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Tensor Methods for Multi-Aspect Trajectory Data
Mining

Eleftherios Kofidis

Abstract

Tensor models have been well established as a natural and powerful way of representing systems and data that involve
multiple aspects/dimensions. Assisted by their unique ability to unveil latent information through tensor decomposition methods,
they have proved successful in numerous applications. It is thus of no surprise that they have also been employed for trajectory
data mining applications, especially those that enrich mobility data with additional, generally heterogeneous aspects. This article
aims at providing a brief overview of the related literature.

Index Terms

Block-Term Decomposition (BTD), Canonical Polyadic Decomposition (CPD), data mining, matrix, rank, tensor, trajectory,
Tucker decomposition (TD)

I. INTRODUCTION

MASSIVE spatial trajectory data, representing the mobility of a diversity of moving objects, such as people, vehicles,
and animals, have become available with the advent of location-acquisition and mobile computing technologies [1].

This has fed a number of related data mining problems, such as trajectory pattern mining and classification, with applications
found in urban computing, disaster prevention and management, and aircraft and vessel trip planning, among others. Enriching
raw trajectories of (x, y, t) points with additional and heterogeneous dimensions (such as weather conditions, points of interest
(POIs), social interactions, etc.) gives rise to the so-called multi-aspect trajectory data.

The multi-aspect character of these data renders tensor models and methods [2] well-suited to their representation and
analysis. Tensors, i.e., multi-dimensional arrays, are a natural way of representing systems and data involving (explicitly or
implicitly) multiple dimensions (or “ways”/“modes”). For example, a 3-way location tensor may show the set of (x, y, t) points
of a raw trajectory. Refining the time description to week day and hour of day would increase the order of the tensor to 4.
Additional dimensions can be included (provided they have some correlation with the rest) towards a higher-order tensor with
a higher expressive power. Alternatively, contextual data can be considered (as separate matrices or tensors) through their
coupling (fusion) with the tensor. Besides their being a natural representation model, able to capture multiple dependencies and
relations, tensors are useful for their richness of decomposition models and methods, which allow to unveil latent information
in the data not recoverable otherwise [2]. They have thus been successfully applied in several data mining tasks, including
those of urban computing [3], in the form of a number of possible decomposition models adaptable to the specifics of each
application [4].

For trajectory data mining, tensors can serve as alternative (for example, to graphs or matrices) models1 [1] and hence allow
the exploitation of the rich arsenal of tensor decomposition methods to accomplish tasks like pattern extraction [3], location or
trajectory prediction [6], and completion of missing data [7]. Non-static scenarios, such as with the formation and deformation
of groups of moving objects, can be coped with incremental and online tensor decomposition [8], [9]. This article aims at
providing a brief overview of the related literature, including works from other areas (e.g., computer vision) that are deemed
pertinent.

The rest of this article is organized as follows. The notation to be used is explained in the following subsection. Knowledge
about tensors and their decomposition needed for the purposes of this article is outlined in Section II. Section III reviews the
literature of tensor-based trajectory data mining. Related work on other kinds of data that could however be helpful in this
context is briefly cited in Section IV. Some required math is deferred to the appendix.

A. Notation

Bold lower- and upper-case letters will be used to denote vectors and matrices, respectively. Tensors will be denoted by bold
upper-case calligraphic letters. The mode-n unfolding of a tensor X will be denoted by X(n). ×n will denote the mode-n
product. The superscripts T and † will denote transposition and pseudo-inversion, respectively. The outer, Kronecker, Khatri-
Rao and column-wise Khatri-Rao products will be respectively denoted by ◦, ⊗, �, and �c. ‖ · ‖F stands for the Frobenius
norm. R is the field of real numbers.

E. Kofidis is with the Department of Statistics and Insurance Science, University of Piraeus, 185 34 Piraeus, Greece and the Computer Technology Institute
& Press “Diophantus” (CTI), Greece. E-mail: kofidis@unipi.gr (https://www.unipi.gr/unipi/en/kofidis.html).

1For example, the development of a non-parametric, non-sequential (all locations are considered at once) model for human trajectory synthesis that is
proposed in [5] with the aid of adversarial networks, relies on a 4th-order tensor (space, time and duration at stay points) to represent the trajectory data.
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Fig. 1. Mode-1 unfolding of a 3-way tensor.

T =

c1

a1

b1 + · · · +

cR

aR

bR

Fig. 2. Canonical polyadic decomposition of a 3rd-order tensor.

II. TENSORS: A BRIEF INTRODUCTION

Tensors are arrays of multiple dimensions2 generalizing matrices. The number of dimensions (or ways or modes3) is called
the order of the tensor. Thus, a matrix is a 2nd-order or 2-way tensor while a vector is a tensor of order one (and a scalar is
a tensor of order zero).

Although higher-order tensors are a subject of multi-linear algebra, in practice they can be seen and processed with the aid of
matrix algebra via their matricization or unfolding. Consider, for simplicity and without loss of generality, 3-way tensors, and
let T ∈ RI1×I2×I3 . There are three unfoldings of T , one for each of its three modes. The mode-1 unfolding is the I1 × I2I3
matrix T(1) built as shown in Fig. 1. Thus, modes 2 and 3 are combined (concatenated) and the index for mode 3 runs faster
than for mode 2. Mode-2, T(2) ∈ RI2×I3I1 , and mode-3, T(3) ∈ RI3×I1I2 , unfoldings result in an analogous manner, with
the index of the second of the concatenated modes running faster. A tensor can also be viewed as consisting of slices (or
slabs). Thus, as shown in Fig. 1, T(1) results from the concatenation of the lateral slices of the tensor. T(2) and T(3) result
by concatenating its frontal and horizontal slices, respectively,

Although, as seen above, a tensor is simply the higher-order analogue of a matrix and it can be represented (and processed)
via its matrix unfoldings, there are a few fundamental differences with matrices, which make tensors more useful and interesting.
First, in contrast to the matrix case, where the rank is well-defined and relatively easy (in polynomial time) to be computed,
the notion of tensor rank is not always well-defined and its computation is far from being easy (an NP-hard problem [2]). The
rank of a matrix is equal to its column rank (the number of linearly independent columns) and its row rank (the number of
linearly independent rows). It can also be defined as the minimum number of rank-1 (=outer product of two vectors) matrices
that give the matrix in a linear combination. For a higher (than 2) order tensor, the ranks of its column (mode-1) space, row
(mode-2) space, tube (mode-3) space, etc. do not necessarily coincide with each other nor with the minimum number of rank-1
tensors summing up to the given tensor. It is in the latter way that the tensor rank is defined. Thus, in analogy with a rank-1
matrix, a rank-1 tensor (say of order 3) is the outer product of three vectors: T = a ◦b ◦ c. What does this represent? Seeing
the tensor as a stacking of its frontal slices, a rank-1 tensor has frontal slices that are rank-1 matrices that are scalar multiples
of one another. If the tensor is expressed as the sum of R such tensors and R is minimal (=tensor rank), the so-called canonical
polyadic decomposition (CPD) [2] results:

T =

R∑
r=1

ar ◦ br ◦ cr , [[A,B,C]] (1)

with A ,
[
a1 a2 · · · aR

]
∈ RI1×R and B ∈ RI2×R and C ∈ RI3×R similarly defined. CPD (less frequently referred to

as PARAFAC or CANDECOMP or Kruskal decomposition) is the most widely known and used tensor decomposition model,
due to its conceptual simplicity. Each of the R rank-1 terms can be seen as representing one of the R components (or clusters)
forming the tensor. A schematic diagram of CPD is given in Fig. 2.

2In a manner analogous to the way matrices (2-way arrays) represent linear operators, tensors represent multi-linear operators. A tensor will, however, be
simply defined here as an array of numbers.

3These two terms do not in general have exactly the same meaning but they are commonly used interchangeably in the tensor data mining literature.
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Fig. 3. Tucker decomposition (TD) of a 3rd-order tensor.

Recall the slice-based interpretation of the rank-1 tensor described previously. Adding R such terms as above readily leads
to the following expression for the i3th frontal slice of T :4

T (:, :, i3) = a1 · [c1]i3 · b1 + · · ·+ aR · [cR]i3 · bR = A · diag(C(i3, :)) ·BT, i3 = 1, 2, . . . , I3 (2)

This viewpoint of CPD reveals another very important difference with matrices. Instead of decomposing (factorizing) a single
matrix, a number of matrices are jointly decomposed, with the term jointly here referring to the common factors A and B. The
I3 > 1 factorizations in (2) can thus be expected to allow for the identification of A,B,C. Moreover this is possible under
mild conditions, which contrasts the inherent non-uniqueness of unconstrained (or mildly constrained) matrix decompositions.5

The most well-known example of essential6 CPD uniqueness condition is the (sufficient) Kruskal’s condition [2], which states
that, if k(A) + k(B) + k(C) ≥ 2R + 2, then R is the tensor rank and A,B,C are essentially unique. In this condition,
k(M) stands for the Kruskal rank of a matrix M, that is, the maximum number k such that any k columns of M are linearly
independent. Obviously k(M) ≤ rank(M), with the equality holding for generic matrices.

It is thus of no surprise that the CPD model has been by far the most popular in the applications of tensor methods: it
is conceptually simple and allows the unique identification of its factors, which is what is mostly needed in multi-way data
analysis applications. Moreover, as also mentioned in the following, a rich palette of algorithms is available for its computation.
However, CPD is also very constrained in its structure. Namely, each component in one of the modes only interacts with the
corresponding components in the other modes. No other interaction is allowed, which renders the CPD model inadequate to
capture more complex multi-dimensional relations as it is required in some contexts [10]. A much less constrained decomposition
model, featuring full interaction among all the components, is offered by the so-called Tucker Decomposition (TD) [2]:

T = S ×1 A×2 B×3 C, (3)

where A,B,C may now have different numbers of columns, say R1, R2, R3, S is an R1×R2×R3 tensor (called core), and
the mode-n product S ×n U yields a tensor with mode-n unfolding US(n). TD is schematically given in Fig. 3. The most
popular method of computing the TD, higher-order singular value decomposition (HOSVD), relies on the SVDs of the tensor
unfoldings and offers an (approximate) alternative to the matrix SVD tool for estimating the modal ranks, rank(T(n)), and
subspaces of a tensor. Possibly with truncation per mode, this is a quasi-optimal (in the least squares sense) rank-(R1, R2, R3)
approximation. Observe that the CPD is a special case of the TD, corresponding to a diagonal core tensor.

Though a powerful representation model, the TD suffers from lack of uniqueness, contrasting the mild uniqueness conditions
for CPD. A non-unique decomposition can be useless in practice since it may not allow the extraction of interpretable
information. An intermediate, in terms of degrees of freedom and uniqueness guarantees, alternative is given by the so-
called block-term decomposition (BTD) [11]. In its most widely used version, known as rank-(Lr, Lr, 1) BTD, it has the
form

T =

R∑
r=1

Er ◦ cr, (4)

where the I1 × I2 matrix Er is of rank Lr and can hence be factorized as ArB
T
r with A ∈ RI1×Lr and B ∈ RI2×Lr . Fig. 4

depicts BTD schematically. A comparison with (1) shows that rank-(Lr, Lr, 1) BTD generalizes CPD by allowing the first two
modes to have a richer than rank-1 structure per term. Note that CPD can be otherwise seen as rank-(1,1,1) BTD. Lying between
the two extremes, namely CPD and TD, BTD enjoys a combination of their advantages. As expected, however, its uniqueness
is less well guaranteed than in CPD. Thus, a (sufficient) condition for (essentially) identifying cr’s and Ar,Br, subject to
an Lr × Lr matrix uncertainty per block term, is that A ,

[
A1 A2 · · · AR

]
and B ,

[
B1 B2 · · · BR

]
be

of full column rank, and C ,
[
c1 c2 · · · cR

]
have no collinear columns [11]. That the factors Ar,Br can only be

identified with a matrix uncertainty should be expected from the intrinsic non-uniqueness of the factorization of the matrix Er.
Nevertheless, it is very commonly the case in practice that only their product, Er, needs to be uniquely identified (e.g., [10]).

4Analogous expressions can be written for the other modes, due to the symmetry of the CPD model.
5Unless strong constraints (such as orthogonality, sparsity, statistical independence, etc.) are imposed on a matrix decomposition T = ABT, it is impossible

to uniquely determine its factors since Ã , AQ and B̃ , BQ−T will give the same result for any non-singular matrix Q.
6Clearly, the CPD factors can only be determined subject to a (column) permutation and scaling ambiguity.
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Fig. 4. Rank-(Lr, Lr, 1) block-term decomposition (BTD) of a 3rd-order tensor.

Subject to the uniqueness condition and provided there is no modeling error, the BTD of a tensor can be algebraically
computed with the aid of a generalized eigenvalue decomposition (GEVD) [11] or a simultaneous matrix diagonalization
(SMD) method [12]. In practice, however, a best BTD approximation is sought for, which can be stated as follows, on the
common assumption of Gaussian i.i.d noise:

min
A,B,C

∥∥∥∥∥T −
R∑

r=1

(ArB
T
r ) ◦ cr

∥∥∥∥∥
F

This problem can be solved via an alternating least squares (ALS) method, which alternatingly solves for each one of the factors
considering the others fixed at their present values [13]. To this end, the three mode unfoldings of the BTD are employed:

TT
(1) = (B�C)AT (5)

TT
(2) = (C�A)BT (6)

TT
(3) =

[
(A1 �c B1)1L1

· · · (AR �c BR)1LR

]︸ ︷︷ ︸
S

CT (7)

Note that the above holds for CPD as well, with the Khatri-Rao products being defined columnwise and S , A �c B. All-
at-once optimization schemes, for example employing nonlinear least squares [14], can be also used. It should be noted that,
in view of the non convex nature of the problem, local minima might be reached depending on the initialization. In practice,
multiple random (and GEVD or SMD-based, whenever possible) initialization is employed to ensure global optimization.

In addition to constraints on the structure of the decomposition, giving rise to the decomposition models described previously
as well as a variety of others, other constraints, that can be dictated by the application context, can be incorporated. A notable
example, particularly relevant in mobility data applications, is the constraint of non-negativity. A non-negative tensor may have
to be factorized into factors that should also be non-negative in order for them to be meaningful. Algorithms for non-negative
tensor decomposition are available, often inspired from non-negative matrix factorization. Nevertheless, constraints generally
affect the uniqueness conditions as well as the rank of the tensor itself.

What is, however, much more challenging (in tensor decomposition in general but more specifically in BTD) is to efficiently
estimate the model structure (ranks R and Lr for rank-(Lr, Lr, 1) BTD) for a given tensor, particularly if it is a big one.
Research in this subject is under-way and promising results for the BTD case were recently reported in [15].

III. TENSOR-BASED TRAJECTORY DATA MINING

Capitalizing on the expressive power of tensor decomposition models, a number of works on trajectory data mining rely on
tensor methods for addressing the problem of scarcity of measurements. When considering a big urban network, for example,
there may be no (or very few) data associated with some of the road segments. Higher-order tensor completion [7] proves a
quite good solution to this kind of problems, able to deal even with missing data percentages of the order of 90 %. The reason
behind this success is the high ability of the tensor models to capture underlying multi-dimensional relations, which, when
translated to a low-rank tensor decomposition, can successfully effect the missing data imputation. TD is proposed in [16] for
imputing missing traffic data, outperforming statistical/matrix-based techniques. The tensor modes are link, week, day, hour.
The tensorization (folding) of the temporal dimension here is typical of the way implicit multi-dimensionality is translated
into tensor modes. Similar ideas, again based on TD for tensor completion, are applied in [17] for traffic prediction. Notably,
the tensor model therein is dynamic (a tensor sequence) and so is the completion approach proposed. Advantages over matrix-
based techniques which do not fully exploit the inherent multi-dimensionality of the data are demonstrated. The imputation
of missing speed measurements is achieved in [18] with the aid of an orthogonal TD of the (time of day, sensor, day) speed
tensor, whose low multilinear rank is ensured via iterative soft thresholding that exploits the core tensor compressibility.

Estimation of travel time per road segment in real time is addressed in [19], again through a tensor representation (collecting
GPS data) and its decomposition coupled with context information (including historical trajectory, POI, correlation with
neighboring segments and times, etc.) formulated in matrices. Frobenius norm (Tikhonov) regularization is used to avoid
overfitting, a common approach in tensor decomposition computation. Coupling with context matrices aids in solving the
data scarcity problem. A very similar tensor-based (BTD) context-aware approach is followed in [20] to dynamically provide
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personalized travel time estimation from a citywide perspective, using sparse and large-scale GPS trajectories. Speed and hence
travel time is predicted in [21] with the aid of deep learning applied in the result of the speed tensor (non-negative CPD)
factorization. The latter is (sparsely) built out of the speed data for (location, time) pairs, at three levels of temporal granularity.
A non-negative CPD is also used in [22] to help extract activity patterns and hence classify the movement data into movement
types such as home-to-work and work-to-home. A mobility graph (containing the flow among regions) is first constructed
and then re-formulated into a tensor, whose tth frontal slice is the adjacency matrix of the flow graph at time t. The fusion
(through coupled decomposition) of more than one transport modes is mentioned among the future research directions. The
extraction of activity patterns in disaster evacuation scenarios with the aid of tensor CPD is proposed in [23]. The tensor
contains the frequency of each person status (e.g., stay at home, move, safe, etc.) at (location, time) points. The high sparsity
of the tensor is again addressed via its decomposition. Fusing (coupling) the person status with the movement direction tensors
is also proposed. The same approach is followed in [24], namely the data sparsity problem is addressed via a context-aware
CPD of the location-time tensor, to aid in the reconstruction of hidden trajectories. An analogous approach is taken in [25]
for estimating the bus speeds. The TD of the traffic tensor, which contains the traffic volume per sensor, week, day and time
of the day, helps coping with the data sparsity problem in [26]. The aim of the study is to predict travel time based on sparse
traffic measurements and it achieves that with the aid of k-NN clustering on the completed traffic tensor. Clustering of the
CPD components of a (location, time, user) tensor (possibly with additional contextual information) is employed in [27] to
extract patterns of loan/return in bike sharing. Reliance on tensor completion for complete trajectory reconstruction from sparse
mobile phone data is also found in [28], where the location tensor, containing the sub-trajectory per week and day of week, is
CPDed. A tensor representation of the (x, y, t) data for pedestrian mobility is adopted and its sparsity is efficiently taken into
account in [29] for the discovery of group patterns. In an effort to estimate the duration of refueling events, [30] also employs
coupled matrix and tensor factorization (coupled regularized HOSVD) to solve the sparsity issue along time and gas station
modes. Context information (such as POIs, price, brand, weather, etc.) is shown to considerably aid the task. Determining the
real-time status of gas stations is mentioned among the plans for future work. In an Internet of Things (IoT) context, [31]
benefits from the power of tensor completion to interpolate the missing spatio-temporal observations from a city-wide sensor
network.

To perform network-wide prediction of speed and at multiple horizons, tensor representation is employed in [32]. Prediction
is based on finding a common latent subspace between current-past and future states, using multi-way partial least squares
(PLS). CPD, TD, and BTD are considered for modeling the tensor, with insignificant differences in the prediction performance
attained here. An analogous problem is addressed in [33], where non-negative tensor decomposition is employed to produce
features that are then clustered (K-means) for predicting traffic behavior. In [34], the tensor model is only used to contain
the (x, y, t) data before it is condensed along time to a matrix for the purpose of predicting future location based on an
exponentially fading window of recent locations. [35] encodes past trajectories and the scene context into a multi-way tensor
that feeds a CNN aiming at predicting (other) drivers’ trajectories.

In [36], a single transit trip is represented by a multivariate tuple (card ID, passenger type, time, boarding stop/station,
alighting stop/station). Probabilistic latent semantic analysis (PLSA) is adopted, with the probabilities contained in a probability
tensor and the probabilistic profile of the card ID pattern, passenger pattern, etc. being computed from the core tensor of its
TD. The expectation maximization (EM) algorithm is employed for estimating the parameters of the PLSA model. A 4-way
tensor, with modes for origin, destination, time, and day category (weekday or weekend), is built in [37] with the corresponding
transition probabilities. Its high sparsity is again dealt with via its factorization. Notably, the large tensor size is addressed with
the aid of a divide-and-conquer method resembling ParCube in [3]. Prediction of mobility is performed in [38] with the aid
of decomposing the probability transition tensor corresponding to a multi-variate (i.e., with multiple attributes), multi-order,
multi-modal and multi-user Markov model. In [39], a context-aware TD of the trajectory tensor (origin, destination, time)
similar to that of [19] is proposed for understanding and predicting urban dynamics. A Bayesian approach is taken to solving
the regularized decomposition. Similar contents, with a so-called multivariate multi-step transition tensor (M2T2), are found in
[40]. The power of tensor-based completion/inference is demonstrated in [41], where location privacy is shown to be vulnerable
to attacks utilizing EM-based tensor factorization even in the realistic scenario where very little training is available and some
locations are even missing. [42] leverages the potential of factorization methods in user recommendation applications to develop
a method of predicting semantic locations based on a Markov model which is built upon the movement history. Personalized
predictions are achieved by including a user-specific mode to the matrix factorization model, giving rise to a tensor CPD.

With the aid of the CPD of a (location, vessel, time) tensor encoding the vessels’ trajectories that are deduced from Automatic
Identification System (AIS) data, [43] discovers mobility patterns and addresses the data sparsity issue. [44] goes one step
further, by discovering mobility patterns via co-clustering. The latter is implemented (as in [45]) with the aid of the non-
negative CPD of the AIS tensor, properly regularized to ensure sparse latent factors as required by the clustering problem.
More information can be added to these trajectory points, including vessel identity, course/speed, ship type, etc.

IV. RELATED WORK

Though strictly speaking not relevant to trajectory data mining, there are some more works that deserve to be considered
for their relevance with tensor-based methods and their close relation or analogy with the application of interest here. These
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include applications in computer vision, where motion trajectories in videos are analyzed. [46] assesses tensor decomposition
models for representing and effecting queries of multiple-object trajectories in video indexing and retrieval. In [47], the problem
of matching trajectories over video frames for multi-target tracking is addressed with the aid of rank-1 tensor approximation.
Human motion (trajectories of body joints), for ergonomic applications such as design of car seats, are analyzed with the
aid of tensor modeling in [48]. Detecting semantic events in audio-visual multimedia is also relevant here, particularly when
leveraging the multi-modal aspects of the problem [49].

Other related works include [50], [51] for context-aware (including geographic data) collaborative tensor-based filtering,
and [52], which addresses the rareness of abnormal events in surveillance applications through factorizing an (object, time,
location) tensor containing the frequencies of events. In [53], the aim is to leverage non-negative CPD to detect groups of
players characterized by similar features (i.e., actions they perform during the game) and strategies, as well as their temporal
trajectories, i.e., their evolution. This human behavioral pattern mining as applied in online gaming bears a close resemblance
to unsupervised source localization and tracking in brain imaging [10].

APPENDIX

Similarly with vectors, one can define the inner product of two tensors of equal order and dimensions:

〈S,T 〉 ,
∑

i1,i2,...,iN

Si1,i2,...,iNTi1,i2,...,iN ,

whereby the Frobenius norm results as
‖T ‖F ,

√
〈T ,T 〉

The outer product of N vectors u(n) ∈ RIn×1, n = 1, 2, . . . , N ,

T = u(1) ◦ u(2) ◦ · · · ◦ u(N),

is a rank-1 N th-order I1× I2× · · · × IN tensor with its (i1, i2, . . . , iN ) entry being given by the product of the corresponding
vector entries: Ti1,i2,...,iN = u

(1)
i1

u
(2)
i2
· · ·u(N)

iN
. The outer product of M tensors can be defined in an analogous manner. For

example, the outer product of a I1 × I2 matrix E and a I3 × 1 vector c is the I1 × I2 × I3 tensor with (i1, i2, i3) entry given
by Ei1,i2ci3 .

The Kronecker product of two matrices A ∈ RM×N and B ∈ RP×Q is the MP ×NQ matrix

A⊗B =


a1,1B a1,2B · · · a1,NB
a2,1B a2,2B · · · a2,NB

...
...

. . .
...

aM,1B aM,2B · · · aM,NB


The (partition-wise) Khatri-Rao product of two partitioned matrices, A =

[
A1 · · · AR

]
and B =

[
B1 · · · BR

]
,

with equal number of blocks, is defined as the matrix whose blocks are the Kronecker products of the corresponding A and
B blocks:

A�B =
[
A1 ⊗B1 · · · AR ⊗BR

]
If the partitioning is in columns (and hence the two matrices have the same number of columns), the column-wise Khatri-Rao
product results:

A�c B =
[
a1 ⊗ b1 · · · aR ⊗ bR

]
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