ask the CustomFloorPlan to
display the current user’s position and the following location,
according to the registered Pol.

Regarding augmenters, in addition to those already
mentioned we implemented the following ones in order to
verify the technical feasibility of the examples mentioned
throughout the article.

(i) TitleSection: in the same way as the TextAugmenter, it
shows a div with a specific text but with a special style:
within a beige container, center-aligned, and with a
L5 em size bold font. This text can be a fixed value
as well as a value extracted dynamically in relation
to a text already available in the Web (e.g., from an
external site).

(ii) WalkToTarget: it is possible to configure this aug-
menter with a series of locations to be displayed as
markers in a map. A route is traced starting at the
user’s current location and ending at one or more
specified locations. Unlike the WalkingLinksAug-
menter, this does not impose an order while traversing
the points of interest; it simply shows the alternative
targets and how to reach them.

(iii) ImageAugmenter: it shows an image at a specific posi-
tion of the DOM. Such image can be defined in terms
of a Base64 encoded string or from the URL of an
existing image on the Web.

(iv) PoiAugmenter: it adds a div at a specific position in
the DOM with a description and a picture of a Pol.
It is composed by a TextAugmenter and an ImageAug-
menter.

(v) VisitedLocations: based on a list of locations, it adds a
div with a list of locations that are already visited by
the user. Locations may have associated a descriptive
name and they are marked as «visited» if the user was
physically sensed near such location.

(vi) UnvisitedLocations: in a similar way to that Visited-
Locations, this augmenter adds a list of locations that
were not visited by the user.

(vii) YoutubeVolumeLeveler: it has no visual representation
on the Web page, but it increases or decreases the
volume of a video in a Web page according to the
perceived level of noise in the user’s surroundings.

Mobile Information Systems

(viii) LightsCameraAction: it starts playing or resumes a
concrete video in a Web page when a change in the
perceived level of luminance in the user’s surround-
ings is up to 25 luxes in less than one second, and
the last sensed value is under 5. If the change is the
opposite, from a dark environment to a brighter one,
it pauses the video.

(ix) DontLetMeWaste: it disables the interactions with all
the audios and videos found in the current Web page
while the battery level is under 25%.

(x) RelatedTweets: it adds a div containing a set of tweets
matching the textContent (https://developer.mozilla
.org/en/docs/Web/API/Node/textContent) attribute
of any DOM element set as target.

(xi) Based on the definition of search engines UI-APIs
[18]: in this sense, it is possible to transparently per-
form a search through the UI of a Web page and to
obtain a set of results. This involves being aware of the
structure of the DOM in order to identify some inter-
action elements (as the input and search buttons) and
the returned elements. Under this category of aug-
menters, we have the RelatedGoogleImages showing
a set of similar images to the one set as target and
the SimilarAmazonProduct and SimilarBookInStore
adding a list of similar products and books, respec-
tively, according to the textContent attribute of the
target DOM element.

(xii) ListElementsSorter: it orders a set of DOM elements
in a list according to the textContent value of any
of its child elements (that should be present in all
the elements of the list). For instance, taking the list
of movies in http://www.cinemacity.com.ar/cartelera
.aspx you can order the elements by removing and
reinserting the elements according to their titles or
their schedule times. However, it is intended only for
sorting items present in a single Web page and which
do not require paging.

When it comes to the sensors, Figure 7 shows just two of
them and the required components supporting their proper
kind of context types, but it is necessary to clarify that the
application could be also subscribed to other sensors and
adapt itself according to their related context values.

Based on the structure of a MoWA application, we have
created a set of classes that have the responsibility of allowing
the end user to configure an application component; we call
them builders. In order to show the relations between the
application classes and their builders, Figure 8 presents some
of the required builders for instantiating and configuring a
very simple application, subscribed only to a single sensor.
Nevertheless, it is possible to dynamically contemplate the use
of other builders, as we explain later. In the figure, builders
are the darker classes whose name ends with «Builder». Each
of them must be a subclass of ConfigurableComponent, but
for the sake of space, we do not show the superclass in the
diagram. A ConfigurableComponent states that every builder
should be capable of at least carrying out a fraction of the
authoring process and persisting and validating the data

13

entered by the end user. For this purpose all their subclasses
should implement a configure(window) method, which is
in charge of generating and loading a specialized form
with controls for filling the required data, so the user can
configure the component (e.g., an augmenter). For instance,
the PoiAugmenter is in charge of adding a div at a concrete
position in the DOM with a textual description and a
picture of a Pol. If the user chooses such augmenter for his
application, the PoiAugmenterBuilder will ask him to provide
a text and an image for the augmenter to use. Both of them
are required, so the builder should validate their values before
enabling the execution of the augmenter (e.g., to preview the
results) and then persist the data for later usage. Such builder
is, then, in charge of achieving a part of the augmentation
process.

In our model, each builder is responsible for defining the
backbone of the part of the authoring process it is in charge.
For example, the MobileAppBuilder implements the main
algorithm process that is further explained in Section 4.1. At
this point, it is enough to understand that the MobileApp-
Builder is the most important builder; it is in charge of orches-
trating the full process, configuring its own variables and
collaborators that do not need a concrete configuration (e.g.,
sensors, augmentation strategy) and delegating the remaining
to more specialized builders. For instance, the mobile app
builder presents the user with a form asking for the applica-
tion’s name, the two possible augmentation strategies, and a
list of available sensors. There is no much to configure regard-
ing the augmentation strategy, but when the user selects a
sensor, let us say the QRBasedLocSensor, the application is
subscribed to the sensor and an instance of QrLocationsMan-
ager is now available for the application and the QrLoca-
tionsManagerBuilder for the MobileAppBuilder. The applica-
tion now can ask such collaborator (and any other Context-
ValuesManager) to be configured, and it will do the same as
the MobileAppBuilder, configuring the properties and dele-
gating what requires more specialized behaviour to its related
builders.

As enabling user interaction with the authored artefacts
may entail errors at execution time, MoWA application
components must support mechanisms for displaying extra
messages to the end user in case an authored object was mis-
configured, for example, if a map contains a wrong coordinate
value, if the link of the image selected as a 2D floor plane is
broken, or if an augmenter lacks a required parameter value.
Achieving this requires that any ConfigurableComponent may
be capable of checking the arguments it is receiving and be
capable of displaying proper and useful messages to the pro-
ducer. The ConfigurableComponent has defined an abstract
method to that end: the checkInputParameters, which is
executed by each Builder before saving the configuration of
a component (while in authoring mode), and it is also useful
for the component itself at execution time (while in authoring
or regular execution mode with the weaver).

As already mentioned, the responsibility of a builder is to
request the user, through a specialized form, the data neces-
sary for the execution of the component that is building (e.g.,
an augmenter). Developers can manipulate the DOM (of the
window that the configure method receives as a parameter)

https://developer.mozilla.org/en/docs/Web/API/Node/textContent
https://developer.mozilla.org/en/docs/Web/API/Node/textContent
http://www.cinemacity.com.ar/cartelera.aspx
http://www.cinemacity.com.ar/cartelera.aspx

14

Mobile Information Systems

\
MobileAppBuilder

MobileApp

T

e
< e

Augmentation
Strategy

DcPropBuilder DigitalCounterpart
J/ 0 . * I
DcProperty Augmenter

s QrLocations

*
DigitalCtpBuilder T Sensor Jf ContextValue A —

Nmmm AugmenterBuilder

QrLocations
ManagerBuilder

1
—> CtxValManagerBuilder [|

ContextValuesManager

]

%
ContextValueBuilder A

—>

Manager

Lo

QrBasedLocBuilder

QrBasedLocation

1\

FIGURE 8: Structure supporting the authoring process of a MoWA application.

and change it according to their requirements, and as this
code is executed in a privileged context (as an extension)
there are no restrictions about which data to request or how
to do it. For example, it is possible to contemplate manual
mechanisms, where the user explicitly enters the information
by typing in an input form control, but also more sophis-
ticated ones that autocomplete the expected data, like sug-
gesting properties already available in his workspace (as the
properties of a DigitalCounterpart). An example of a more
specialized form is the one for configuring context values of
interest from a CustomFloorPlan; it presents a map where the
user can add markers by holding on it. However, as we wanted
to facilitate the in-situ development modality, we also added
a button triggering a mechanism for automatically adding a
marker at the user’s current position.

4.2.3. Technical Details. Both client applications (the author-
ing tool and the weaver in Figure 6) are Firefox for Android
extensions, running on version 41 of such mobile Web
browser. However, they have successfully run in precedent
versions, as discussed in Section 5.2. Both applications share a
common base; first, the same mobile Web browser that allows
them to access the underlying capabilities of the device. For
instance, it exposes multiple APIs for accessing the battery,
the camera, the geolocation, the orientation, and so on. This
means that developers can access values of the user’s context
and take advantage of them in a direct way, for example, by
using the navigator.geolocation.getCurrentPosition (https://
developer.mozilla.org/en-US/docs/Web/API/Geolocation/
Using_geolocation), but also by using the APIS for processing
data and tracking other context types. Example of this is
accessing the camera, asking the user to point a QR code,
taking a picture, and analysing it for decoding a QR code,
which contains information related to the user’s position.
Second, they share the same base framework for instantiating,
extending, and executing applications: the MoWA frame-
work. Finally, they also share some generic components for

managing the user’s installed applications in a local storage,
but also for connecting to the server and upload, update, or
download applications.

Concerning the supported interactions by the builders,
broadly speaking, we introduced diverse modalities, like the
ones required for managing a floor plan representation. In
such a case, we used Leaflet Maps (http://leafletjs.com/) in
conjunction with OpenStreetMap (https://www.openstreet-
map.org), which provides a complete API for interacting
with maps from both mobile and desktop environments in
a light way. Thus, we support two interaction modalities with
maps: data visualization and edition mode. In the first case,
augmenters can use it for displaying the positions of the
user and some Pols, while in the second case it allows end
users through a concrete builder to create, move, delete, and
connect markers in a map and also to configure the map’s
zoom through touch events.

Regarding the persistence between browsing sessions, the
data entered by the user is kept through the mechanisms
provided by the XSLTForms engine [37] and its underlying
data model. XSLTForms is a client-side implementation of
XForms, whose benefits were extended by adding subforms
management that allows us to easily support the authoring
process in a wizard mode. The input values in XSLTForms
are automatically bound to a data model that, at the end of
the process, we can export and use as the specification of a
MoWA authored application.

Finally, we also adopted a definition of language bundles
for each building artefact for internationalization purposes,
so the MoWA engine is able to provide the authoring expe-
rience according to the user preferences or the browser’s lan-
guage. We provide language bundles of Spanish, French, and
English, and this allowed us to invite a broad spectrum of par-
ticipants to our experiment; in fact, we conducted the exper-
iment in the facilities of our laboratory in Argentina, and we
had two participants in the experiment whose mother tongue
was not Spanish. Nevertheless, they opted to create their
application in Spanish.

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/Using_geolocation
http://leafletjs.com/
https://www.openstreetmap.org
https://www.openstreetmap.org

Mobile Information Systems

4.3. A Case Study. Below, we present a case study matching
every step of the aforementioned process in the domain
of a mobile hypermedia tour in a museum; the process is
similar in other domains and fields. We chose the hypermedia
tour domain since the level of complexity required to build
applications in this domain is much higher than the rest of the
supported applications (e.g., those indicated in Section 3.1).
In this sense, the end user must be able not only to configure
sensors and augmenters to provide a Web application with
context-based features, but also to configure navigational
features at two levels, digitally and physically. This requires
the end user to set up a space of representation, some points
of interest with related information, and the walking links
(a regular anchor supports a walking link, but triggering it
expresses the user intention to walk to a target location in the
real world; it involves the physical movement of the user, as
explained in [38]) between them.

The chosen scenario for this section was also used for the
experiment set-up (see Section 5.3). At this point, it is only
necessary to say that the museum has a collection of pieces
that can be visited in a certain order, and each of them is asso-
ciated with a QR code that redirects to a Wikipedia page. This
museum also has its own Web site that provides information
about the tour and each of its pieces, or Pols, but this infor-
mation is not associated with the physical objects; the only
digital counterpart of such physical objects is the Wikipedia
articles.

In this context, a museum guide may want to create an
application that augments the Wikipedia articles with the
information in the museum’s official Web site. To do so, he
can carry out the authoring process, which contemplates the
following stages.

(1) Setting the application base data: as shown in Figure 9,
once the authoring mode (S;) and the full-screen
mode are enabled, the producer chooses to create
a new application (S,) and he sets a name for the
application (S;).

(2) Selecting the augmentation strategy: then, the user
configures the augmentation with one of the augmen-
tation strategies, in this case, as shown in «S,», the
OpenAndAugmentStrategy.

(3) Selecting the context sensor(s): in «Ss4», the user
chooses among the available sensors accessible
through his browser (according to the mobile capa-
bilities, not all of them can be instantiated). Such
sensors are displayed in the meaning of the context
types they notify (e.g., a location, a light level). As he
has chosen the location and there are two available
sensors for such a context type, he chooses, in «S,»,
between two related sensors observing changes in
location: GPS and QR-based sensors.

(4) Defining a context type representation: in this step,
the end user just chooses if he wants to define a con-
text type representation or not. If he takes this path,
the tool offers him in «Sg» the possibility of choosing
among the available alternatives (e.g., an outdoor
map, a custom floor plan). He selects a custom 2D

15

floor plan that should be configured with a base image
and a name, as in «S¢» of Figure 10.

(5) Defining context values of interest for the application:

as he has selected a QR-based location sensor and
a floor plan as representation, now he should define
locations by creating markers in a map. As we can see
in Figure 10, the tenth step (S,) requires the producer
to define some locations as the context values of inter-
est. To do so, he holds on the map and, in response,
a marker is created in such position and a QR code
should be scanned (S;;), in order to associate it as a
QrBasedLocation.

(6) Defining a digital counterpart: after that, the user is

automatically directed to the definition of a digital
counterpart, which involves writing a name, a URL
(it is also possible to scan a QR code to get it), and
optionally defining some properties. Figure 11 draws
such step in «S;,», and some external content is
extracted and defined as properties of the Pol in
«S)314,157 In «S;5», the user defined two properties:
«poi-desc» and «poi-pic», which will be used by an
augmenter in future steps (e.g., S, in Figure 12). Once
these parameters are defined, the producer is taken
back to the «S;3» screen. When a second digital coun-
terpart is defined, the user can create paths between
two points by holding the markers and choosing «set
as origin» or «set as target» from a context menu.
«Sg» is the resultant view after all the digital coun-
terparts were defined and connected.

(7) Defining augmenters: as shown in Figure 12, the pro-

ducer can add multiple augmenters for each digital
counterpart. In «S;,», the tool automatically loaded
the URL previously defined for the digital counterpart
in a frame. There is a carousel, at the bottom, that the
user can swipe to navigate the available augmenters.
By clicking one of them, he can insert an augmenter
builder on the context of the loaded Web page. It
will be inserted as a floating element at the middle-
center of the screen, which should be positioned in
the DOM by drag and drop as in «S,g ,¢». This element
is always placed in relation to another existing DOM
element, which serves as a base for generating an
XPath for the augmenter’s content. If the user places
the augmenter in relation to an element that, in the
time, is removed from the DOM (e.g., the Web page
is dynamically rendered), the augmenter needs to be
repositioned. When the tool fails in evaluating an aug-
menter’s XPath, it is positioned as a floating element
on the default position (middle-center of the screen),
so the user can reposition it. After positioning it, the
user must configure the augmenter’s parameters
shown in «S 51 ». He can write the input or he can link
the configurable parameter with the application given
name, as in «S,;». The user is taken back to the Web
page to augment and he can preview the configured
augmenter, as in «S,,». Then, he must repeat the pro-
cess for each augmenter he wants to contemplate in
his augmentation; he chooses the augmenter, places it

Mobile Information Systems

W a Web page to augment OE

elcome to MoWA Application setup @
Authoring! @
App name = Open on context changes
Darwin's tour Evaluate pattern on current page
A B Tab No apps found
New Private Tob | Nexts | “Back | [Next» |
ed 1
Request Deskiop Site
gareE p Yoy U kool p
Tools
Settings
Help
MoWa Autharing o

I:I—'.mo

Context types selection .ocation setup €

QR based location setup @
Localization method

Light level

« Location = 20D floor plan v &
Orientation e
Sound level H el
Time QR (Quick Response) codes ®

GPS (Global Positioning System) ()

FIGURE 9: Setting up the application base data and sensors.

Floor plan configuration @ Management of Points of . .
Interest © QR location configuration €@
Name N
Associated URL
Museum'’s floor plan Create a new PDI by holding a position 2 ; ;
on the map. Then, hold a POI to access https://en.m.wikipedia.org/wiki/M
Map image URL its editing options.

nowa/lifia-s-floor-planpng . @ +

Preview:

r__.’__t__L

- ——

FIGURE 10: Configuring a context type representation and defining values of interest.

Mobile Information Systems

Point of Interest @
Pol name
Macrauchenia

Url to adapt

Or you can scan a QR code
Scan code B2
External properties

Configure properties

_:z@

Augmentation Layer @ Augmentation Layer @ Augmentation Layer @
Macrauchenia 4 Macrauchenia 7 Macrauchenia P e
— —— @ a
Temporal range: 7-0.01 Ma oo x
ece €5 0 CHET X PN B
Late Miocene to Late Pleistoaene Tem| & @ j1ma
s Sl Bl
Late Miocene to Late Pleistocpne Macrauchenia
- Tempaoral range: 7-0.01 Ma
e s o CHELL K PN
Late Miocene to Late Pleistoasne
ldanom- ... | I
e Title section

Link an existing property

= App name

Pol name

Url to adapt

poi-pic

poi-desc

External properties @

New

httpifweww.fonymy | Q |

L. Macrauquenia

TP ——— |
R —
Jrps cortis st s et it con ol camedn b b |

External properties @

0 New

Property name
poi-desc

Content

@ Select from Web

{"En puerto San Julidn encontr

X Delete
Property name
poi-pic
Content

@ Select from Web

F1GURE 11: Configuring digital counterparts.

_:z@

Augmentation Layer @

Macrauchenia

Darwin's tour

®

Mocrouchenia
Tempaoral range: 7-0.01 Ma
wrec € ls 0 ERHED K o

Late Miocene to Late Pleistogene

FIGURE 12: Creating and configuring the augmentation.

17

Management of Points of
Interest @

Create a new PDI by helding a position
on the map. Then, hold a POI to access
its editing options.

cm=Pa

Augmenter configuration @

Enter the text you want to display as a

Title

Macrauchenia

Pol description

title

Augmentation Layer @
V4

Darwin's tour

a

i

/*En puerto San Julisn encontré un

Hypermedia
Navigation

18

Augmenter configuration @

Description

Mobile Information Systems

_uno

Augmenter configuration®

Location-based Representation

Museum’s floor plan v

FIGURE 13: Remaining augmenters’ configuration forms.

in the DOM, and configures their specific parameters
through specific forms and, finally, he may execute
the augmenter’s previsualization. As each subclass of
AugmenterBuilder implements its own configuration
process in order to collect the required data for the
augmenter’s execution, the user will be presented with
different and specialized forms while configuring
each augmenter. This way, steps «S,y» and «S,;» are
different for configuring other augmenters; Figure 13
shows the configuration form for a PoiAugmenter in
«S,» and for a WalkingLinksAugmenter in «Sp». At
the end of this stage, the user can preview all the
augmenters together and appreciate the layer’s result,
as in «S,». Below, we list all the augmenters the user
adds and configures in this concrete case study:

(a) TitleSection for displaying a title at the top of the
augmentation

(b) PoiAugmenter to present the specific informa-
tion (a textual description and a picture) of
the Pol with external information to Wikipedia,
extracted from the museum’s official Web site

(c) WalkingLinksAugmenter to assist the user while
walking to the museum (taking the tour, not
building it), by showing a map with a path
between the user’s current position and the next
Pol to visit in the tour

(d) VisitedLocations to display a list of Pols that were
not yet visited by the user

(e) UnvisitedLocations to present the Pols that the
users has visited

As a result of the process, a MoWA application spec-
ification is obtained, and the producer can share it with
consumers. The MoWA weaver could be used for running
such applications later. Let us say that the producer shares the
script with Julio, his cousin, who is visiting the museum for
the first time. Julio installs the authored application by using
MoWA weaver and, once in the museum, he scans the first QR
code he finds with the QR codes scanner provided by MoWA
weaver. Such action will load a Wikipedia article in the
browser and, if the code is part of the ones contemplated by
the application, the Wikipedia article will be augmented with
the extra information taken from the museums official Web
site. However, such information will be adapted according to
the sensed context values. For example, if the visited piece is
the one defined as the first of the tour, Julio will be presented
with information about it and the path he should walk to
arrive to the next Pol; otherwise, the augmentation may
indicate to him how to walk from his current position to the
first Pol. The same will apply to the following Pols; the tour
will assist Julio with information about each piece and the
tour’s order.

5. Evaluation

In order to validate our approach, we conducted an exper-
iment with 21 participants. We asked real end users to use
the MoWA authoring tool for solving a concrete scenario
problem in the context of a mobile hypermedia application
[22], oriented to the tourism domain. The ultimate goal is to
demonstrate the feasibility of the tool to perform adaptation
tasks and collect metrics of use of the tool. This study is rather
preliminary and do not cover all the dimensions for usability

Mobile Information Systems

or UX. Nevertheless, it carries on to a better understanding of
the potential of the tool for end users. For that end, we have
assessed if any end user using MoWA authoring is capable of
building mobile Web augmentation applications.

5.1. Participants. We conducted the experiment with 21
experimental subjects with a very wide range of demographic
characteristics. Due to the large number of participants in
the session, we chose surveys as collecting data mechanism.
We found that 71.43% of the members were males, against a
28.57% of female ones. Their ages range was homogeneous,
ranging from 22 to 39 years old, with an average of 26.9.
They were of different nationalities: 14 Argentinean citizens, 3
Colombians, 2 French citizens, 2 Venezuelans, and 1 Peruvian.
They were mainly ongoing students of different degree
careers, representing the 52.38% of the population, preceded
by a group of the same education level but different status:
28.58% of them already completed their studies. The remain-
ing were, at equal frequency, people with completed high
school level, uncompleted degree career, completed postde-
gree career, and postdegree studies in course.

As we focused on real end users with a wide range of
interests, we searched for volunteers in various contexts,
involving people coming from different fields of study. Most
of the participants, 11 of them (52.38%), said they belong to
the hard sciences, then 4 of them to social sciences, 2 to arts,
another 2 to natural/life sciences, and one to economics and
another one said he had no specialized studies.

Concerning the technological expertise of the partici-
pants, we focused on three aspects that allowed us to infer
their level of technological background and accordingly clas-
sify them to observe if there is any influence in their perfor-
mance. Such aspects were related to their programming expe-
rience, technological know-how, and the user perceived com-
plexity in a series of related tasks related to our tool. As shown
in Table 2, according to these three factors, we categorized
them as novice, regular, and expert users.

Regarding the first aspect, we just ask them about their
programming skills experience. 47.62% never experienced
programming, 42.86% of them program frequently, and a
9.52% occasionally programmed. We considered them as
novice users, expert users, and regular users, respectively.

In order to analyse the second factor, we presented them a
set of questions based on how frequently they perform certain
tasks. We asked about the usage of (1) smartphones, (2) the
Android platform, (3) Web browsers in daily life activities,
(4) Firefox for Android, (5) browsers’ extensions, (6) Firefox
for Android extensions, (7) location aware apps, (8) guided
tours apps, (9) Web augmentation apps (10) authoring tools,
(11) mobile Web forms, (12) QR codes scanning, (13) Web
searching, (14) content selection and edition, (15) map mark-
ers management, (16) slice gesture for menu navigation, and
(17) drag gesture for moving objects. We provided 5 options
in each case: daily, weekly, or monthly usage, “a few times”
and “never did it.” The first option was related to expert users,
the second and third ones to regular users, and fourth and
fifth ones to inexperienced users. This way, we assigned every
answer to an expertise level and took the higher occurrence
percentage of them for representing the user expertise level.

19
TABLE 2: Technological expertise of the participants.
pg Programming Technological ~ Complexity — Prevalent
experience mastery perception category
1 Novice Expert Regular Regular
2 Expert Expert Expert Expert
3 Regular Novice Regular Regular
4 Expert Expert Regular Expert
5 Novice Novice Regular Novice
6 Regular Expert Expert Expert
7 Novice Novice Regular Novice
8 Novice Regular Expert Regular
9 Novice Expert Expert Expert
10 Novice Regular Expert Regular
1 Novice Novice Expert Novice
12 Novice Novice Expert Novice
13 Novice Novice Expert Novice
14 Expert Novice Expert Expert
15 Expert Regular Expert Expert
16 Expert Novice Regular Regular
17 Novice Expert Expert Expert
18 Expert Novice Regular Regular
19 Expert Expert Expert Expert
20 Expert Expert Expert Expert
21 Novice Novice Regular Novice

For the sake of simplicity, we show final results in third
column of Table 2.

We were also interested about the user’s perceived com-
plexity of specific tasks related to our tool, not using the tool
itself but of similar Ul interactions. Such tasks were a subset
of the previously presented, ranged from the one numbered
11th to the 17th. This time, the possible values were very easy,
easy, normal, hard, and very hard. The criteria were the same
applied to the previous procedure, so we matched the first
case with expert users, the second and third cases with regular
users, and the remaining two ones with novice users. We show
the final results of this process in the fourth column of Table 2.

Finally, we assigned the users a category by selecting the
predominant in the three analysed factors. When the three
options are present, we chose the intermediate value, the
regular user. This way, we have a population conformed by
28.57% of novice users, 28.57% of regulars, and 42.86% of
expert ones.

5.2. Platforms. As the MoWA authoring tool was imple-
mented as a Firefox for Android extension, it was a requisite
to use any Android-based device capable of running such
Web browser. Users carried their phones and installed the
required software. The concrete authoring tool was success-
fully executed in every single device, which ranged among
five different benchmarks and a total of 7 models: 8 times in
a Samsung Galaxy S3 19300, 6 in a Motorola Moto G, 2 in a
LG Pro Light and a Motorola Moto E, and just once in a Blu
Studio 5.5, a Huawei G6 L33, and a Samsung Galaxy S2.

20

Mobile Information Systems

FIGURE 14: Physical distribution of Pols, replicating the museum at our facilities.

In regard to the Android platform, mobile phones have
installed 5 different versions. Android Jelly Bean with three
API levels: one of the total devices supported the API 16
(v.4.1.2), another one the API 17 (v.4.2.2), and 11 of them
the API 18 (v.4.3). The latter represents the 52.38% of the
total cases. Remaining quantities correspond equally, with 4
devices each, to Android KitKat for API level 19 (v. 4.4.4) and
Lollipop for API level 21 (v.5.0.2).

Our extension successfully was run in 4 versions of the
mobile browser: most of them, 14 cases (66.67%), in the
version 38.0, 5 cases in the 39.0, one in the 37.0, and another
one in the 41.0. The former was the official stable version at
that moment, the second was the Firefox Beta version, the
third one was an old release previously installed by the user,
and the latter was the Nightly version.

5.3. Setup. We asked users to create a museum tour guide app
with our authoring tool. We simulated the Museo de Ciencias
Naturales de La Plata in the facilities of our laboratory, by
printing the same QRpedia codes found in the museum and
placing them in four separate but connected spaces of our
facilities, as seen in Figure 14. We decided to do it in several
spaces, trying to simulate the museum environment in the
best way, so that users have to walk over a large area and look
for the pieces. The first room was a training space where users
were allowed to interact with us and between them in order
to understand the use of the tool; such points are not taken
into account when analysing the results.

Before the experiment began, we explained to the partici-
pants the motivation of our approach and some technological
and domain-specific concepts related to the kind of appli-
cation required for performing the tasks of the experiment.
They were introduced to Web augmentation, mobile hyper-
media applications, and in-situ development in a 30-minute
talk. After that, participants were asked to complete a survey

for demographic data collection. Once every participant
finished the survey, a scenario was explained to them.

You are about to visit the Museo de Ciencias Naturales
of the Universidad Nacional de La Plata, in order to perform
a special tour, that presents a set of pieces related to the
Darwin’s findings and descriptions made during his Voyage of
the Beagle. You knew about this tour thanks to the museum’s
website, so you already read something about the pieces and
also know they are presented in certain order.

When you arrive to the museum, you observe that the
pieces, not only the ones of the mentioned tour, have a
QRpedia code. Then you realize that some information is not
being presented to those visitors who did not know about
the Web site. You come up with the idea of combining the
information submitted on the official Web site of the museum
and the one presented in Wikipedia and also incorporate
certain functionality that assists the user in visiting the pieces
in the right order. In order to do this, you need to create a
mobile Web application that supports

R1 augmentation of the Web page related to each piece
with new information extracted from the Museum’s
official site,

R2 users assistance for showing the following piece to be
visited,

R3 users assistance if they are in a wrong piece.

Once the statement was understood by the participants,
they received printed instructions. They were explained they
had to install the MoWA authoring tool, whose creation
process is assisted through a series of form-based steps. We
collected the data of each individual experience by logging
every user action, registering a copy of their final productions
and asking them to complete some questions. At the end of
each step, the printed instructions requested the user to assign

Mobile Information Systems 21
TABLE 3: Percentage of completed tasks and full times by participant.
PS. R1 R2 &R3 SR Time
a b % c d e % h:mm:ss

1 1.00 0.56 0.78 0.56 1.00 1.00 0.85 0.83 0:49:20
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0:57:53
3 0.61 0.61 0.61 0.89 1.00 1.00 0.96 0.85 0:57:52
4 1.00 1.00 1.00 1.00 1.00 0.75 0.92 0.94 0:58:20
5 0.11 0.00 0.06 0.00 0.11 0.00 0.04 0.04 0:16:04
6 1.00 0.00 0.50 0.00 1.00 1.00 0.67 0.61 0:46:29
7 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.83 1:05:57
8 0.89 0.89 0.89 0.89 0.89 0.38 0.72 0.78 1:02:22
9 1.00 1.00 1.00 1.00 1.00 0.63 0.88 0.92 1:12:09
10 0.56 0.22 0.39 0.22 1.00 0.38 0.53 0.49 0:54:07
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1:06:11
12 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.83 0:49:54
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0:59:13
14 1.00 0.78 0.89 0.78 1.00 1.00 0.93 0.91 0:49:02
15 1.00 1.00 1.00 1.00 1.00 0.50 0.83 0.89 0:35:55
16 1.00 1.00 1.00 1.00 1.00 0.63 0.88 0.92 0:54:41
17 0.81 0.83 0.82 0.89 0.89 0.63 0.80 0.81 0:33:22
18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0:57:10
19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0:23:06
20 1.00 0.50 0.75 1.00 1.00 1.00 1.00 0.92 0:22:22
21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0:25:57
% 0.79 0.86 0.84 0:48:27

a level of difficulty of the performed tasks. At the end of the
process, users were asked to complete another survey, this
time, about their perception in the usage of the tool.

5.4. Results. In Table 3, we present the results of the require-
ments met by the 21 participants (PS). We wanted to know
the completed tasks percentage for each participant, so
we applied a concrete criterion for each requirement and
obtained its completeness percentage.

Criterion for R1 was checking if applications have defined
the following: (a) the 9 Pols and (b) the Pol augmenter for the
9 Pols’ associated Web pages. In the first case, a percentage
was obtained by analysing whether each Pol has defined
a name, a URL to augment, and an external picture and
description, both referenced from the museum’s official Web
site. In the second case, we analysed if the Pol augmenter
has been rightly positioned and configured with the right
external values. Each property was evaluated separately, and
both made the final percentage value. When a property was
partially configured, the property was marked as incomplete
(0) and only right values with (1). Results shown in column b
represent the average of both properties.

Criterion for R2 and R3 was the same, because both can
be achieved by defining the mobile hypermedia navigation
augmenter, the 9 Pols, and the connections between them.
We present the three issues in columns ¢, d, and e, respec-
tively. Values in column ¢ represent a percentage of rightly
positioned augmenters for the 9 Pols; values in column d,
the percentage of defined Pols in relation to the 9 that

were required (just considering the name and the URL to
augment as the mandatory properties to define); column e,
the percentage of connected Pols in relation to the 8 expected.
Successful rates (SR) of the full tasks were obtained as the
average of the percentages of the three requirements; this is,

(a;+b)/2+2 % ((+d; +e)/3)
SR; = .
3

Total result let us appreciate that end users could com-
plete, in average, 84% of the requirements of the experiment.
The standard deviation for such values is 22. Among the 21
analysed observations, 3 of them obtained a percentage below
75% and 18 above it.

With regard to the times, the whole process took partici-
pants an average of 00:48:27 h, ranging from 22 to 72 minutes.
We started logging the user interactions when the «create
application» option was triggered and stopped when the
application was exported. We logged every single interaction
of the user and save it to a file that finally was uploaded in
conjunction with the application to our server. These times
allowed us to observe the real consumed time by the user for
the whole process. Times were obtained for the full process,
not just for the tasks concerning the requirements.

Participants were also asked to rate the difficulty of the
steps in the process, whose results are shown in Table 4. For
each task in the first column of the table, users had to choose
among five notes matching different levels of difficulty: (1)
very easy, (2) easy, (3) regular, (4) hard, and (5) very hard.
Averages were obtained for each step from the responses of

@

22 Mobile Information Systems
TaBLE 4: Difficulty perceived by participants by tasks.
Task Average by users Standard deviation Rounded Matching category
a Installing the extension 1.40 0.60 1 Very easy
b Setting up the app (name, augmentation strategy, sensor) 153 0.61 2 Easy
c Setting up the context type representation 1.84 0.76 2 Easy
d Defining context values of interest and their digital counterpart 2.58 0.84 3 Regular
e Configuring augmenters (average of the grades for each augmenter) 2.66 0.86 3 Regular
f Exporting the application 1.39 0.50 1 Very easy

the participants. However, the only step that accumulated 21
qualifications was the first one (a); in the remaining steps,
there was a participant who refused to rate the tasks because
he did not finish the process. Such participant chooses a «1»
for the only task he ranked. No task was rated «5» by any
participant.

Participants were also asked to optionally report to us
their experienced problems and make suggestions about the
tool and about other possible scenarios for which they think
the tool may be useful. Regarding experienced problems,
three participants considered the application was slow for
them. The mechanism they considered to be a long wait was
the scanning of QR codes (we used an embedded library for
decoding them, so it depends on the processing capacity of
the device). Five of them told us that printed instructions
were not clear for them, and it took some extra time for them
to understand what to do (even when it was explained in
the initial talk). One participant had to reboot the browser 3
times, because the tool froze. This was the case of the partici-
pant using the 37th version of Firefox. One of them had prob-
lems at the beginning of the definition of values of interest; the
first time the form was loaded, he could not create a new value
of interest, but he reloaded the form and the problem was
solved.

About improvements, one of them expressed that he
would like to have bigger icons and another one that he would
love to have an indicator of progress in the construction of the
application, although he understood that it depends on the
amount of context values of interest the application contem-
plates. Two participants tried, with no success, and wanted to
have a copy-paste mechanism for text. We knew about this
limitation, but we could not implement the feature for such
versions of the browser API while it was in full-screen mode.
Another one also suggested the copy-paste feature, but was
intended for the list of properties defined for another Pols.
Other two participants considered that inserting augmenters
should be materialized by drag-and-drop. We did this way at
the beginning, but there was a cost on performance that we
choose to avoid. Finally, one participant complained about
the lack of zoom in the iframes when selecting external
context from the Web.

Concerning other usages of the tools, all participants
limited their scenarios to the domain of the augmenters used
in the experiment scenario. Four of them said it is good
for tourism in general, contemplating other museums and
cities. One participant thought it could be useful to present
information and other three for activities scheduling in the

installations of a University. A last one considered that some
game could be created using this application, like the treasure
hunt.

5.5. Threats to Validity. As omitting threats can lead to wrong
conclusions, we present below some issues regarding the
validity of our experiment design and the obtained results.
First, we mention some factors that could represent a differ-
ence in the presented experimental instance.

(i) User experience: while none of the users knew about
or ever used MoWA authoring tool, we have con-
ducted the experiment with an heterogeneous group
of participants with different capabilities concerning
the usage of mobile devices, mobile browsers, and
browser extensions. We classify them by asking them
some questions about their technological know-how.
We collected results from 28.57% novice users, 28.57%
regular users, and 42.86% expert users.

(ii) Learnability: some users tend to learn the required
tasks faster than others, and some of them require
more practice or repetitions to achieve the same
results. We had some repetitive tasks, like defining
a marker for the Pols, filling the required data and
extracting data from external sites, and placing and
configuring augmenters.

(iil) Training: participants were allowed to interact during
a first phase of the experiment with us and other
participants by face-to-face speaking (not performing
other participant’s tasks). We cannot predict what
would have happened if the evaluation had been
conducted without such training phase.

(iv) Maturation: as the users had to create 9 Pols (with 3
extras for training) and the creation process of the 9
ones took an average time of 00:48:27 h, psychological
changes can be experienced, as being fatigued, caus-
ing an impact in the variable successful tasks. They
can also feel frustrated and quit. In fact, we had a case
of a participant not ending the process.

As our experiment was (a) controlled in a simulated envi-
ronment where some conditions may differ in the real world,
(b) conducted against just one sample of participants, and
(c) designed for solving a problem under just one application
domain, we are aware that our findings can be altered when
applied in different settings. Therefore, some setting can alter
the representativeness of results, making our conclusions

Mobile Information Systems

generalizable just under certain conditions. Below, we present
some required points for experiment replications.

(i) Participant selection: we wanted a representative
sample of end users to participate in our experiment,
so a number of people were invited to participate in
the experiment and they were the ones who decided
volunteering in the experiment or not to do it. We
did not discard any participant for any criteria, even if
they were not used to mobile devices. In that sense, we
were ensured to have a heterogeneous group; however
there were factors with prevailing values of people
who chose to participate. The sample had 71.43%
of male members, 66,67% of Argentinean citizens,
90.48% of people with at least a degree career in
progress, 52.38% of coming from hard sciences field,
and 42.86% expert users, and with age range not
falling outside 22 to 39 years.

(ii) Context selection: we conducted the experiment in
the facilities of our laboratory, covering four indepen-
dent spaces, to ensure that the user has to move and
look for the different points of interest. However, the
dimensions of the museum, the disposition, and rep-
resentation of the pieces of the collection were quite
different. In addition, our facilities provided a stable
Internet connection through Wi-Fi.

(iii) Domain selection and tasks complexity: as we wanted
to compare our results against our previous results in
[11], we decided to conduct the experiment under the
unique, same domain problem, considering an only
level of complexity.

5.6. Discussion. Our main purpose, the assessment of our
research question, was successfully achieved favoring our
approach; we demonstrated a high probability for an end user,
without programming expertise, to be capable of creating his
own mobile Web experience by reusing and enhancing an
existing Web application with context-aware features. Nev-
ertheless, there are still many questions to answer, some of
which derive from the following facts.

There was an unexpected behaviour during the experi-
ment, concerning the single participant who quit the experi-
ment, completing a low percentage of tasks; he achieved just
a 4% of the process. He was in the right direction, but he told
us he did not understand how to do it. We could also observe
that, unlike other participants, he did not attempt to solve the
problem by asking us or interacting with others. He was part
of the novice users’ category, and yet, the results of this cat-
egory of participants were promising; they achieved, in aver-
age, a 78.49% of the requirements, although with a standard
deviation of 37.26. In this sense, regular users and experts got
better numbers: 80.91% with a standard deviation of 17.65 for
the first ones and 88.91% with a standard deviation of 11.92%
for the latter.

There were also unexpected behaviours on the other side
of the ledger. There is a difference of just 2.42% between
participants with a low level of expertise and regular users
and 10.42% against expert users. Among novices, the 83.3%

23

of participants never used Firefox for Android before, and
none of them was used to use extensions for this browser.
66.6% told us that they have never used any kind of browser
extensions, and in the same percentage, they never used Web
augmentation applications or QR codes scanners. 83.3% of
them never used an authoring tool, and they never managed
markers in a map. Many of these were challenges that the user
had to face for the very first time to carry out the experiment,
and anyway they obtained promising results in relation to
experienced users. Finally, we could also observe some com-
plications related to the use of some UI elements. First, we
used a wrong design for presenting the properties of a point of
interest, and many participants had some trouble interpret-
ing this distribution in a small screen. A second problem
was related to the expected interactions by the end users.
Concretely, we identified a problem in the interaction for
inserting a new augmenter in the target Web page. As the
contexts of the bar with the list of augmenters and the Web
page content were different and also because of the processing
limitations of a mobile device, it was hard to simulate a drag
and drop among both contexts without losing performance.
Instead, we implemented the insertion with a tap in the list
of augmenters, and then, when the augmenter is in the Web
page context, the user is able to drag-and-drop the thumbnail.
There was also a problem with the capture of a picture for
decoding QR codes; we opted to allow the capture by tapping
any area on the screen (as in many mobile phone’s cameras),
but the lack of a button confused a participant, who reloaded
a form a couple times before trying to touch the screen. Such
participant was considered a regular user (according to the
categories in Table 2).

6. Related Work

As already mentioned, there is a need for supporting the
adaptation of Web applications [6, 7, 26]. Contents and
services can be tailored according to the users’ requirements,
which may involve not just a user model but also a context
model. In [39], authors present a model-driven approach sup-
porting active context-awareness. They contemplate the con-
text as an active actor, which can automatically trigger adap-
tations with no intervention of the end user when a concrete
context of use is identified. The supporting framework is an
extension of WebML, but although this approach is based on
some visual components for the development of applications,
it does not contemplate EUD programming techniques.
However, there are many approaches supporting EUD
techniques and Web adaptation can be achieved in different
ways. Users can create Web-based solutions from scratch, but
also on the basis of existing Web resources. Concerning the
Web field, there is a close approach to ours but with a different
purpose, raised under the principles of a different program-
ming technique and without considering aspects related to
mobility, context information, or in-situ development. In
[4], authors propose a DSL for end user development that
abstracts the complexity and understanding of programming
structures and provides trust, because even if an end user
is not the author of a script, he can easily read and know
what tasks it does perform. Their DSL constructs are based

24

on a metaphor, consisting in understanding the Web as a
wall to be decorated with stickers, in the meaning of external
content fragments. This pair conforms a Sticklet, which is an
augmentation unit. In contrast to our work, they propose a set
of constructs generic enough for creating Web augmentation
solutions for a wide range of purposes, but their possibilities
are beyond the scope of mobile or context-aware features.

Then, with the advent of mobile technology, other
approaches emerged that allowed end users to start creating
their own solutions contemplating mobile features, from
different development environments and targeting applica-
tions of different nature. There are approaches conceiving the
creation of mobile applications from desktop [31, 40], native
mobile [30, 32, 33, 41], and mobile Web environments [42,
43]. In the same way, we found approaches producing native
or hybrid mobile applications but not pure mobile Web ones;
we present them below.

Along the rest of this section, we focused on a series of
related works facing EUD and Web adaptation in relation
to the mobile and mobile Web fields. We analyse each work
considering the platform for which it was developed and the
architecture of the tool; the resulting application kind; the
adopted end user programming technique; the capability of
the tool to solve different domain problems and to specify
control flows; and the contemplation of crowdsourcing prin-
ciples. Since the selected approaches are aimed for end users,
we also consider the technical know-how of end users and
if they conducted the experiment with prior training. In this
regard, it is important for us to compare the expected exper-
tise against the real expertise of participants at evaluation
time, since we think it is important to demonstrate EUD
approaches with people other than experts (e.g., computer
science students).

When contextual information is used to support the
software development process, end users can build their
solutions in the same place where the needs and problems
are presented. This increases the boundaries of opportunisti-
cally development a.k.a. situational applications [44]. In this
setting, [32] presents CASTOR, an authoring platform with
a storytelling purpose. They implemented three supporting
tools: a hybrid mobile application for creating stories in-situ;
a Web-based client for managing the collected data, and a
hybrid mobile application for consuming the narrations. The
Phonegap framework supports the resultant applications, and
users can share them through a repository. The authoring
process is assisted through forms that allow users to select the
structure of the story, define stages and context values, write
the plot of the story. Stories can cover different domains, for
example, history and literature, but they are always restricted
to a storytelling purpose and using a limited number of story
structures (simple, sequential, or crossroad). The tool was
evaluated with 19 primary school students with no program-
ming skills, who were introduced with an initial briefing
before usage.

Sometimes, users have needs that can be solved by
combining existing Web content and services retrieved from
different sources, and mashups [45] may represent a possible
solution. [40] presents CAMUS, a framework for designing

Mobile Information Systems

mobile applications through visual composition and high-
level visual abstraction. It integrates and provides resources
according to different contextual situations. It involves differ-
ent user roles: an administrator with technical knowledge for
registering resources in the platform and mapping them with
context elements; a designer who defines how to mashup the
services and to visualize the information; and a final recipient
of the authored application. There is no mention of the
adopted programming technique, but the provided screen-
shot suggests a WYSIWYG approach. CAMUS is aimed at
creating context-aware mobile or Web-based applications.
Nevertheless, the authors mention that execution engines are
created as native applications for different mobile devices.

In the mobile field, [33] presents MobiDev, an Android-
based development platform for mobile application creation
from mobile devices. It allows the user to create the graphical
interface by writing source code, designing mock-ups with a
visual editor, or drawing a sketch on paper and taking it as a
picture, so the system will analyse and interpret it to generate
a visual design. The approach contemplates end users with
no programming skills developing applications with a basic
control flow, but also developers defining a more specific
behaviour through JavaScript code. The approach was evalu-
ated with 16 students belonging to computer science depart-
ment, who were previously trained. The experiment was suc-
cessful, but the requirements did not contemplate the use of
mobile features.

[41] presents a native platform for enabling end users to
compose native mobile applications from their own mobile
devices, by integrating the mobile features provided by the
same device but also from Web services. Users specify activ-
ities through visualization components, which are executed
by an interpreter that automatically creates the user interface.
The approach comprises a repository for enabling end users
to share their productions and reconfigure them. The research
team evaluated their approach with 40 students of the first
year of the computer science career, and it was a requirement
that they have no programming skills. Concerning the prior
training, they give participants a lesson of 20 minutes about
their tool and another extra 20 about another similar tool
against which they compared results.

Puzzle [30] is an EUD framework for producing native
but Web-based applications, targeting touch-based plat-
forms. Users combine building blocks through a puzzle-based
metaphor with color-equipped corners for pinpointing its
combinability, which makes it suitable for end users with no
programming skills. The authors mention that there is no
need of plugins, but they end up presenting an implementa-
tion in the form of a native Android application. Diverse mul-
tipurpose combinations can be created, changing the appli-
cation’s logic. A repository of created artefacts is available,
but there is no way for users to request the construction of a
concrete application to the crowd. Puzzle was evaluated with
13 participants with no IT-related jobs, and they were not
exposed to previous training.

The authors in [42] propose an approach towards EUD
for multidevice mashups creation with composite resources.
They implemented a framework and a UI centric tool using
the WYSIWYG technique. Users should select among the

Mobile Information Systems 25
TABLE 5: Features covered by approach.

MOWA [42] [40] [30] [41] [43] (31] [32] [33]
Pur.e mobile development X X X v v X X v v
environment
Pure mobile web . v v X X X v X X X
development environment
Produces pure mobile apps X v v Y v v v \
Produces pure mobile web v X X X X X X X X
apps
End user programming Form-based Puzzle Puzzle Form- Form-
technique WYSIWYG WYSIWYG - WYSIWYG met. met. PBE based based Mockups
For multiple domains v v v v v v X X v
For nontechnical users v v v v v v v v e
User§ can request new v X v X X X X X X
requirements to the crowd
Use.rs can ma§51vely share v v v Y v v v v X
their productions
Users can specify the v v v v v v X X v
control flow
Add1t1or.1al assistance v X X v v X X v v
mechanisms
A}lthor%ng process at v v X X v X X X v
client-side
Evaluat101.1 with v v X v v X v v X
nontechnical users
Evaluation without prior v v X v X X Y v v

training

existing data components and UI templates in the repositories
and then perform an association between data items and
visual elements. Finally, a platform-independent schema is
generated and saved in the platform repository, so the user
can download it for the supported platforms and execute it
through a native engine. Diverse multipurpose combinations
can be created and the design environment is a Web applica-
tion, but they recommend not to execute it in mobile devices
but in larger-screen ones. The experiment was conducted
with a 10-minute demonstration and 36 participants, 17 of
them with programming skills.

Other approaches empower the end users with the capa-
bility of creating mobile Web applications from desktop envi-
ronments. For instance, [43] allows the user to create widgets,
in the meaning of simple applications, that represent a specific
Web interaction. These artefacts, called Tasklets, are created
using Programming By Example (PBE). Users need to install
a plug-in in their desktop Web browser and use it to record
the sequence of steps required to perform the task. This tool
saves the need for representing these steps, builds a Tasklet
template, detects and defines potential parameters, and finally
makes the script accessible for multiple platforms through
their repository. A wide spectrum of Tasklets could be created
and shared for both personal and public consumption.

Another related approach for EUD from desktop envi-
ronments is presented in [31], where the authors present a
cloud-based development platform of context-aware mobile

services to be consumed as native applications. The platform
is accessible through a Web-based application, where the pro-
ducer can associate a set of context values (specific locations,
areas, times, dates, etc.) with concrete information to be
delivered to the clients meeting such conditions. The authors
conducted an experiment with 10 tourism domain experts
with no technical skills and no prior training, and they did
it from a preinstalled native application. The resultant appli-
cations are bounded to the information delivery purpose.

We present in Table 5 a summary of the presented
approaches through 14 outstanding features. It should be clar-
ified that it does not take into account those works that do not
contemplate mobile features, like [4], because mobility is a
fundamental aspect of our approach, to support either the
process of creating an application or the execution of the
resulting applications. Analysed works are disposed as single
rows, and features are arranged as columns. Applicant cases
are ticked fields and unchecked values mean a nonsupported
or nonmentioned feature in the corresponding writing.

As we can see, our approach faces the less common char-
acteristics covered by existing works. The following ones are
present in less than 50% of the works. 37.5% of the solutions
perform the authoring process at client-side; 25% provide a
pure mobile Web development environment; 12.5% offer end
users the possibility of requesting new functionality to the
crowd and there is no one allowing the creation of mobile
Web applications that do not rely on native components.

26

We also found interesting that the control flow definition
feature is not contemplated by other approaches implemented
through the same end user programming technique than
ours: the form-based one. In regard to such technique, we
have overcome multidomain problems that the other form-
based approaches do not. This is due to the domain-specific
authoring tools inclusion based on building blocks combina-
tions, so the difference is not achieved by the technique itself
but through a combination of both techniques in the whole
development process.

Among the analysed approaches supporting Web aug-
mentation by means of end users, it does exist a relationship
between complexity and expressivity. In order to address this
issue, we propose a usable toolkit for end users, based on a
framework with a set of default modules. This framework
is extensible by developers, allowing them to create new
modules for improving or adding new functionality to the
end user’s toolkit. In contrast to other approaches, our tool is
expressive enough to support solutions in multiple domains
and benefits from the possibility of combining augmenters of
different levels of complexity to express even the control flow
of the augmentations. Users can combine those augmen-
ters of a low level of granularity for supporting a wide variety
of purposes, for example, the ones in charge of displaying a
simple text or just a video. However, building complex aug-
mentations by combining simple augmenters increases their
development effort, since it requires additional design time
and a greater complexity for the user; he must have a deeper
understanding of the use of the available augmenters and a
clear logic behind their combination for achieving the kind of
result he expects. In this sense, this can also mean a cost in the
learning time, and it is critical in EUD since programming
is not often the main activity of the user. It is also possible
that the application that the end user needs to create requires
a greater level of expressiveness. In both cases, here is
where the use or extension of more specialized augmenters
comes into play. Users with programming skills can extend
and share augmenters as well as sensors, context types,
context type’s representations, and builders. In this setting,
the restrictions that an end user may experience due to the
lack of concrete constructs (e.g., augmenters) are mitigated by
the possibility of outsourcing new requirements to the crowd,
in conjunction with the higher level of expressivity that can be
achieved by developers using the framework. MoWA frame-
work is purely JavaScript-based and it benefits from the priv-
ileges of the Firefox APIs (https://developer.mozilla.org/en-
US/Add-ons/SDK). Moreover, as a framework, it abstracts
lower level details of implementation and offers a set of classes
ready to instantiate or extend, reducing the time and energy
in developing an application. Thus, our approach has the
flexibility to respond to new requirements by end users in
two ways: letting them do it by themselves and allowing
developers to provide them with the required features
through the development of specialized artefacts. This kind
of collaboration between end users and artefacts developers
actually happens in today’s communities (https://forum.user-
styles.org/categories/style-requests, https://greasyfork.org/
es/forum/categories/script-requests).

Mobile Information Systems

7. Concluding Remarks and Further Work

In this paper, we proposed an approach for empowering end
users with the capability of creating mobile Web augmen-
tation applications from their mobile devices. Our solution
consisted in a tool oriented to satisfy the end users’ needs in
multiple ways. In previous works, MoWA just contemplated
the idea of a developer extending the framework and sharing
applications with end users through a crowdsourcing plat-
form. Therefore, end users were limited to ask for new imple-
mentations for a concrete scenario and to download and
install existing applications. Now, they can use our authoring
tool for creating their own solutions for concrete scenarios.

Reusing artefacts of our previous framework also let
us take advantage on the possibility of supporting an in-
situ authoring process, from mobile devices themselves.
The benefits of such feature, also in conjunction with live
programming capabilities, are that the user is building his
solution in the application’s target execution context, whether
virtual (a Web page) or real (a geographical position). He
is dealing with the dimensions of the device, the modes of
interaction, the layout of the elements in the DOM, the Inter-
net connectivity, the physical presence of physical objects
that could interfere when associating a geographic position
with a digital resource, and so on.

MoWA builders are created by developers who took
technical decisions about the best way of solving domain-
specific problems. Such tools supported the authoring process
through a form-based implementation, assisting the user
through a series of steps that allow them to choose the best
configuration for their scenario. It also made it possible to
omit one step in the software development process where
communication between people usually has some under-
standing problems, the requirements gathering phase. This
step is now performed by the same person that will be
on charge of the application creation. We are also enabling
opportunistic development in-situ, as solutions are imple-
mented for mobile platforms, being capable of accessing and
using the mobile characteristics during the process.

By using our authoring tool, the end user’s needs could
be satisfied by themselves, and now they can play two roles in
the crowdsourcing platform: by demanding for concrete solu-
tions and by solving other less-experienced user’s needs. The
worst possible scenario is an end user not finding a concrete
builder, or not understanding how to combine components
for a specific scenario problem. In this case, we are evaluating
the benefits of enabling developers to create domain-specific
authoring tools, so producers can use them for creating their
solutions with a lower level of technical knowledge, because
this way they do not need to take decisions about the proper
sensor or kind of component to use in their application.

We demonstrated the feasibility of our approach by
creating concrete builders for our authoring tool and using
them for conducting an experiment with 21 participants, with
a varied spectrum of demographic characteristics. Results
proved that end users can deal with an in-situ creation process
of mobile Web augmentation applications with a high level
of confidence and 4 times faster than developers through
scripting development. It also showed the feasibility of a tool

https://developer.mozilla.org/en-US/Add-ons/SDK
https://developer.mozilla.org/en-US/Add-ons/SDK
https://forum.userstyles.org/categories/style-requests
https://forum.userstyles.org/categories/style-requests
https://greasyfork.org/es/forum/categories/script-requests
https://greasyfork.org/es/forum/categories/script-requests

Mobile Information Systems

overcoming client-side scripting from browsers extensions
(with no native dependencies) and the devices’ processing
limitations.

Evaluation also allowed us to collect observations, ratings,
and opinions from the end users, which gave us the chance to
improve the usability of the tools and the authoring process in
general. From the technical point of view, we are also working
to achieve resources optimization and implementing new
ways of Ul interactions, like drag and drop for the augmenter
configuration thumbnails. New builders are being composed
and we are also improving the ones related to augmenters,
for enabling the end users to specify new kind of interactions
and execution order, so users can define a more specific flow
control.

We are also designing a DSL for applications specification,
targeting different levels of knowledge and properly abstract-
ing the required features. Our aim is to reach some common
point between developers and end users, trying to generate
new ways of collaborative development. In addition, we are
also generating new mechanisms for supporting the develop-
ment process in a collaborative environment and delegating
some tasks to the crowd, with different levels of expertise.
For example, an advanced end user can start a project in the
community, by defining the basic structure of the application.
Then, developers can contribute by enhancing the code with
their low level technical knowledge, and some users can
collect information about the real world, like pictures, loca-
tions, and describing places in-situ. Another participant can
contribute in the project by collecting data for Web for aug-
mentation purposes. Users should be able to suggest changes
and also to fork the whole project, if the visibility of the
project is public, or private but shared with them. Having the
crowdsourcing platform and an underlying a bigger volume
of data to analyse, it will allow us to better understand how
well users discover and use the augmentations provided by
developers. This will also lead us to analyse the evolution of
projects and particularly the user’s needs, behaviours, and
learning.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the «STIC-AMSUD» Project
named «WAMAW-OUR: Web Augmentation Methods for
Adapting Web Sites for Supporting Opportunistic User
Requirements».

References

[1] T. Sohn, K. A. Li, W. G. Griswold, and J. D. Hollan, “A diary
study of mobile information needs,” in Proceedings of the 26th
Annual CHI Conference on Human Factors in Computing Sys-
tems (CHI "08), pp. 433-442, Florence, Italy, April 2008.

[2] K. Cheverst, H. Turner, T. Do, and D. Fitton, “Supporting the
consumption and co-authoring of locative media experiences

(3]

(11]

(12]

(13]

(14

27

for a rural village community: design and field trial evaluation
of the SHARC2.0 framework,” Multimedia Tools and Applica-
tions, 2016.

W. Schwinger, C. Griin, B. Proll, W. Retschitzegger, and A.
Schauerhuber, “Context-awareness in mobile tourism guides—
a comprehensive survey,” Rapport Technique, Johannes Kepler
University Linz, 2005.

O. Diaz, C. B. Arellano, and M. Azanza, “A language for end-
user web augmentation: caring for producers and consumers
alike,” ACM Transactions on the Web, vol. 7, no. 2, article 9, 2013.

H. Lieberman, F. Paternd, M. Klann, and V. Wulf, “End-user
development: an emerging paradigm,” in End User Develop-
ment, pp. 1-8, Springer Netherlands, 2006.

»

N. O. Bouvin, “Unifying strategies for Web augmentation,” in
Proceedings of the 1999 10th ACM Conference on Hypertext and
Hypermedia (Hypertext '99), pp. 91-100, Darmstadt, Germany,
February 1999.

O.Diazand C. Arellano, “The augmented web: rationales, oppo-
rtunities, and challenges on browser-side transcoding,” ACM
Transactions on the Web, vol. 9, no. 2, article 8, 2015.

D. Carlson and L. Ruge, “Ambient Amp: an open framework for
dynamically augmenting legacy Websites with context-aware-
ness,” in Proceedings of the 9th IEEE International Conference on
Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP ’14), pp. 1-6, IEEE, Singapore, April 2014.

G. Ghiani, M. Manca, F. Paterno, and C. Porta, “Beyond respon-
sive design: context-dependent multimodal augmentation of
web applications,” in Mobile Web Information Systems, pp. 71-
85, Springer International Publishing, 2014.

W. Van Woensel, S. Casteleyn, and O. De Troyer, “A generic
approach for on-the-fly adding of context-aware features to
existing websites,” in Proceedings of the 22nd ACM Conference
on Hypertext and Hypermedia (HT ’11), pp. 143-152, Eindhoven,
The Netherlands, June 2011.

G. A. Bosetti, S. Firmenich, S. E. Gordillo, and G. Rossi, “An
approach for building Mobile Web applications through Web
Augmentation,” Journal on Web Engineering, vol. 16, no. 1-2, pp.
75-102, 2016.

C. Challiol, S. Firmenich, G. A. Bosetti, S. E. Gordillo, and
G. Rossi, “Crowdsourcing mobile web applications,” in Current
Trends in Web Engineering, pp. 223-237, Springer, 2013.

C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers
of end users and end user programmers,” in Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC *05), pp. 207-214, IEEE, Dallas, Tex, USA,
September 2005.

K. T. Stolee, S. Elbaum, and A. Sarma, “End-user programmers
and their communities: an artifact-based analysis,” in Proceed-
ings of the 5th International Symposium on Empirical Software
Engineering and Measurement (ESEM ’11), pp. 147-156, Banff,
Canada, September 2011.

A.J. Ko, R. Abraham, L. Beckwith et al., “The state of the art in
end-user software engineering,” ACM Computing Surveys, vol.
43, no. 3, article no. 21, 2011.

D. C. Halbert, Programming by example [Ph.D. thesis], Univer-
sity of California, Berkeley, Calif, USA, 1984.

S.K. Chang, Ed., Visual Languages, Springer Science & Business
Media, Berlin, Germany, 2012.

S. Firmenich, G. Bosetti, G. Rossi, M. Winckler, and T. Barbi-
eri, “Abstracting and structuring web contents for supporting
personal web experiences,” Lecture Notes in Computer Science

28

(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9671, pp. 76-95, 2016.

[19] S.Li, T. Xie, and N. Tillmann, “A comprehensive field study of
end-user programming on mobile devices,” in Proceedings of
the IEEE Symposium on Visual Languages and Human Centric
Computing (VL/HCC ’I3), pp. 43-50, San Jose, Calif, USA,
September 2013.

[20] B. Fling, Mobile Design and Development: Practical Concepts
and Techniques for Creating Mobile Sites and Web Apps, O'Reilly
Media, Inc, 2009.

[21] W. N. Schilit, A system architecture for context-aware mobile
computing [Ph.D. thesis], Columbia University, New York, NY,
USA, 1995.

[22] N. O.Bouvin, B. G. Christensen, K. Gronbzk, and F. A. Hansen,
“HyCon: a framework for context-aware mobile hypermedia,”
New Review of Hypermedia and Multimedia, vol. 9, no. 1, pp.
59-88, 2003.

[23] T. Hollerer and S. Feiner, Mobile Augmented Reality. Telegeoin-
formatics: Location-Based Computing and Services, Taylor and
Francis Books Ltd, London, UK, 2004.

[24] A. Charland and B. Leroux, “Mobile application development:
web vs. native,” Communications of the ACM, vol. 54, no. 5, pp.
49-53, 2011.

[25] J. P. Espada, R. G. Crespo, O. S. Martinez, B. Cristina Pelayo
G-Bustelo, and J. M. C. Lovelle, “Extensible architecture for
context-aware mobile web applications,” Expert Systems with
Applications, vol. 39, no. 10, pp. 9686-9694, 2012.

[26] C. Asakawa and H. Takagi, “Transcoding,” in Web Accessibility,
pp- 231-260, Springer, London, UK, 2008.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Pearson
Education, Uttar Pradesh, India, 1994.

[28] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-
aware systems,” International Journal of Ad Hoc and Ubiquitous
Computing, vol. 2, no. 4, pp. 263-277, 2007.

[29] M. E. Fayad and D. C. Schmidt, “Object-oriented application
frameworks,” Communications of the ACM, vol. 40, no. 10, pp.
32-38,1997.

[30] J. Danado and E. Paterno, “Puzzle: a visual-based environment
for end user development in touch-based mobile phones ;" in
Human-Centered Software Engineering, pp. 199-216, Springer,
Berlin, Germany, 2012.

[31] D. Martin, C. Lamsfus, and A. Alzua-Sorzabal, “A cloud-

based platform to develop context-aware mobile applications by

domain experts;,” Computer Standards & Interfaces, vol. 44, pp.

177-184, 2016.

E Pittarello and L. Bertani, “CASTOR: learning to create

context-sensitive and emotionally engaging narrations in-situ,”

in Proceedings of the 11th International Conference on Interaction

Design and Children (IDC’12), pp. 1-10, Bremen, Germany, June

2012.

[33] J. Seifert, B. Pfleging, E. Del Carmen Valderrama Bahamoéndez,
M. Hermes, E. Rukzio, and A. Schmidt, “Mobidev: a tool for cre-
ating apps on mobile phones,” in Proceedings of the 13th Interna-
tional Conference on Human-Computer Interaction with Mobile
Devices and Services (Mobile HCI ’I1), pp. 109-112, Stockholm,
Sweden, September 2011.

[34] A.]. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers
in end-user programming systems,” in Proceedings of the IEEE
Symposium on Visual Languages and Human Centric Comput-
ing, pp. 199-206, Rome, Italy, September 2004.

[32

Mobile Information Systems

[35] A. Fortier, G. Rossi, S. E. Gordillo, and C. Challiol, “Dealing
with variability in context-aware mobile software,” Journal of
Systems and Software, vol. 83, no. 6, pp. 915-936, 2010.

[36] D.E. Millard, D. C. De Roure, D. T. Michaelides, M. K. Thomp-
son, and M. J. Weal, “Navigational hypertext models for physical
hypermedia environments,” in Proceedings of the 15th ACM
Conference on Hypertext and Hypermedia (Hypertext 04), pp.
110-111, Santa Cruz, Calif, USA, August 2004.

[37] A. Couthures, “JSON for XForms,” XML Prague 2011, 13, 2011.

[38] S.Harper, C. Goble, and S. Pettitt, “proximity: walking the link,”
Journal of Digital Information, vol. 5, no. 1, article 236, 2006.

[39] S. Ceri, E. Daniel, F. M. Facca, and M. Matera, “Model-driven
engineering of active context-awareness,” World Wide Web, vol.
10, no. 4, pp. 387-413, 2007.

[40] E. Corvetta, M. Matera, R. Medana, E. Quintarelli, V. Rizzo,
and L. Tanca, “Designing and developing context-aware mobile
mashups: the CAMUS approach,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 9114, pp. 651-654, 2015.

[41] R. Francese, M. Risi, G. Tortora, and M. Tucci, “Visual mobile
computing for mobile end-users,” IEEE Transactions on Mobile
Computing, vol. 15, no. 4, pp. 1033-1046, 2016.

[42] C.Cappiello, M. Matera, and M. Picozzi, “A UI-centric approach
for the end-user development of multidevice mashups,” ACM
Transactions on the Web, vol. 9, no. 3, article 11, 2015.

[43] G.Manjunath, M. N. Murty, and D. Sitaram, “Tasklets: enabling
end user programming of web widgets,” International Journal of
Web Engineering and Technology, vol. 8, no. 3, pp. 264-290, 2013.

[44] L. Cherbakov, A. Bravery, B. D. Goodman, A. Pandya, and
J. Baggett, “Changing the corporate IT development model:
tapping the power of grassroots computing,” IBM Systems
Journal, vol. 46, no. 4, pp. 1-20, 2007.

[45] F. Daniel and M. Matera, Mashups: Concepts, Models and Archi-
tectures, Springer, Berlin, Germany, Ist edition, 2014.

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

o

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
iomedical Imaging Artificial
e Neural Systems

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

