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ABSTRACT 

One of the key elements needed to test most large-scale scheduling algorithms is a testing infrastructure. 

Large scale is of upmost importance as failures and complex behaviors are common occurrences only at 
such scale. ln order to test the reaction of a system to failures or extreme behaviors, it is necessary to 
be able to create large scale environments. Such an infrastructure must be reproducible so that several 
studies are able to compare themselves but also capable of diversity as otherwise it would risk to limit 
lysis 
eration 

 

them to particular subcases. ln this article, we propose a generic adaptable and reusable model of large 
scale workload. The original schema cornes from the Google Cluster Workload Traces which is a perfect 
representative of large scale production workload. The methodology to produce the model can be used 
at different precision levels and can classify the input level without human supervision. Contrary to most 

model analysis of such traces, we propose along with our model a reference implementation in order for 
other studies using our results to produce comparable experiments. 
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 number of different behaviors while in reality there are 
haviors as there are applications. The aimed number 

s is linked to the precision needed. The more classes of 
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To improve the precision of the resulting studies, the 
models should be possible at different precision levels 
ng a priori bias. 
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Table 1
Distribution of number of events per task.

Number of events 1 2 3 4 5

Number of tasks 248 1,093,992 24,258,907 19,378 17,215

Number of events 6 7 8 9+ Total

Number of tasks 8510 5093 3028 18,360 25,424,731

Table 2
Distribution of finishing event for all tasks with three events.

Events type Finish Kill Fail Other
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Table 3
Number of tasks and frequency for each scheduling class.

Scheduling class 0 1 2 3

T
N

Number of tasks 17,775,284 6,381,906 86,348 15,369
Percentage 73.31% 26.31% 0.35% 0.03%

o exhibit particular behaviors such as failing servers or thermal
ffects with impact on servers energy consumption.

This article is structured as follows: The next section will
escribe the inner characteristics of the Google Cluster Workload.
hen, the next section will describe the state of the art of the work-
oad models extracted from these traces. The following section will
ropose a generic model for HPC workload along-with models for
ach of its characteristics. In the next section, we will focus on using
utomatic clustering to identify the possible classes of tasks in those
races. Before the conclusions and perspectives, a last section will
ropose a reusable workload generator.

. Workload characteristics

The data used in this study and analyzed below come from one of
he datacenters of Google. Google provided a dataset [6] of some of
ts servers usage in 2011. The monitored datacenter is composed of

ore than 12,000 servers with heterogeneous characteristics. The
ifferent statistics were collected for a period of 29 days. Data have
een anonymized to protect the servers configuration (CPU, Mem-
ry, Disk) by being normalized between 0 and 1. The data consists
n a zipped collection of files taking 43 GB compressed. It includes
ix main data tables: job events, machine attributes, machine events,
ask constraints, task events and task usage. A job is composed of
ne or many tasks. The present article focuses on the task events
able. This record contains 500 CSV files, with information on 25

illion tasks. This record encompasses 100 million events which
escribe each task and their life cycles. During its lifetime, a task has
state: Unsubmitted, Pending, Running or Dead. An event indicates
transition between states (9 events).

The initial task event is Submit which allows the task to be sched-
led. The Schedule event means that a task has been scheduled on
particular server. There are ending events such as Evict which
eans that a task has been unscheduled because of a higher prior-

ty task; as Fail is when a task was unscheduled because of a task
ailure; Finish means that a task finishes normally; Kill is when a
ask is canceled by a user or by the management middleware or

hen a linked task died; Finally Lost is an event to characterize a

ask for which the ending reason is missing. Actually, most tasks
nish with either Finish or Fail due to the limits of the monitoring

nfrastructure.

able 4
umber of tasks for each priority level.

Priority 0 1 2

Tasks 5,701,546 2,357,274 1,078,

Priority 6 7 8

Tasks 633,445 0 249,93
Tasks number 20,317,398 3,327,283 533,330 49,614
Percentage 83.86% 13.73% 2.20% 0.21%

Considering the 500 CSV files which describe task events, an
analysis shows that tasks are linked with several events. Table 1
describes the distribution of number of events for each tasks. 95%
(24,258,907 out of 25,424,731) of tasks have only the three clas-
sical events: An initial Submit one, a Schedule one and an ending
event. Most other tasks (4.5%) are the ones which are submitted,
scheduled but do not finish during the time frame of the acquired
data. The remaining (<0.5%) are tasks that have intermediate events
of reconfiguration. In the following of this article, tasks taken into
account are the ones composed of three events.

The way the tasks are ending is also important. Table 2 describes
the distribution of finishing states for all tasks with three events.
73% completed normally, 26% are killed (in the Kill state), and less
than 1% finish in another state. As stated in the description of the
workload by Google [6], nearly all tasks that do not finish normally
are in the Kill state. No additional information allows to know the
actual reason that caused the tasks to finish abnormally. Almost all
the tasks (99.6%) are finishing in either Finish or Kill states, therefore
we will focus only on them in the rest of the article.

The behavior of these two types of tasks are quite different. As
an example, the total time of execution of the 73% of tasks with the
Finish state are accumulating 13 × 109 s (with an average makespan
of 1694 s) whereas the 26% of tasks with the Kill finish state are
accumulating 20 × 109 s (with an average of 7994 s).

All tasks are not equals. Some tasks are production one and
cannot be stopped or postponed, some can be postponed but not
stopped such as accounting, and some statistical verification can be
stopped but there is no more interest to restart them latter if they
were postponed.

Schedulers and middlewares need information on the require-
ments of tasks in order to evaluate the quality of their decision. One
important requirement is the impact of delay of their allocation.
In most systems, tasks are labeled with their priority or deadline.
These tasks properties affect the policy of the scheduler.

The Google Workload Traces collection contains, for each task,
two properties labeled priority and scheduling class. According to
the Google’s documentation [6], priority is used by the cluster’s
scheduler, whereas scheduling class is used locally by a machine
to manage resource usage.

Table 3 gives the number of tasks for each scheduling class. This
class value is between 0, for the least latency-sensitive tasks, to 3
for the most time-critical tasks.

Priority level is a number between 0 and 11, with 0 as the lower
priority. Table 4 provides the count of tasks per priority value.

Fig. 1 shows the average makespan for all the tasks with three
events, grouped by priority level. The tasks with the highest priority

level (9 and 10) have a longest average makespan. However, the
tasks with a priority 3 have a longer average makespan than the
others (except 9 and 10) but their presence is low in the dataset
(1027 tasks with a priority 3).

3 4 5

476 1027 13,975,078 104

9 10 11

2 230,164 579 0



Fig. 1. Average task makespan for each priority.

Table 5
Number of tasks and frequencies for the four priority groups.

Priority group Free Normal Production Monitoring
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Tasks number 8,058,820 15,938,062 230,164 579
Percentage 33.26% 65.78% 0.95% 0.002%

For this specific dataset, the priorities are logically grouped in
categories. Those groups are, sorted by increasing priorities, free,
ormal, production and monitoring. The monitoring group is, how-
ver, also included in the production group, according to the dataset
ocumentation. We decided to consider the priority groups exclu-
ive, as it seems to be a mistake in the documentation. Table 5
s obtained by grouping the data from Table 4 using those priority
roups. It appears that, in terms of task count, the monitoring group
s almost insignificant, with about 0.002% of the total.

There is no direct and absolute relationship between scheduling
lass and priority. A task with a high priority may also have a low
cheduling class and vice versa. However, Fig. 2 shows the statistical
elationship between these. For each scheduling class, it shows the
istribution of corresponding tasks between the priority groups.
xcept from monitoring class, there is a small correlation between
riority and scheduling class. The higher the scheduling class, the
igher the priority. Concerning the global distribution, most tasks
re in the normal scheduling class for each priority.

Depending on the targeted systems, these data can be directly
ransposed into a metric showing the quality of the allocation.

. State of the art

Several studies have previously focused on a better understand-
ng of the Google Traces dataset and of the characteristics of the
escribed tasks. This literature allows to know:

the heterogeneity of the physical resource infrastructure of data
centers,
the resources requested by the tasks,
the classification of the tasks that make up this workload.

In [7], authors described the heterogeneity of the hardware
esources in the Google traces. They classified priorities in five cat-

gories: Infrastructure (11), Monitoring (10), Normal production
9), other (2–8) and Gratis (0–1). They identify the boulders and
and of this workload: They have classified tasks in a majority of
mall tasks (sand) and an important number of large tasks (boul-
Fig. 2. Distribution of priority groups, for each scheduling class.

ders). In this analysis, they have shown that 2% of tasks represent
80% of CPU, Memory and that 92% are long tasks with a Free priority.
In [8], Reiss et al. analyzed the Google cluster performance. Accord-
ing to this article, many long jobs have stable resource utilization,
which helps the adaptive resource schedulers. They concluded that
machine configuration and workload composition are heteroge-
neous. This analysis of the traces allows us to understand the Google
dataset, the importance of an heterogeneous datacenter to adapt
the resources to the demand. However, they did not provide infor-
mation related on how to use this workload in another context.

The paper [9] evaluates the gap between the requested
resources and the one consumed by tasks within the datacenter.
The requested average load for a processor is 10% on the Google
datacenter. This Google trace analysis shows that processors are
overall under utilized which leads to an increase of the energy con-
sumed (90% of available processor computing power is not used).
Moreover, most of the workload has a low priority and is not sen-
sitive to latency. It shows that there is only a very few number of
sensitive tasks (scheduling class: 2 or 3). In this paper, authors focus
on the lack of energy consideration in the Google trace.

Alam et al. [10] provided a statistical analysis of the traces to
make some reference job profiles emerge. They based this approach

on resource usage, clustering of workload patterns and classifi-
cation of jobs with k-means clustering. They have demonstrated
that jobs are trimodal in nature. They can be Long jobs, Short jobs
and Medium jobs. Each job type can also be sub-categorized as Less
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ig. 3. Cumulative distribution of inter-arrival time (s) between tasks (log-scale).

esource usage, Mid resource usage and Resource hungry. They clus-
ered jobs with a k-mean with k equals to 5 (number of classes).
obs can also be classified into short, approaching mid, mid, receding
ong and long. This clustering aims at use the workload in a sim-
lator. Clustering of tasks profiles is also the main result of [11].
hese approaches using k-means lead to difficulties to generalize
he workload for producing new instance of similar workload.

In [12], authors analyzed how the servers are managed in the
luster and how the workload behaves during the period of moni-
oring. According to them, there is over 870 machine-related events
n average each days. In this study, authors have clustered the
achine population per same CPU and memory (15 groups). Con-

rary to [8], Liu and Cho [12] shown that the machines are almost
omogeneous, 93% machines have the same CPU capacity and
6% of the machines have the same memory size. Also they have
xplored the workload behavior. A lot of jobs are frequently killed,
nd during the job lifetime, 40.52% which are scheduled are killed
t least once.

In [13], authors analyzed and elaborated the characteristics
f the Google traces. They exposed the duration of execution,
aiting time of jobs. Based on this analysis they present an Ensem-

le scheme Workload Prediction method. To explore the Google
ataset, authors leveraged an Apache Hive infrastructure. They
emonstrate that 80% of the jobs are shorter than 1000 s and that
he average waiting time is less than 800 s except for the last day
here it is less than 500 s. The prediction model is based on the cor-

elation between the job event and the number of actives machines.
ur work provide the implementation of a workload generator
ithout being limited by the number of resources.

Di et al. [14] evaluated the Google trace compared to other
rid/HPC systems. They found that the Google dataset have a finer

esource allocation with respect to CPU and memory than Grid/HPC
ystems. They compared the CDF (cumulative distribution func-
ion) of the job length, 55% of tasks finish within 10 min for the
oogle dataset. Other studied traces have shorter task. They explain

his difference because of the users and applications which can
nclude commercial applications such as web services. In addition,
oogle jobs are submitted with much higher and more stable fre-
uency than that of Grid jobs. In [15], Di et al. have observed that,
or the Google workload, the resource utilization per application
logic job name) follows a typical Pareto principle (joint ratio <2%)
s for the jobs/events per application (joint ratio almost 10%). Di
t al. used a k-means clustering algorithm based on task events

nd resource utilization to classify applications. The number of
pplications in the k-means clustering sets follows a Pareto-similar
istribution. They shown that all applications can be split into 4
Fig. 4. Average makespan for each priority group, depending if the task finished by
a Finish or a Kill event (log scale).

types (single-task application, sequential-task application, batch-task
application and mix-mode application). They exposed a correlation
between task events and the four application types. For example,
81.3% of failed task events belong to batch-task applications. These
two publications show that, with the exception of the length of jobs,
the behavior of tasks in the Google workload is similar to the ones
seen in Grid/HPC systems.

These studies show that workload data is characterized (prior-
ity, latency sensitivity). The goals of these studies were mostly to
understand and characterize the workload rather than to propose a
complete set of models and their implementation for providing the
ability to generate new similar workload. The next part presents
the generic model for HPC workload along-with models for each of
its characteristics.

4. Workload laws

In a general way for a large scale datacenter, a workload is a list
of tasks defined by their:

• Starting time: Usually defined as the inter-arrival time between
tasks.

• Type: Service or Task.
• Priority: Used to evaluate the relative importance of tasks.
• Makespan: Length of the tasks in seconds.

Based on the provided data, we can extract the required laws.

4.1. Submission time

As described in the state of the art [7], tasks are submitted con-
tinuously on the monitored platform which is highly charged. Very
few inter-arrival times are over 10 s, and the average is 0.052 s. The
inter-arrival law is well modeled by a Pareto distribution, with a �
parameter set to 5 in the case of the Google Dataset as shown in
Fig. 3.

A gap for very small intervals can be explained as a large number
of tasks can be simultaneously submitted, breaking the assumption
of independent tasks. But even with this remark, a Pareto distribu-
tion simulates well the inter-arrival time.

4.2. Type
As described in Section 2, most of the tasks end with one of
the Finish or Kill event. In the first case, the task just finishes its
work and ends normally. In the second case, the documentation is



Fig. 5. Number of allocated tasks over the month for tasks ending with a Finish
event.
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ig. 6. Number of allocated tasks over the month for tasks ending with a Killed event.

nclear about which are the possible causes of a Kill event and the
ollowing behavior concerning the possible re-submission of the
elated tasks.

By analyzing these two sets, it appears they do not follow the
ame statistical properties. Fig. 4 shows the average execution time,
epending on both priority and finished or killed groups. Whereas
he makespan for the finished group tends to decrease when the
riority increases, the opposite is observed for killed group. In addi-
ion, the killed group is always longer in average. The difference
s the most significant for production level, with about 493 s for
nished group compared to 148,424 s for killed tasks.

Fig. 5 shows the effective mass of jobs ending with a Finish event.
t shows the simultaneous running tasks over time that finish well.
he mass follows a fractal structure coherent with the inter-arrival
nd makespan laws. It also demonstrate daily and weekly patterns.
or long-term characterization of traces, such long-term patterns
hould be taken into account and modeled. Near the end of the
onitoring there is a peak, with a high number of jobs. They are

xecuted before the end of the experiment window and due to lack
f information it is unknown if it comes from an actual peak of sub-
itted jobs (similar to the ones in the middle of the time window)

r if it is an artifact due to the end of the monitoring of the cluster.
Fig. 6 shows the effective mass of jobs ending by a Kill event.

ontrary to the previous mass, the effective mass of executing jobs

ith a non-finish event follows a less regular curve. The average
akespan of these tasks is higher than that of the Finish cate-

ory and thus the mass toward the end of the monitoring window
Fig. 7. Distribution of makespan for tasks finished normally (log scale).

decreases as these long-lasting jobs start finishing out of the mon-
itoring window. Even with a lower number of tasks, this figure
shows that the overall mass is higher due to these longer tasks.
The high variability is less linked to daily and weekly timescale, as
these jobs are more related to infrastructure services whereas the
one ending with a Finish event are more often jobs submitted by
actual users of the platform.

Overall, the average number of running tasks at a particular time
is largely superior to the number of servers. It shows that most tasks
use less than 100% of a server resources. Actually, other files in the
Google Dataset contains information about processor and memory
consumption over time for each job and show that these are often
not using whole servers.

Those different characteristics, especially the important execu-
tion time and the number of high-priority tasks in the killed group,
suggest two different populations. Our hypothesis is that most of
the killed tasks are, in fact, long-running services. It may be some
monitoring services, web servers, or any other task implementing a
service for other internal or external usage. This kind of service has
no pre-determined duration, and may be started and killed to scale
with the demand or with the cluster usage. The killed set should
also contain some tasks killed manually for other reasons, but it
cannot explain the amount of production tasks stopped this way.

In the following sections, we will use task to refer to a finite
task, which have a given amount of work to do before to finish
normally. As an example, typical kinds of tasks in such a cluster are
MapReduce jobs, each containing a set of map and reduce tasks. The
word service will be used to refer to a task which, at the opposite,
has no precise amount of work to do, and therefore must run until
stopped.

4.3. Makespan

The execution time of tasks is one of the main characteristics
of a workload, as it differs a lot depending on the kind of applica-
tion it contains. Particularly, the task makespan is clearly different
between traditional grid workloads and this cloud trace, as pointed
by Di et al. [14]. As most other characteristics are similar, a method
to have more HPC-like traces would be to increase the average
makespan.

4.3.1. Tasks
In Fig. 7, the distribution of finished tasks makespan shows a
is typical of long-tailed distributions, like Pareto or log-normal.
Table 6 gives more precise statistical information. The shape of
the distribution is confirmed by the gap between the median value



Table 6
Statistics for execution time of task finished by a Finish event.

Priority Count Average Std. dev. Median

Free 5,081,775 1937.9 4518.7 345.7
Normal 12,677,000 1600.3 5231.4 492.6
Production 49,190 493.9 1955.1 39.1
Monitoring 0 NA NA NA
All 17,807,965 1693.6 5034.5 448.9

Fig. 8. Distribution of execution time before the Kill event for killed tasks.

Table 7
Statistics for execution time of tasks finished by a Kill event.

Priority Count Average Std. dev. Median

Free 2,977,045 5195.6 24,336.4 595.4
Normal 3,261,062 2688.5 19,468.9 213.9
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Fig. 9. Distribution of priority groups, for each scheduling class, among the task
finished by a Finish event.
Production 180,974 148,424.4 294,182.3 31,429.4
Monitoring 579 388,232.5 579,101.9 71,831.6
All 6,419,660 7994.3 59,363.8 333.8

nd the average. Standard deviation is also important compared to
verage, another property of long-tailed distributions.

To use the more appropriate distribution for modeling the
akespan, we compared the Kolmogorov–Smirnov (KS) statistic

etween several fitted distribution and the original data. The more
he KS statistic is close to 0, the more the chosen distribution is sim-
lar to the real data. A fit with a Pareto distribution gives a Pareto
oefficient of 0.113 and a scale factor of 0.073 for these tasks. Its cal-
ulated KS statistic is 0.5. The parameters of the fitted log-normal
istribution are � = 1.42 and � = 6.25, with a KS statistic value of
.057. By looking at the KS statistic, the better model to describe
his characteristic is the log-normal law.

.3.2. Services
Fig. 8, similarly, shows the same kind of distribution, with even

onger makespans. By comparing Table 7 with the statistics of fin-
shed tasks, it appears that the average makespan is about 5 times
igher, with a lower median. A fit with a Pareto distribution gives
Pareto coefficient of 0.0916 and a scale factor of 0.0077 for these

asks. Using a log-normal law, fitting it gives � = 2.06 and � = 6.14.
he calculated values of KS statistic are 0.49 for the Pareto distribu-
ion, and 0.064 for the log-normal one. For the services too, using a
og-normal distribution to model their makespan is accurate.

.4. Priority
The exact semantic of priority and scheduling classes is not spec-
fied in the original document. From the combination of priority and
cheduling class, importance of tasks and services can be deduced.
Fig. 10. Distribution of priority groups, for each scheduling class, among the task
finished by a Kill event.

To represent this relative importance in our model, we use a value
in the continuous interval]0, 1]. The lower this value is for a task,
the lower its priority is.

4.4.1. Tasks
For tasks, as shown in Fig. 9, there is a strong relationship

between priority and scheduling class. To model this behavior, a
simple categorization is sufficient. From the statistic of occurrences,
84% are of the lowest priority, 15% of the next one, and the remain-
ing 1% of the highest ones. It can be simulated with an exponential
law, truncated between 0 and 1, with a high � parameter.

4.4.2. Services
For services, as shown in Fig. 10, the relationship between prior-

ity and scheduling class is less visible but present. A simple model
would be also a truncated exponential law, with a lowest � value
compared to the tasks priority model.

4.5. Comparison with other workloads

Such an analysis of this single dataset can only allow us to model
the workload for this specific Google’s cluster. However, several

reasons give us confidence that our model can be used to describe
workloads run by other cloud and grid clusters.

Those traces are known to contain multiple and heterogeneous
kinds of applications. This is also the case of datacenters used by



Fig. 11. Silhouette analysis of a 2-clustering of tasks using k-means.

Table 8
Centroids and analysis of 2-clustering.

Cluster Makespan Priority Sched. class Frequency Disparity

0 3508 0.51 0.72 40.5% 17.2
1 2456 4.1 0.11 59.5% 6.2

Table 9
Centroids and analysis of 4-clustering.

Cluster Makespan Priority Sched. class Frequency Disparity

0 1911 0.9 1.64 17.9% 19.8
1 2482 0.53 0 26.2% 6.2
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Fig. 12. Variation of the average distance to the closest centroid after a k-mean, for
different values of k.
2 1662 4.2 0.1 55.2% 4.4
3 137,630 3.39 0.96 0.7% 1.4

ost IaaS and PaaS cloud providers, and we think this diversity
ives good insights on their typical workloads.

For datacenters running more homogeneous applications, such
s HPC jobs, Di et al. have done detailed comparisons between the
races from Google and those provided by several grid infrastruc-
ures [14]. They found some differences, such as the lack of periodic
atterns in tasks submission over time for the traces we studied
ere, compared to the grid ones. Particularly, diurnal submission
attern is a common characteristic of datacenter workloads, and
ay be added to our model to fit better to a typical grid workload.
Di et al. also discovered several similarities which make

ur model relevant for grid computing. Notably, distribution of
akespan have a long-tailed shape in every workload they studied,
hich is a key characteristic of Pareto and log-normal laws. They

bserved differences, such as a smaller average makespan, a higher
aximum and more short tasks in the Google traces compared

o the grid ones. Those characteristics can be obtained, using our
odel, by adjusting the parameters of the probability distribution

unctions.
In [16], Kavulya et al. analyzed the traces of a production Hadoop

luster owned by Yahoo!. They found the same kind of distribu-
ion in the Hadoop jobs completion time, and used a log-normal
aw to model it. Such similarities between several kinds of work-
oads show that our model, based on a specific dataset, keeps some
mportant characteristics shared by workloads in other datacenter
se cases.
. Automatic classification

By assuming two main categories, tasks and services, we worked
n a priori classification. It allowed us to establish a preliminary
Fig. 13. Silhouette analysis of a 4-clustering of tasks using k-means. The cluster
labeled 3 contains less than 1% of the tasks and is therefore difficult to see here.

analysis on the dataset and to understand some of its characteris-
tics. However, this classification may seem artificial, and it may be
interesting to compare it to the result of an automatic classification.

Some previous works already studied those traces with clus-
tering methods [17,10], but were focused on different properties
than the ones we covered in this paper. We used a k-means algo-
rithm to classify all the tasks (ending either by a finish or kill event)
with respect to three properties: the makespan, the priority and
the scheduling class.

5.1. 2-Clustering

In the case of our initial assumption, we had only 2 classes.
Therefore, it is interesting to study the results of an automatic
2-clustering on the same dataset.

The results of the 2-clustering are summarized in Table 8. In
this table, the frequency is the part of the tasks belonging to a clus-
ter, and the disparity is the ratio between the average makespan
and the median one for a given cluster. The first category seems
to be relatively long tasks, with very low priority. The second one
is centered on medium execution time, but higher priority. More-

over, this second class represents around 60% of the total amount
of tasks, confirming the high quantity of small tasks in these traces.

With k = 2, the clustering is far to be perfect. Fig. 11 shows the
silhouette plot using such clustering. With an average silhouette
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Section 4, it is also possible to use this algorithm with parameters
idth of 0.55, we can deduce that those two categories are rele-
ant, without being very accurate. The cluster 0, in particular, gives
elatively bad results, probably because it is too wide.

.2. General k-clustering

In order to know which value of k is the most relevant for this
ataset, different values were tested. Fig. 12 gives the average dis-
ance, for each of the normalized data, to the closest centroid for
hose different k. The elbow method [18] is quite difficult to apply
ere due to the lack of a clear angle. However, we chose k = 4 as
reasonable value: it is still possible to decrease the average dis-

ance by using a higher value, but it is a good compromise between
umber of classes and accuracy.

The results of clustering using 4-means are given in Table 9.
mong the 4 different classes of tasks, the clusters 0 and 1 seems
ssociated to medium tasks with low priority. The first one contains
hortest tasks with relatively high scheduling class value, whereas
he second one contains longer tasks with very low scheduling
lass. The cluster labeled 2 contains shorter tasks in average, but
ith high priority, which still represent more than the half of the

otal amount of tasks. Finally, the cluster number 3 is quite inter-
sting, despite the very low proportion of tasks (0.7%) it represents.
t consists in the longest tasks (an average of 38 h), which also have
high priority.

According to the silhouette plot, given in Fig. 13, this cluster-
ng seems quite accurate, having an average silhouette width of
.68. The different classes seem to fit decently the characteristics
f the tasks that belong to them, at the exception of the cluster 3,
orresponding to the very long tasks.

Our initial, a priori, assumption of the existence of two distinct
opulation of tasks and services in those traces may be questioned.

owever, some of the results obtained by automatic clustering

ends to confirm this hypothesis, like the small group of very long
asks in 4-clustering. Moreover, the results confirm that using only
categories leads to a decent clustering.
6. Generating workload

The law described in Section 4 are simulating exactly the same
behavior as the workload traces from the Google Datacenter. To
create more generic workloads it is needed to be able to provide
configuration possibilities needed to adapt to different types of
experiments and context.

There is one main characteristics needed to define a particular
workload: Dynamism

• Dynamism: Represents the dynamism of task submissions, as the
average duration between two consecutive tasks.

Three other characteristics are to be specified for each category
(tasks and services) : Frequency, Mass and Disparity.

• Frequency: Is a value between 0 and 1 representing the percent-
age of tasks of this category in the total workload. The sum of the
frequencies for the different categories must be equals to 1.

• Mass: Represents the average makespan.
• Disparity: The ratio between the average and the median

makespan, must be greater than 1.

For these Google traces, the dynamism, which is the average
inter-arrival time, has a value of 0.05 (in seconds) for Google Traces.
As the percentage of tasks in this workload is 70%, we use a value
of 0.7 for their frequency, and 0.3 for the services.

The mass and disparity para meters are calculated using the aver-
age and median values from Tables 6 and Table 7. For tasks, we have
a mass of 1700 and a disparity of 3.8. The values found for services
are respectively 8000 and 24.

The implementation of the generator is shown in Algorithm 14
in the Python3 language. In addition to the workloads laws from
to generate a workload similar to the k-clustering analysis from
Section 5. The values of the parameters can be directly retrieved
from Tables 8 and 9.
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lgorithm. Reference implementation of tasks generator imple-
ented in python.

The parameters we are using are important characteristics of a
orkload with intuitive enough meaning (average makespan and

heir disparity, average inter-arrival time and frequency of each
ask group). Therefore, it is also easy to use the proposed workload
enerator to create a workload from scratch with specific charac-
eristics, for instance for test purposes.

. Conclusion

In this article we proposed the models needed to create a Work-
oad generator aimed at large scale homogeneous clusters. The
races used as basis of this work are large scale (from time and
pace point of view) realistic data from a Google internal data-
enter. The second contribution is an actual implementation of
he workload generator with possibilities to adapt to several use
ases. The proposed categories (services and tasks) are backed with
lements from the evaluation of different possible classifications
sing k-means methods. The model and generator are adapted to
generic number of categories which can be updated consider-

ng the aimed precision of the Workload generator. This generator
ill open new possibilities for testing large scale datacenter and
ill help providing insight for several scheduling methods based

n different metrics such as performance, energy, reliability and
ynamism. This generator can help us to improve the scalability of

arge datacenter to provide an adaptable workload for a green dat-

center. This will help us to understand the energy flows and adapt
he workload to improve efficiency energy. In the future, we plan to
ugment the generator with more diverse possibilities such as dia-
ram of tasks, constrained resources or MPI tasks. The next step will
be to use it in large scales simulators in order to evaluate schedul-
ing policies. In order to increase precision for long-term analysis,
daily-, weekly- and seasonal-patterns will be also necessary.

Finally, another important step will be to generalize the pro-
posed laws using several other datasets such as the one of the
Grid Workload Archive (http://gwa.ewi.tudelft.nl/) and to provide
relevant parameters to take advantage of these laws.
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