
HAL Id: hal-02639577
https://hal.science/hal-02639577

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Multi-criteria optimization in
Possibilistic Decision Trees

Nahla Ben Amor, Fatma Essghaier, Hélène Fargier

To cite this version:
Nahla Ben Amor, Fatma Essghaier, Hélène Fargier. Algorithms for Multi-criteria optimization in
Possibilistic Decision Trees. Symbolic and Quantitative Approaches to Reasoning with Uncertainty
- 14th European Conference, ECSQARU 2017, Jul 2017, Lugano, Switzerland. pp.295-305. �hal-
02639577�

https://hal.science/hal-02639577
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22073

To cite this version:

Ben Amor, Nahla and Essghaier, Fatma and Fargier, Hélène
Algorithms for Multi-criteria optimization in Possibilistic Decision
Trees. (2017) In: Symbolic and Quantitative Approaches to
Reasoning with Uncertainty - 14th European Conference,
ECSQARU 2017, 10 July 2017 - 14 July 2017 (Lugano,
Switzerland).

Open Archive Toulouse Archive Ouverte

Official URL :
https://doi.org/10.1007/978-3-319-61581-3_27

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22073
https://doi.org/10.1007/978-3-319-61581-3_27

Algorithms for Multi-criteria optimization in
Possibilistic Decision Trees

Nahla Ben Amor 1, Fatma Essghaier1,2, Hélène Fargier 2

1 LARODEC, Le Bardo, Tunisie, email: nahla.benamor@gmx.fr,
essghaier.fatma@gmail.com

2 IRIT, Toulouse, France, email: fargier@irit.fr

Abstract. This paper raises the question of solving multi-criteria se-
quential decision problems under uncertainty. It proposes to extend to
possibilistic decision trees the decision rules presented in [1] for non se-
quential problems. It present a series of algorithms for this new frame-
work: Dynamic Programming can be used and provide an optimal strat-
egy for rules that satisfy the property of monotonicity. There is no guar-
antee of optimality for those that do not - hence the definition of ded-
icated algorithms. This paper concludes by an empirical comparison of
the algorithms.

Keywords: Possibility theory; Sequential decision problems; Multi-criteria
decision making; Decision trees.

1 Introduction

When information about uncertainty cannot be quantified in a probabilistic
way, possibilistic decision theory is a natural field to consider [2–7]. Qualitative
decision theory is relevant, among other fields, for applications to planning under
uncertainty, where a suitable strategy (i.e. a set of conditional or unconditional
decisions) is to be found, starting from a qualitative description of the initial
world, of the available decisions, of their (perhaps uncertain) effects and of the
goal to reach (see [8–10]). But up to this point, the evaluation of the strategies
was considered in a simple, mono-criterion context, while it is often the case that
several criteria are involved in the decision [11].

A theoretical framework has been proposed for multi-criteria / multi-agent
(non sequential) decision making under possibilistic uncertainty [1, 12]. In the
present paper, we extend it to decision trees and we propose a detailed algorith-
mic study. After a refreshing on the background (Section 2), Section 3 presents
our algorithms, and is completed, in Section 4, by an experimental evaluation.

2 Background

2.1 Multi-criteria decision making (MCDM) under uncertainty

Following Dubois and Prade’s possibilistic approach of decision making under
qualitative uncertainty, a non-sequential (i.e. one stage) decision can be seen

as a possibility distribution1 over a finite set of outcomes, called a (simple)
possibilistic lottery [2]. Such a lottery is denoted L = 〈λ1/x1, . . . , λn/xn〉 where
λi = πL(xi) is the possibility that decision L leads to outcome xi; this possibility
degree can also be denoted by L[xi]. In this framework, a decision problem is
thus fully specified by a set of possibilistic lotteries on X and a utility function
u : X 7→ [0, 1]. Under the assumption that the utility scale and the possibility
scale are commensurate and purely ordinal, [2] proposes to evaluate each lottery
by a qualitative, optimistic or pessimistic, global utility:

Optimistic utility: U+(L) = max
xi∈X

min(λi, u(xi)) (1)

Pessimistic utility: U−(L) = min
xi∈X

max(1− λi, u(xi)) (2)

U+(L) is a mild version of the maximax criterion: L is good as soon as it is totally
plausible that it gives a good consequence. On the contrary, the pessimistic index,
U−(L) estimates the utility of an act by its worst possible consequence: its value
is high whenever L gives good consequences in every “rather plausible” state.

This setting assumes a ranking of X by a single preference criterion, hence the
use of a single utility function. When several criteria, say a set Cr = {1, . . . , p}
of p criteria, have to be taken into account, u must be replaced by a vector
u = 〈u1, . . . , up〉 of utility functions uj . If the criteria are not equally important,
each j is equipped with a weight wj ∈ [0, 1] reflecting its importance.

In the absence of uncertainty, each decision leads to a unique consequence and
the problem is a simple problem of qualitative MCDM aggregation; classically,
such aggregation shall be either conjunctive (i.e. based on a weighted min) or
disjunctive (i.e. based on a weighted max) - see [13] for more details about
weighted min and weighted max aggregations.

In presence of uncertainty, the aggregation can be done ex-ante or ex-post :

– The ex-ante approach consists in computing the (optimistic or pessimistic)
utility relative to each criterion j, and then performs the MCDM aggregation.

– The ex-post approach consists in first determining the aggregated utility
(conjunctive or disjunctive) of each possible xi; then the problem can be
viewed as a mono-criterion problem of decision making under uncertainty.

Since the decision maker’s attitude with respect to uncertainty can be either op-
timistic or pessimistic and the way of aggregating the criteria either conjunctive
or disjunctive, [1, 12] propose four ex-ante and four ex-post approaches:

U−min
ante (L) = min

j∈Cr
max((1− wj), min

xi∈X
max(uj(xi), (1− L[xi]))) (3)

U−max
ante (L) = max

j∈Cr
min(wj , min

xi∈X
max(uj(xi), (1− L[xi]))) (4)

U+min
ante (L) = min

j∈Cr
max((1− wj), max

xi∈X
min(uj(xi), L[xi])) (5)

U+max
ante (L) = max

j∈Cr
min(wj , max

xi∈X
min(uj(xi), L[xi])) (6)

U−min
post (L) = min

xi∈X
max((1− L[xi]), min

j∈Cr
max(uj(xi), (1− wj))) (7)

U−max
post (L) = min

xi∈X
max((1− L[xi]),max

j∈Cr
min(uj(xi), wj)) (8)

1 A possibility distribution π is a mapping from the universe of discourse to a bounded
linearly ordered scale, typically by the unit interval [0, 1].

U+min
post (L) = max

xi∈X
min(L[xi], min

j∈Cr
max(uj(xi), (1− wj))) (9)

U+max
post (L) = max

xi∈X
min(L[xi],max

j∈Cr
min(uj(xi), wj)) (10)

In the notations above, the first (resp. second) sign denotes the attitude of
the decision maker w.r.t. uncertainty (resp. the criteria). The U−min

ante utility for
instance considers that the decision maker is pessimistic and computes the pes-
simistic utility of each criterion. Then the criteria are aggregated on a cautions
basis: the higher is the satisfaction of the least satisfied of the important crite-
ria, the better is the lottery. Using the same notations, U−max

post considers that
a xi is good as soon as one of the important criteria is satisfied: a max-based
aggregation of the utilities is done, yielding a unique utility function u() on the
basis of which the pessimistic utility is computed. It should be noticed that the
full pessimistic and full optimistic ex-ante utilities are equivalent to their ex-post
counterparts [12], i.e. U−min

ante = U−min
post and U+max

ante = U+max
post . But U−max

ante (resp.

U+min
ante) may differ from U−max

post (resp. from U+min
post).

Example 1 Consider two equally important criteria 1 and 2 (w1 = w2 = 1), and a

lottery L = 〈1/xa, 1/xb〉 leading to two equi possible consequences xa and xb such that

xa is good for 1 and bad for 2, and xb is bad for 1 and good for 2: u1(xa) = u2(xb) = 1

and u2(xa) = u1(xb) = 0. It is easy to check that U+min
ante (L) = 0 6= U+min

post (L) = 1.

2.2 Possibilistic Decision Trees [14]

Decision trees provide an explicit modeling of sequential problems by represent-
ing, simply, all possible scenarios. A decision tree is a labeled tree DT = (N , E)
where N = D∪C ∪LN contains three kinds of nodes (see Figure 1): D is the set
of decision nodes (represented by squares); C is the set of chance nodes (repre-
sented by circles) and LN is the set of leaves.Succ(N) denotes the set of children
nodes of node N . For any Xi ∈ D, Succ(Xi) ⊆ C i.e. a chance node (an action)
must be chosen at each decision node. For any Ci ∈ C, Succ(Ci) ⊆ LN ∪D: the
set of outcomes of an action is either a leaf node or a decision node (and then a
new action should be executed).

In the possibilistic context, leaves are labeled by utility degrees in the [0, 1]
scale and the uncertainty pertaining to the possible outcomes of each Ci ∈ C,
is represented by a conditional possibility distribution πi on Succ(Ci), such that
∀N ∈ Succ(Ci), πi(N) = Π(N |path(Ci)) where path(Ci) denotes all the value
assignments of chance and decision nodes on the path from the root to Ci [14].

Solving a decision tree amounts at building a complete strategy that selects an
action (a chance node) for each decision node: a strategy is a mapping δ : D 7→
C ∪{⊥}. δ(Di) = ⊥ means that no action has been selected for Di (δ is partial).
Leaf nodes being labeled with utility degrees, the rightmost chance nodes can
be seen as simple possibilistic lotteries. Then, each strategy δ can be viewed as
a connected sub-tree of the decision tree and is identified with a possibilistic
compound lottery Lδ, i.e. with a possibility distribution over a set of (simple
or compound) lotteries. A compound lottery 〈λ1/L1, ..., λk/Lk〉 (and thus any
strategy) can then be reduced into an equivalent simple lottery as follows2 [2]:

Reduction(〈λ1/L1, ..., λk/Lk〉) = 〈max
j=1,k

(min(λj1, λj))/u1, ..., max
j=1,k

(min(λjn, λj))/un〉.

2 Obviously, the reduction of a simple lottery is the simple lottery itself.

The pessimistic and optimistic utility of a strategy δ can then be computed
on the basis of the reduction of Lδ: the utility of δ is the one of Reduction(Lδ).

3 Multi-criteria optimization in Possibilistic Trees

Multi-criteria Possibilistic Decision Trees can now be defined: they are classical
possibilistic decision trees, the leaves of which are evaluated according to several
criteria - each leaf N is now labeled by a vector u(N) = 〈u1(N), . . . , up(N)〉
rather than by a single utility score (see Figure 1). A strategy still leads to
compound lottery, and can be reduced, thus leading in turn to a simple (but
multi-criteria) lottery. We propose to base the comparison of strategies on the
comparison, according to the rules O previously presented, of their reductions:

δ1 �O δ2 iff UO(δ1) ≥ UO(δ2), where ∀δ, UO(δ) = UO(Reduction(Lδ)) (11)

Example 2 Consider the tree of Figure 1, involving two criteria that are supposed

to be equally important and the strategy δ(D0) = C1, δ(D1) = C3, δ(D2) = C5. It

holds that Lδ = 〈1/LC3 , 0.9/LC5〉 with LC3 = 〈0.5/xa, 1/xb〉, LC5 = 〈0.2/xa, 1/xb〉.
Because Reduction(Lδ) = 〈max(0.5, 0.2)/xa,max(1, 0.9)/xb〉 = 〈0.5/xa, 1/xb〉, we get

U+min
ante (δ) = min(max min(0.5, 0.3),min(1, 0.6), max(min(0.5, 0.8) min(1, 0.4))) = 0.5.

Do

C1

C2

C3

C4

C5

C6

D1

D2

0.5

1

1

0 2

1

1

0 9

xa : < 0.3 ; 0 8 >

xb : < 0 6 ; 0.4 >

0.3

1

0.4

D3

1

0.5

xa : < 0.3 ; 0 8 >

xb : < 0.6 ; 0.4 >

xa : < 0.3 ; 0 8 >

xb : < 0.6 ; 0.4 >

xa : < 0.3 ; 0 8 >

xb : < 0.6 ; 0.4 >

xa : < 0.3 ; 0 8 >

xb : < 0.6 ; 0.4 >1

C6

Fig. 1. A multi-criteria possibilistic decision tree

The definition proposed by Eq (11) is quite obvious but raises an algorithmic
challenge: the set of strategies to compare is exponential w.r.t. the size of the tree
which makes the explicit evaluation of the strategies not realistic. The sequel of
the paper aims at providing algorithmic solutions to this difficulty.

3.1 Dynamic Programming as a tool for ex-post utilities

Dynamic Programming [15] is an efficient procedure of strategy optimization. It
proceeds by backward induction, handling the problem from the end (and in our

case, from the leafs): the last decision nodes are considered first, and recursively
until the root is reached. This algorithm is sound and complete as soon as the
decision rule leads to complete and transitive preferences and satisfies the prin-
ciple of weak monotonicity3, that ensures that each sub strategy of an optimal
strategy is optimal in its sub-tree. Hopefully, each of the ex-post criteria satisfy
transitivity, completeness and weak monotonicity, because collapsing to either a
classical U− or a U+ utility, which satisfy these properties [8, 14]. The adapta-
tion of Dynamic Programming to the ex-post rules is detailed in Algorithm 1.

Algorithm 1: DynProgPost: Ex-post Dynamic Programming

Data: A Decision tree T , a node N in of T
Result: The value of the optimal strategy δ - δ is stored as a global variable
begin

if N ∈ LN then // Leaf : MCDM aggregation

for i ∈ {1, . . . , p} do uN ← (uN ⊕ (ui ⊗ ωi));
// ⊗ = min, ωi = wi, ⊕ = max for disjunctive aggregation

// ⊗ = max, ωi = 1− wi, ⊕ = min for conjunctive aggregation ;

if N ∈ C then // Chance Node: compute the qualitative utility

foreach Y ∈ Succ(N) do uN ← (uN ⊕ (λY)⊗DynProgPost(Y));
// ⊗ = min, λY = π(Y), ⊕ = max for optimistic utility

// ⊗ = max, λY = 1− π(Y), ⊕ = min for pessimistic utility

if N ∈ D then // Decision node: determine the best decision

u∗ ← 0 ;
foreach Y ∈ Succ(N) do

uY ← DynProgPost(Y) ;
if uY ≥ u∗ then δ(N)← Y and u∗ ← uY ;

return u∗;

In short, this algorithm aggregates the utility values of each leaf, and then
builds an optimal strategy from the last decision nodes to the root of the tree,
using the principle defined by [10, 9] for classical (monocriterion) possibilistic
decision trees.

3.2 Dynamic Programming for ex-ante utilities ?

The ex-ante variant of Dynamic Programming we propose is a little more tricky
(see Algorithm 2). It keeps at each node a vector of p pessimistic (resp. opti-
mistic) utilities, one for each criterion. The computation of the ex-ante util-
ity can then be performed each time a decision is to be made. Recall that
U−min
ante = U−min

post and U+max
ante = U+max

post . Hence, for these two rules the opti-
mization could also be performed by the ex-post algorithm. The two other rules,
U−max
ante and U+min

ante , unfortunately do not satisfy the monotonicity principle (see

3 Formally, �O is said to be weakly monotonic iff whatever L, L′ and L′′, whatever
(α,β) such that max(α, β) = 1: L �O L′ ⇒ 〈α/L, β/L′′〉 �O 〈α/L′, β/L′′〉.

Algorithm 2: DynProgAnte: Ex-ante Dynamic Programming

Data: A Decision tree T , a node N in of T
Result: The value of the optimal strategy δ - δ is stored as a global variable
begin

if N ∈ LN then // Leaf

for i ∈ {1, . . . , p} do uN [i]← ui;

if N ∈ C then // Chance Node: compute the utility vectors

// Optimistic utility ⊗ = min, λY = π(Y), ⊕ = max, ε← 0

// Pessimistic utility ⊗ = max, λY = 1− π(Y), ⊕ = min, ε← 1

for i ∈ {1, . . . , p} do uN [i]← ε ;
foreach Y ∈ Succ(N) do

uY ← DynProgAnte(Y) ;
for i ∈ {1, . . . , p} do uN [i]← (uN [i]⊕ (λY ⊗ uY [i])) ;

if N ∈ D then // Decision node

// Disjunctive MCDM: let ⊗ = min, ωi = wi, ⊕ = max, ε← 0

// Conjunctive MCDM: let ⊗ = max, ωi = 1− wi, ⊕ = min, ε← 1

u∗ ← 0
foreach Y ∈ Succ(N) do

vY ← ε ; uY ← DynProgAnte(Y) ;
for i ∈ {1, . . . , p} do vY ← vY ⊕ (uY [i]⊗ ωi);
if vY > u∗ then δ(N)← Y and uN ← uY ;

return uN ;

[1]). Hence, Algorithm 2 may provide a good strategy, but without any guaran-
tee of optimality - it can be considered as an approximation algorithm in these
two cases. Another approximation algorithm is the ex-post Algorithm described
in the previous Section - even if it is not always the case, it often happens that
U−max
post = U−max

ante (resp. U+min
post = U+min

ante); if it is the case the solution provided
by the ex-post Algorithm is optimal.

3.3 Optimization of U−max
ante by Multi Dynamic Programming

The lack of monotonicity of U−max
ante is not dramatic, even when optimality must

be guaranteed. With U−max
ante indeed, we look for a strategy that has a good

pessimistic utility U−j for at least one criterion j. This means that if it is possible

to get for each j a strategy that optimizes U−j (and this can be done by Dynamic

Programming, since the classical pessimistic utility is monotonic), the one with
the highest value for U−max

ante is globally optimal. Formally:

Proposition 1 U−max
ante (L) = max

j=1,p
min(wj , U

−
j (L))

where U−j (L) is the pessimistic utility of L according to the sole criterion j.

Corollary 1 Let ∆∗ = {L∗1, . . . , L∗p} s.t. ∀L, U−j (L∗j) ≥ U−j (L) and L∗ ∈ ∆∗.
If max

j=1,p
min(wj , U

−
j (L∗)) ≥ max

j=1,p
min(wj , U

−
j (L∗i))∀L∗i ∈ ∆∗ then U−max

ante (L∗) ≥

U−max
ante (L),∀L.

Hence, the optimization problem can be solved by a series of p calls to a
classical (monocriterion) pessimistic optimization. This is the principle of the
Multi Dynamic Programming approach detailed by Algorithm 3.

Algorithm 3: MultiDynProg: right optimization of U−max
ante

Data: A tree T
Result: An Optimal strategy δ∗ and its value u∗

begin
u∗ = 0; // Initialization

for i ∈ {1, . . . , p} do
δi = PesDynProg(T, i) // Call to classical possibilistic

Dynamic Prog. [14] - returns an optimal strategy for U−i ;

ui = max
j=1...p

min(wj , U
−
j (δi));

if ui > u∗ then δ∗ ← δi; u
∗ ← ui;

return u∗;

3.4 Right optimization of U+min
ante : a Branch and Bound algorithm

Let us finally study the U+min
ante utility. As previously said, it does not satisfy

monotonicity and Dynamic Programming can provide a good strategy, but with-
out any guarantee of optimality. To guarantee optimality, one can proceed by
an implicit enumeration via a Branch and Bound algorithm, as done by [8] for
Possibilistic Choquet integrals and by [16] for Rank Dependent Utility (both
in the mono criterion case). The Branch and Bound procedure (see Algorithm
4) takes as argument a partial strategy δ and an upper bound of the U+min

ante

value of its best extension. It returns U∗, the U+min
ante value of the best strategy

found so far, δ∗. We can initialize δ∗ with any strategy, e.g. the one provided
by Algorithms 2 or 1. At each step of the Branch and Bound algorithm, the
current partial strategy, δ, is developed by the choice of an action for some unas-
signed decision node. When several decision nodes are candidate, the one with
the minimal rank (i.e. the former one according to the temporal order) is de-
veloped. The recursive procedure backtracks when either the current strategy is
complete (then δ∗ and U∗ are updated) or proves to be worse than the current
δ∗ in any case. Function UpperBound(D0, δ) provides an upper bound of the
best completion of δ - in practice, it builds, for each criterion j, a strategy δj
that maximizes U+

j (using [10, 9]’s algorithm, which is linear). It then selects,

among these strategies, the one with the highest U+min
ante . It is important to note

that UpperBound(D0, δ) = U+min
ante (δ) when δ is complete. Whenever the value

returned by UpperBound(D0, δ) is lower or equal to U∗, the value of the best
current strategy, the algorithm backtracks, yielding the choice of another action
for the last considered decision node.

Algorithm 4: B&B algorithm for the optimization of U+,min
ante

Data: A decision tree T , a (partial) strategy δ, an upper Bound U of U+,min
ante (δ)

Result: U∗: the U+,min
ante value of δ∗ the best strategy found so far

begin
if δ(D0) = ⊥ then Dpend ← {D0};
else Dpend ← {Di ∈ D s.t. ∃Dj , δ(Dj) 6= ⊥ and Di ∈ Succ(δ(Dj))} ;
if Dpend = ∅ then // δ is a complete strategy

δ∗ ← δ; U∗ ← U ;
else

Dnext ← arg minDi∈Dpend i ;

foreach Ci ∈ Succ(Dnext) do
δ(Dnext)← Ci;
U ← UpperBound(D0, δ);
if U > U∗ then U∗ ← B&B(U, δ) ;

return U∗;

4 Experiments

Beyond the evaluation of the feasibility of the algorithms proposed, our exper-
iments aim at evaluating to what extent the optimization of the problematic
utilities, U−max

ante and U+min
ante , can be approximated by Dynamic Programming.

The implementation has been done in Java, on a processor Intel Core i7 2670
QMCPU, 2.2Ghz, 6Gb of RAM. The experiments were performed on complete
binary decision trees. We have considered four sets of problems, the number of
decisions to be made in sequence (denoted seq) varying from 2 to 6, with an
alternation of decision and chance nodes: at each decision level l (i.e. odd level),
the tree contains 2l−1 decision nodes followed by 2l chance nodes 4. In the
present experiment, the number of criteria is set equal to 3. The utility values as
well as the weights degrees are uniformly fired in the set {0, 0.1, 0.2, . . . , 0.9, 1}.
Conditional possibilities are chosen randomly in [0, 1] and normalized. Each of
the four samples of problems contains 1000 randomly generated trees.

Feasibility analysis and temporal performances : Table 1 presents the execution
time of each algorithm. Obviously, for each one, the CPU time increases with
the size of the tree. But it remains affordable even for very big trees (1365 de-
cisions). We can check that U−max

ante (resp. U+min
ante) the approximation performed

by ex-post Dynamic Programming is faster than the one performed by ex-ante
Dynamic Programming, both being faster than the exact algorithm (Multi Dy-
namic Programming and Branch and Bound, respectively).

Quality of the approximation : As previously mentioned the ex-post and the
ex-ante Dynamic Programming algorithms are approximation algorithms for
U−max
ante and U+min

ante . The following experiments estimate the quality of these
approximations. At this extent, we compute for each sample the success rate

4 Hence, for a sequence length seq = 2 (resp. 3, 4, 5, 6), the number of decision nodes
in each tree of the sample is equal to 5 (resp. 21, 85, 341, 1365)

decision nodes 5 21 85 341 1365

U−min
post U−min

ante Post Dyn. Prog. 0.068 0.073 0.076 0.126 0.215

U+max
post U+max

ante Post Dyn. Prog. 0.071 0.075 0.082 0.128 0.207

U−max
post Post Dyn. Prog. 0.068 0.083 0.090 0.140 0.235

U+min
post Post Dyn. Prog. 0.067 0.075 0.082 0.132 0.211

U−max
ante Multi Dyn. Prog. 0.172 0.203 0.247 0.295 1.068

U−max
ante Ante Dyn. Prog. 0.079 0.096 0.120 0.147 0.254

U+min
ante Branch & Bound 0.576 1.012 1.252 1.900 5.054

U+min
ante Ante Dyn. Prog. 0.074 0.084 0.093 0.147 0.231

Table 1. Average CPU time, in milliseconds, of for each algorithms and for each rule,
according the size of the tree (in number of decision nodes)

of the approximation algorithm considered, i.e. the number of trees for which
the value provided by the approximation algorithm is actually optimal; then for
the trees for which it fails to reach optimality, we report the average closeness

value to
UApprox

UExact
where UApprox is the utility of the strategy provided by the

approximation algorithm and UExact is the optimal utility - the one of the solu-
tion by the exact algorithm (Branch and Bound for U+min

ante and Multi Dynamic
Programming for U−max

ante). The results are given in Table 2.

decision nodes 5 21 85 341 1365

% of success

U−max
ante Ante Dyn. Prog 17.3% 19% 22.1% 26.4% 31%

U−max
ante Post. Dyn. Prog 15.4% 23.6% 30.7% 35.6% 40.4%

U+min
ante Ante Dyn. Prog. 87% 76.8% 68% 62.6% 59.6%

U+min
ante Post Dyn. Prog. 91.7% 90.8% 88.2% 86.7% 76%

Closeness Value

U−max
ante Ante Dyn. Prog. 0.522 0.56 0.614 0.962 0.981

U−max
ante Post Dyn. Prog. 0.473 0.529 0.556 0.58 0.62

U+min
ante Ante Dyn. Prog. 0.97 0.95 0.94 0.93 0.91

U+min
ante Post Dyn. Prog. 0.989 0.975 0.946 0.928 0.90

Table 2. Quality of approximation of U−max
ante and U+min

ante by Dynamic Programming

Clearly, Ex-Post Dynamic Programming provides a good approximation for
U+min
ante - its success rate decreases with the number of nodes but stay higher

than 70 %, and above all it has a very high closeness value (above 0.9) ; notice
that it is always better than its ex-ante counterpart, in terms of success rate, of
closeness and of CPU time. This is good news since it is polynomial while Branch
and Bound, the exact algorithm, is exponential in the number of nodes. As to
U−max
ante , none of the approximation algorithms is good. However, this is not so

bad news since Multi Dynamic Programming, the exact algorithm is polynomial
and has very affordable CPU time.

5 Conclusion

This paper proposes to extend to possibilistic decision trees the decision rules
presented in [1] for non sequential problems. We show that, for the ex-post deci-
sion rules, as well as for U+max

ante and U−minante , the optimization can be achieved by
Dynamic Programming. For U+min

ante the optimization can be carried either by an
exact but costly algorithm (Branch&Bound) or by an approximation one, (ex-
post Dynamic Programming). For U−max

ante we propose an exact algorithm (Multi
Dynamic Programming) that performs better than Dynamic Programming. As
future work, we would like to study the handling of several criteria in more so-
phisticated qualitative decision models such as possibilistic influence diagrams
[14] or possibilistic Markov decision models [10].

References

1. N. Ben Amor, F. Essghaier, and H. Fargier, “Solving multi-criteria decision prob-
lems under possibilistic uncertainty using optimistic and pessimistic utilities,” in
Proceedings of IPMU, 2014, pp. 269–279.

2. D. Dubois and H. Prade, “Possibility theory as a basis for qualitative decision
theory,” in Proceedings of IJCAI’95, 1995, pp. 1924–1930.

3. D. Dubois, L. Godo, H. Prade, and A. Zapico, “Making decision in a qualitative
setting: from decision under uncertainty to case-based decision,” in Proceedings of
KR, 1998, pp. 594–607.

4. P. H. Giang and P. P. Shenoy, “A qualitative linear utility theory for spohn’s theory
of epistemic beliefs,” in Proceedings of UAI, 2000, pp. 220–229.

5. D. Dubois, H. Prade, and R. Sabbadin, “Decision theoretic foundations of quali-
tative possibility theory,” EJOR, vol. 128, pp. 459–478, 2001.

6. D. Dubois, H. Fargier, H. Prade, and P. Perny, “Qualitative decision theory: From
savage’s axioms to nonmonotonic reasoning,” JACM, vol. 49, pp. 455–495, 2002.

7. D. Dubois, H. Fargier, and P. Perny, “Qualitative decision theory with preference
relations and comparative uncertainty: An axiomatic approach,” Artificial Intelli-
gence, vol. 148, pp. 219–260, 2003.

8. N.Ben Amor, H. Fargier, and W.Guezguez, “Possibilistic sequential decision mak-
ing,” International Journal Approximate Reasoning, vol. 55, pp. 1269–1300, 2014.

9. R. Sabbadin, H. Fargier, and J. Lang, “Towards qualitative approaches to multi-
stage decision making,” International Journal of Approximate Reasoning, vol. 19,
pp. 441–471, 1998.

10. R. Sabbadin, “Empirical comparison of probabilistic and possibilistic markov de-
cision processes algorithms.” in Proceedings of ECAI, 2000, pp. 586–590.

11. J. Harsanyi, “Cardinal welfare, individualistic ethics, and interpersonal compar-
isons of utility,” Journal of Political Economy, vol. 63, pp. 309–321, 1955.

12. N. Ben Amor, F. Essghaier, and H. Fargier, “Egalitarian collective decision mak-
ing under qualitative possibilistic uncertainty: Principles and characterization,” in
Proceedings of AAAI, 2015, pp. 3482–3488.

13. D. Dubois and H. Prade, “Weighted minimum and maximum operations in fuzzy
set theory,” Journal of Information Sciences, vol. 39, pp. 205–210, 1986.

14. L. Garcias and R. Sabbadin, “Possibilistic influence diagrams,” in Proceedings of
ECAI, 2006, pp. 372–376.

15. R. Bellman, Dynamic Programming. Princeton University Press, 1957.
16. G. Jeantet and O. Spanjaard, “Rank-dependent probability weighting in sequential

decision problems under uncertainty,” in Proceedings of ICAPS, 2008, pp. 148–155.

