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Abstract. Among several graphical models for preferences, CP-nets are
often used for learning and representation purposes. They rely on a sim-
ple preference independence property known as the ceteris paribus inde-
pendence. Our paper uses a recent symbolic graphical model, based on
possibilistic networks, that induces a preference ordering on configura-
tions consistent with the ordering induced by CP-nets. Ceteris paribus
preferences in the latter can be retrieved by adding suitable constraints
between products of symbolic weights. This connection between possi-
bilistic networks and CP-nets allows for an extension of the expressive
power of the latter while maintaining its qualitative nature. Elicitation
complexity is thus kept stable, while the complexity of dominance and
optimization queries is cut down.

1 Introduction

Various graphical models have been proposed in the literature in order to repre-
sent preferences in an intuitive manner. A survey of such approaches is in [3]. We 
may roughly distinguish between (i) quantitative models such as GAI networks 
[15] that use numerical utility functions (ii) qualitative models where preferences 
are contextually expressed by local comparisons between attribute values. The 
latter request less assessment effort from the user.

Among qualitative models, CP-nets [7] are the most popular. They provide a 
well-developed compact representation setting for preference modeling. The CP-
net representation consists in a directed graph expressing conditional preference 
statements, interpreted under the ceteris paribus assumption. As an effect of the 
systematic application of this assumption, it has been observed that priority in 
the network is given to parent decision variables over children ones, a feature 
not deliberately required.

The more recently introduced π-pref nets [2,4] may be also classified as qual-
itative models. Indeed, similarly to CP-nets, this model represents local prefer-
ences in terms of conditional comparisons between variable assignments. π-pref 
nets are inspired by product-based numerical possibilistic networks [14] but they



use symbolic (non-instantiated) possibility weights to model conditional prefer-
ence tables. Additional information about the relative strength of preferences
can be taken into account by adding constraints between these weights.

The paper proves that a π-pref net is able to capture ceteris paribus pref-
erences between solutions induced by a CP-net, if suitable constraints between
products of symbolic weights are added. These constraints explicitly express the
higher importance of parent decision variables over their children nodes in the
π-pref net. In [4], it was proved that π-pref nets orderings exactly correspond to
a Pareto ordering over vectors expressing levels of satisfaction for each variable.
We show that this ordering of configurations is refined by the ordering obtained
by comparing sets of satisfied preference tables. These results show that the set-
ting of π-pref nets is closely related to CP-nets since ceteris paribus constraints
can be expressed by specific inequality constraints between products of symbolic
weights.

The paper is organized as follows. Section 2 provides a brief background on
CP-nets, while Sect. 3 introduces π-pref nets based on possibilistic networks
with symbolic weights. Section 4 investigates conditions that enable preferences
expressed by π-pref nets to get closer to CP-nets orderings. Section 5 presents
related work, especially CP-theories [16], and the conclusion briefly compares
the formalisms in terms of expressive power and query complexity.

2 CP-nets

Let V = {A1, . . . , An} be a set of Boolean variables, each taking values denoted,
e.g., by ai or ¬ai. Each variable Ai has a value domain DAi

. Ω denotes the
universe of discourse, which is the Cartesian product of all variable domains in
V. Each element ωi of Ω is called a configuration.

The user is assumed to express preferences under the form of comparisons
between values of each variable, conditioned on some other instantiated variables.
CP-nets deal with strict preference statements. Unconditional statements are of
the form: “I prefer a+ to a−”, where a+, a− ∈ {a,¬a} and a− = ¬a+, and we
denote them by a+ � a−. When A = a+, we say that the quality of the choice
for A is good, and is bad otherwise. If the preference on A depends on other
variables P(A) called the parents of A, and p(A) is an instantiation of P(A),
conditional preference statements are of the form “in the context p(A), I prefer
a+ to a−”, denoted by p(A) : a+ � a−. To each variable we associate a table
representing the local preferences on its domain values in each parent context
(the value of a+, respectively a−, depends on the parents context).

Example 1. Consider a preference specification about a holiday house in terms
of 4 decision variables V = {T, S, P,C} standing for type, size, place and car park
respectively, with values T ∈ {flat (t1), house (t2)}, S ∈ {big (s1), small (s2)},
P ∈ {downtown (p1), outskirt (p2)} and C ∈ {car (c1), nocar (c2)}. Preference
on T is unconditional, while all the other preferences are conditional as follows:
t1 � t2, t1: p1 � p2, t2: p2 � p1, p1: c1 � c2, p2: c2 � c1, t1: s2 � s1, t2: s1 � s2.



Definition 1. A (conditional) preference network is a directed acyclic graph
with nodes Ai, Aj ∈ V, s.t. each arc from Aj to Ai expresses that the preference
about Ai depends on Aj. Each node Ai is associated with a preference table
CPTi that associates strict preference statements p(Ai) : a+

i � a−
i between the

two values of Ai conditional to each possible instantiation p(Ai) of the parents
P(Ai) of Ai.

The preference statements of Example 1 correspond to the CP-net of Fig. 1.

Fig. 1. Preference network for Example 1

Preference networks can be viewed as a qualitative counterpart of Bayesian
nets. CP-nets [7,8] are preference networks relying on the ceteris paribus prefer-
ential independence assumption. Namely, a CP-net induces a partial order �CP

between configurations, based on this preferential independence assumption: a
value is preferred to another in a given context, everything else being equal.
Given U ⊆ V and ω ∈ Ω, ωU denotes the restriction of ω to variables in U .

Definition 2 (Ceteris Paribus). Each strict preference statement p(Ai) :
a+

i � a−
i , is translated into ω �CP ω′, whenever ω{Ai} = a+

i , ω′
{Ai} = a−

i ,
and ωV\{Ai} = ω′

V\{Ai}, and ωP(Ai) = ω′
P(Ai)

= p(Ai).

Due to the ceteris paribus assumption, configurations compared in the pref-
erence statements differ by a single flip, and switching Ai from a+

i to a−
i is

called a worsening flip. We get a directed acyclic graph of configurations (the
configuration graph) with a unique top corresponding to the best configuration
(Ai = a+

i ,∀i) and a unique bottom corresponding to the worst one (Ai = a−
i ,∀i).

The worsening flip graph for Example 1 is represented in Fig. 2.
The configuration graphs induced by CP-nets are partial in general, and many

configurations remain incomparable, for instance t1p1c1s1 and t1p1c2s2 are not
comparable in the worsening graph of Fig. 2. Moreover, in the CP-nets semantics,
parent preferences look more important than children ones, for example, the
preferences of the node P are more important than C and the preferences of the
root T are more important than all the other nodes.



Fig. 2. CP-net preferences for Example 1 up to transitive closure (5 bold arrows repre-
sent ceteris paribus preference relations that are not recovered by π-pref net, 8 one-flip
comparisons over 32 can be recovered by transitivity, e.g. from t1p1c1s2 to t2p1c1s2).

3 π-Pref nets

Possibility theory [11] can be used for representing preferences. It relies on the
idea of a possibility distribution π, i.e., a mapping from a universe of discourse
Ω to the unit interval [0, 1]. Possibility degrees π(ω) estimate to what extent
the configuration ω is not unsatisfactory. π-pref nets are based on possibilistic
networks [5], using conditional possibilities of the form π(ai|p(Ai)) = Π(ai∧p(Ai))

Π(p(Ai))
,

where Π(ϕ) = maxω|=ϕ π(ω).

Definition 3 ([2,4]). A possibilistic preference network (π-pref net) is a pref-
erence network in the sense of Definition 1, where each preference statement
p(Ai) : a+

i � a−
i is associated to a conditional possibility distribution such that

π(a+
i |p(Ai)) = 1 > π(a−

i |p(Ai)) = αAi|p(Ai), and αAi|p(Ai) is a non-instantiated
variable on [0, 1) we call symbolic weight.

One may also have indifference statements p(Ai) : ai ∼ ¬ai, expressed by
π(ai|p(Ai)) = π(¬ai|p(Ai)) = 1.

On top of the preferences encoded by a π-pref net, a set C of additional
equality or inequality constraints between symbolic weights or products of sym-
bolic weights can be provided by the user. Such constraints may represent, for
instance, the relative strength of preferences associated to different instantiations
of parent variables of the same variable.



π-pref nets induce a partial ordering between configurations based on the
comparison of their degrees of possibility in the sense of a joint possibility distri-
bution computed using the product-based chain rule, expressing a satisfaction
erosion effect:

π(Ai, . . . , An) =
∏

i=1,...,n

π(Ai|p(Ai)) (1)

The preferences in the obtained configuration graph are of the form ω �π ω′ if
and only if π(ω) > π(ω′) for all instantiations of the symbolic weights.

Example 2. Consider preference statements in Example 1. Conditional possi-
bility distributions are as follows: π(t1) = 1, π(t2) = α, π(p1|t1) = π(p2|t2) = 1,
π(p2|t1) = β1, π(p1|t2) = β2, π(s1|t1) = γ1, π(s2|t2) = γ2, π(s2|t1) =
π(s1|t2) = 1, π(c1|p1) = π(c2|p2) = 1, π(c2|p1) = δ1 and π(c1|p2) = δ2. Applying
the product-based chain rule, we can compute the joint possibility distribution
relative to T, P, C and S. Figure 3 represents with thin arrows the configuration
graph induced from the joint possibility distribution. Clearly, the configuration
t1p1c1s2 is the root (since it is the unique one with degree π(t1p1c1s2) = 1).

Fig. 3. Configuration graph of Example 1. Thin arrows reflect �π, dotted arrows com-
pare sets S(ωi) of Sect. 4, and bold arrows reflect additional ceteris paribus comparisons
recovered by the constraints, also in bold on Fig. 2. Values under 1st (resp. 2nd) brack-
ets correspond to joint possibility degrees (resp. sets S(ωi))

In the following, we compare configuration graphs induced by both CP-nets
and π-pref nets. Clearly, they are different when no additional constraints
are assumed between symbolic weights. For instance, if we consider the pre-
vious example we can check that in contrast with the CP-net of Fig. 2 where
t1p1c2s1 �CP t1p2c2s1, the π-pref net fails to compare them since there is no
inequality constraint between π(t1p1c2s1) =γ1δ1 and π(t1p2c2s1)=γ1β1.



4 Main Results

In this section, we show that the configuration graph of any CP-net is consistent
with the configuration graph of the π-pref net without local indifference, based
on the same preference network, provided that some constraints on products
of symbolic weights are added to the π-pref net, in order to restore the ceteris
paribus priorities. Precisely, the added constraints reflect the higher importance
of parent nodes with respect to their children. Under an additional property
whose validity can only be conjectured at this point, π-pref net would capture
CP-nets exactly.

4.1 Consistency Between CP-nets and π-pref nets

In the following, we first recall that the ordering between configurations induced
by a π-pref net corresponds to the Pareto ordering between the vectors ω =
(θ1(ω), . . . , θn(ω)) where θi(ω) = π(ωAi

|ωP(Ai)), i = 1, . . . , n. The Pareto order-
ing is defined by

ω �Pareto ω′ iff ∀ k, θk(ω) ≥ θk(ω′) and θi(ω) > θi(ω′) for some i.

It is easy to see that θi(ω) ∈ {1, αAi|p(Ai)} where αAi|p(Ai) is the symbolic
weight that appears in the preference table for variable Ai in the context ωP(Ai).
It is easy to see that θk(ω) > θk(ω′) if and only if θk(ω) = 1 and θk(ω′) is a
symbolic value. But it may be that θk(ω) and θk(ω′) are distinct symbolic values,
hence making ω and ω′ incomparable. In particular, there are as many different
symbolic weights αA|p(A) pertaining to a boolean variable A as instantiations of
parents of A. As symbolic weights are not comparable across variables, it is easy
to see that the only way to have π(ω) ≥ π(ω′) is to have θk(ω) ≥ θk(ω′) in each
component k of ω and ω′. Otherwise the products will be incomparable due to
the presence of distinct symbolic variables on each side. So,

ω �π ω′ if and only if ω �Pareto ω′

Given the ordinal nature of preference tables of CP-nets, it also makes sense to
characterize the quality of ω using the set S(ω) = {Ai : θi(ω) = 1} of satisfied
preference statements (one per variable). It is then clear that the Pareto ordering
between configurations induced by the preference tables is refined by comparing
these satisfaction sets:

ω �Pareto ω′ ⇒ S(ω′) ⊂ S(ω) (2)

since if two configurations contain variables having bad assignments in the sense
of the preference tables, the corresponding symbolic values may differ if the
contexts for assigning a value to this variable differ.

Example 3. To see that this inclusion-based ordering is stronger than the π-pref
net ordering, consider Fig. 3 where π(t1p2c1s2) = β1δ2 with S(t1p2c1s2) = {T, S}
and π(t2p1c2s1) = αβ2δ1 with S(t2p1c2s1) = {S}. We do have that S(t1p2c1s2) ⊃
S(t2p1c2s1), but β1δ2 is not comparable with αβ2δ1. Dotted and thin arrows of
Fig. 3 represent the configuration graph induced by comparing sets S(ω).



It is noticeable that if the weights αAi|p(Ai) reflecting the satisfaction level
due to assigning the bad value to Ai in the context p(Ai) do not depend on the
context, then we have an equivalence in Eq. (2):

Proposition 1. If ∀i = 1, . . . , n, αAi|p(Ai) = αi,∀p(Ai) ∈ P(Ai), then

ω �Pareto ω′ ⇐⇒ S(ω′) ⊂ S(ω).

Proof: Suppose S(ω′) ⊂ S(ω) then if A ∈ S(ω′) we have θi(ω) = θi(ω′) = 1; if
A ∈ S(ω)\S(ω′), then θi(ω′) = αi, θi(ω) = 1 and θi(ω′) = αi = θi(ω) otherwise.
This implies ω �Pareto ω′.

The inclusion-based ordering S(ω′) ⊂ S(ω) does not depend on the parent
variables context but only on the fact that a variable has a good or a bad value.
Similarly, when the symbolic weights no longer depend on parents instantia-
tions, there is only one symbolic weight per variable. So, the above result is not
surprising.

Example 4. Using the same nodes as in Example 3, the unique weight assump-
tion enforces β1 = β2 = β and δ1 = δ2 = δ, which yields π(t1p2c1s2) = βδ >
π(t2p1c2s1) = αβδ.

In the following, we assume that the components of vector ω are linearly ordered
in agreement with the partial ordering of variables in the symbolic preference
network, namely, if i < j then Ai is not a descendant of Aj in the preference net
(i.e. topological ordering). For instance in the preference net of Fig. 1, we can
use the ordering (T, P,C, S).

Let us first prove that, in the configuration graphs induced by a CP-net and
the corresponding π-pref net, there cannot be any preference reversals between
configurations. Let Ch(A) denote the children set of A ∈ V.

Lemma 1. Let ω and ω′ be two configurations such that ω �CP ω′ and ω and
ω′ differ by one flip of a variable Ai then S(ω) ⊂ S(ω′) is not possible.

Proof: Compare S(ω) and S(ω′). It is clear that Ai �∈ S(ω′) (otherwise the flip
would not be improving) and S(ω) = (S(ω′)∪{Ai}∪Ch+

−(Ai))\Ch−
+(Ai), where

Ch+
−(Ai) is the set of variables that switch from a bad to a good value when

going from ω′ to ω, and Ch−
+(Ai) is the set of variables that switch from a good

to a bad value when going from ω′ to ω. It is clear that it can never be the case
that S(ω) ⊂ S(ω′), indeed Ai is in S(ω) and not in S(ω′) by construction. But
S(ω′) may contain variables not in S(ω) (those in Ch−

+(Ai) if not empty). So
either S(ω′) ⊂ S(ω) or the two configurations are not Pareto-comparable. ��

In the following, given two configurations ω and ω′, let Dω,ω′
be the set of

variables which bear different values in ω and ω′.

Proposition 2. If ω �CP ω′ then S(ω) ⊂ S(ω′) is not possible.



Proof: If ω �CP ω′, then there is a chain of improving flips ω0 = ω′ ≺CP

ω1 ≺CP · · · ≺CP ωk = ω. Applying the above Lemma, S(ωi) = (S(ωi−1) ∪
{Vi−1} ∪ Ch+

−(Vi−1)) \ (Ch−
+(Vi−1) for some variable Vi−1 = Aj . By the above

Lemma, we cannot have S(ωi−1) ⊂ S(ωi). Suppose we choose the chain of
improving flips by flipping at each step a top variable Aj in the preference
net, among the ones to be flipped, i.e. j = min{� : A� ∈ Dωi−1,ω}. It means that
when following the chain of improving flips, the status of each flipped variable
will not be questioned by later flips, as no flipped variable will be a child of
variables flipped later on. So S(ω) will contain some variables not in S(ω′), so
S(ω) ⊂ S(ω′) is not possible.

The previous results show that it is impossible to have a preference reversal
between the CP-net ordering and the inclusion ordering, which implies that
no preference reversal is possible between CP-net ordering and the π-pref net
ordering. It suggests that we can try to add ceteris paribus constraints to a
π-pref net and so as to capture the preferences expressed by a CP-net.

As previously noticed, in CP-nets, parent preferences look more important
than children ones. This property is not ensured by π-pref nets where all vio-
lations are considered having the same importance. Indeed, we can check from
Figs. 2 and 3 that the two configuration graphs built from the same preference
statements of Example 1 are different. In the following, we lay bare local con-
straints between each node and its children that enable ceteris paribus to be
simulated. Let DP(A) = ×Ai∈P(A)DAi

denote the Cartesian product of domains
of variables in P(A), αA|p(A) = π(a−|p(A)) and γC|p(C) = π(c−|p(C)).

Proposition 3. Suppose a CP-net and a π-pref net built from the same prefer-
ence statements. Let us add to the latter all constraints induced by the condition:
∀ A ∈ V s.t. Ch(A) �= ∅:

max
p(A)∈DP(A)

αA|p(A) <
∏

C∈Ch(A)

min
p(C)∈DP(C)

γC|p(C) (3)

Let �+
π be the resulting preference ordering built from the preference tables and

applying constraints between symbolic weights of the form of Eq. 3, then, ω �CP

ω′ ⇒ ω �+
π ω′.

Proof: The relation �CP is determined by comparing configurations ω, ω′ of
the form ω = a+ ∧ p(A) ∧ r and ω′ = a− ∧ p(A) ∧ r (where R = V \ (A ∪ P(A))),
that differ by one flip of variable A. So the local preference p(A) : a+ � a−

is equivalent to have ω �CP ω′ under ceteris paribus assumption, and also
equivalent to have π(a−|p(A)) < π(a+|p(A)) = 1 in the corresponding π-pref
net based on the same preference tables.

Now let us show that ∀A ∈ V, ∀p(A) ∈ DP(A) and every instantiation r of
the variables in V \ ({A}∪P(A)), the local preference π(a−|p(A)) < π(a+|p(A))
implies π(a− ∧ p(A) ∧ r) < π(a+ ∧ p(A) ∧ r) under the condition expressed by
Eq. (3). Consider the instantiation ch(A) = ∧C∈Ch(A)ωC , where ωC ∈ {c,¬c},
of the children of A such that ch(A) ∧ o = r (i.e. O = V \ (A ∪ P(A) ∪ Ch(A)).



The chain rule states (Eq. (1)):
π(ω′) =

∏
B∈V π(ω′

B |ω′
P(B)) =

π(a−|p(A))·∏C∈Ch(A)π(ω′
C |p′(C))·∏B �∈{A}∪Ch(A) π(ω′

B |ω′
P(B)).

Clearly the last term does not depend on A and is thus a constant β. So
π(ω′) = β · αA|p(A) · ∏

C∈Ch(A) π(ω′
C |p′(C)).

Likewise, since ω = a+ ∧ p(A) ∧ ch(A) ∧ o, we have
π(ω) = β · ∏

C∈Ch(A) π(ωC |p(C)), since π(a+|p(A)) = 1. Note that while p′(C)
is of the form a− ∧ p−A(C) where P−A(C) is the set of parents of C but for A,
p(C) is of the form a+ ∧ p−A(C).

So the inequality π(ω) > π(ω′), present in the CP-net, requires:
∏

C∈Ch(A)

π(ωC |p(C)) > αA|p(A) ·
∏

C∈Ch(A)

π(ω′
C |p′(C)).

Condition (3) implies αA|p(A) <
∏

C∈Ch(A) π(ωC |p(C)), which implies the above
inequality. It proves that, under Condition (3), ω �CP ω′ implies ω �+

π ω′. ��
This proposition ensures that the ordering induced by the joint possibility

distribution of a π-pref net enhanced by constraints of the form (3) can refine the
CP-net ordering having the same preference tables, provided that suitable con-
straints are added at each node A ∈ V between the local conditional possibility
distribution at this node and the product of possibility degrees of the children
of A. It comes down to constraints between each symbolic weight and a product
of other ones. Indeed the less preferred value, min(π(a|p(A), π(¬a|p(A)), of A
in the context of the parents p(A) of A is a symbolic weight (non instantiated
possibility degree). In other words, the inequality ensures that the less preferred
value of each A given p(A) is strictly less preferred than the product of the less
preferred values of the children of A. This result is the symbolic counterpart of
the one in [13], using preference networks with numerical ranking functions.

Example 5. In the graph of Fig. 3 induced by the π-pref net of Example 2,
Proposition 3 leads us to add conditions α < min(γ1, γ2) · min(β1, β2) and
max(β1, β2) < min(δ1, δ2). Clearly these conditions are too strong here. First
some of the products like γ1β2 never appear in Fig. 3. Moreover, the reader can
check that adding constraints β1γ1 > α and βi < δi, (i = 1, 2) turns the configu-
ration graph of Fig. 3 into the CP-net-induced configuration graph of Fig. 2.

Instead of imposing priority of parents over children, we can also add the
ceteris paribus constraints to the π-pref net directly, considering only worsening
flips. Let ω, ω′ differ by one flip, and such that none of ω �π ω′, ω′ �π ω
holds, and moreover, ω �CP ω′. We must enforce the condition π(ω) > π(ω′).
Suppose the flipping variable is A. Clearly, A ∈ S(ω), but A �∈ S(ω′). Let α be
the possibility degree of A when it takes the bad value in context ωp(A) (it is
1 when it takes the good value). When flipping A from a good to a bad value,
only the quality of the children variables Ch(A) of A may change. Ch(A) can be
partitioned into at most 4 sets, Ch−

−(A) (resp. Ch−
+(A), Ch+

−(A), Ch+
+(A)), which



represents the set of children of A whose values remain bad (resp. change from
good to bad, from bad to good, and stay good) when flipping A from a+ to a−.
Strictly speaking these sets depend upon ω. Then it can be easily checked that:

π(ω) = 1 ·
∏

Ci∈Ch+
−(A)

γi ·
∏

Cj∈Ch−
−(A)

γj · β

π(ω′) = α ·
∏

Ck∈Ch−
+(A)

γk ·
∏

Cj∈Ch−
−(A)

γj · β

where β is a product of symbols, pertaining to nodes other than A and its
children, that remain unchanged by the flip of A. Then the constraint π(ω) >
π(ω′) comes down to the inequality:

∏

Ci∈Ch+
−(A)

γi > α ·
∏

Ck∈Ch−
+(A)

γk (4)

where symbols appearing on one side do not appear on the other side. Such
constraints are clearly weaker than Condition (3) but are sufficient to retrieve all
the preferences of the CP-net. Note that the preferences ω �π ω′ and ω �CP ω′

conjointly hold in both approaches whenever A has no child node, and more
generally whenever the worsening flip on A corresponds to no child variable
moving from a bad to a good state, i.e. Ch+

−(A) = ∅. In fact, condition (4) holds
for all preference arcs in the configuration graph of the CP-net, whether this
preference appears in the π-pref net or not. We get the following result.

Proposition 4. Consider a CP-net and the preference relation �+
π on config-

urations built from the same preference tables by adding all constraints of the
form (4) between configurations differing by one flip to the preferences of the
form ω �π ω′. Then:

ω �CP ω′ ⇒ ω �+
π ω′

Proof: Indeed, first the preferences according to �CP and �π do not contradict
each other, per Proposition 2. Then we add constraints to the π-pref net for all
CP-net worsening flips that are not captured by �π, using constraints (4). So
we have then captured the whole preference graph of the CP-net, plus possibly
other preferences between configurations.

In the transformation of a CP-net into a π-pref net, we keep the same graph-
ical structure and the tables are filled directly from the preference statements
of the CP-net. Besides, we must point out that, when mimicking CP-nets, con-
straints are not elicited from the user but computed directly from the graph
structure.

Example 6. The above constraints (4) that must be added to the π-pref config-
uration graph of Fig. 3 are precisely those found to be necessary and sufficient in



Example 5 to recover the CP-net ordering, i.e., α < β1γ1, β1 < δ1 and β2 < δ2.
Note that the number of additional constraints to be added to capture the CP-net
comparisons missed by the π-pref net is quite small. For instance, the number of
constraints here is 4 against 120 potential comparisons.

So, in the example, we exactly capture the preference graph of a CP-net using
additional constraints between products of symbolic weights. The above con-
siderations thus encourage us to study whether π-pref nets without constraints
are refined by CP-nets, namely if the configuration graph of the former contains
less strict preferences between configurations than the one of the latter, so that
adding the constraints (4) are enough to simulate a CP-net by a π-pref net with
constraints. Note that if it were not the case, it would mean that CP-nets do
not respect Pareto-ordering.

4.2 Towards Exact Representations of CP-nets by π-pref nets

In this subsection, we consider the inclusion-ordering. One may wonder if there
may exist some configurations that can be compared by the inclusion-based
ordering, while they remain incomparable for CP-nets. This is not the case in
our running example.

Example 7. Consider the top configuration ω′ = t1p1c1s2 which inclusion-
dominates ω = t2p2c2s1 in the π-pref net configuration graph in Fig. 3, since the
former has good values for all variables and only the value t2 is bad in the latter,
i.e., S(ω′) = {T, P,C, S} and S(ω) = {P,C, S}. But the two configurations are
far away in terms of flips since Dω,ω′

= {T, P,C, S}. They can, however, be
related by a chain of worsening flips. Namely, as S(ω′) \ S(ω) = {T}, we must
flip T first, and ω1 = t1p2c2s1, with S(ω1) = {T,C} so S(ω′) \ S(ω1) = {P, S}
and Dω1,ω′

= {P,C, S}. We now must flip P and get ω2 = t1p1c2s1 with
S(ω2) = {T, P} = Dω2,ω′

. As S(ω′) \ S(ω2) = {C,S}, we must flip C, and
ω3 = t1p1c1s1, with S(ω3) = {T, P,C} so S(ω′) \ S(ω3) = {S} = Dω3,ω′

. We
now must flip S and get ω4 = t1p1c1s2 = ω′.

The question whether the preference ordering of configurations induced by
CP-nets is consistent with the ordering between the sets of variables that take
good values in agreement with the preference tables seems to have been over-
looked so far in the CP-net literature. The inclusion ordering between sets of
variables with satisfactory values is intuitive in the sense that if a configuration
ω violates all the preference statements violated by another configuration ω′ plus
some other(s), then ω′ should indeed be strictly preferred to ω. The consistency
of CP-nets with inclusion, namely the property

S(ω1) ⊂ S(ω2) ⇒ ω2 �CP ω2 (*)

can be naturally conjectured since the opposite case would cast a doubt on the
rationality of such networks. Proposition 2 proves a weak consistency between
them. However, at this stage providing a formal complete proof looks tricky



and besides, is not directly related to the expressivity of π-pref nets, the very
topic of this paper. The results in the following are conditioned by the truth of
the conjecture, or are restricted to those CP-nets that agree with the inclusion-
based orderings. Based on this assumption, Proposition 5 indicates that the CP-
net ordering refines, hence is consistent with, the ordering induced by a π-pref
net built from the same preference specification. This is because the inclusion-
ordering refines the Pareto (or π-pref net) ordering.

Proposition 5. Consider a CP-net that refines the inclusion-based ordering and
a π-pref net built from the same preference statements, we have:

ω′ �π ω ⇒ ω′ �CP ω

Let us now prove that, if the conjecture (*) is valid, we are able to exactly
induce the CP-net ordering from the π-pref net ordering by adding suitable con-
straints between symbolic weights or their products. First, we have seen that we
can add to the π-pref net configuration graph all missing preference statements
induced by the CP-net and not already present in the π-pref net configuration
graph. These statements concern all pairs (ω, ω′) that differ by one flip and such
that π(ω) and π(ω′) are not comparable. Note that adding such preference state-
ments to the Pareto configuration graph in case of Pareto-incomparability yields
the CP-net configuration graph (up to transitive closure).

The question remains whether we can express the latter in terms of additional
constraints between symbolic weights or products thereof.

Proposition 6. Consider a CP-net that refines the inclusion-based ordering and
the preference relation �+

π on configurations built from the same preference tables
by enforcing all constraints of the form (4) between configurations differing by
one flip. Then:

ω �CP ω′ ⇔ ω �+
π ω′

Proof: (⇒) This direction is proved by Proposition 4. (⇐) As ω �π ω′ ⇒
ω �CP ω′ by assumption, adding ceteris paribus constraints corresponding to
worsening flips to �π will not produce by transitivity any preference relation
not in �CP . ��

It is clear that, beside ceteris paribus constraints, other constraints could be
added to a π-pref net, that cannot be expressed by a CP-net, and that account
for different types of preference information. This fact suggests that π-pref nets
with constraints have a better expressive power and are more flexible than CP-
nets (known as a powerful qualitative model), and provide a general class of
qualitative graphical models where the ceteris paribus ordering could be further
refined without going numerical (i.e. unlike UCP-nets). It is clear therefore that
the constraints added to refine this order should, in this case, be consistent with
ceteris paribus. Finally, π-pref nets are sometimes able to represent preference
orderings when CP-nets fail to do it, as shown in the example below [1].



Example 8. Let us consider two binary variables A and B standing respec-
tively for “vacations” and “good weather”. Suppose that we have the follow-
ing preference ordering: ab � ¬a¬b � a¬b � ¬ab. We observe that this com-
plete order cannot be represented by a CP-net. In fact, given two variables
we can define two possible structures: either A depends on B or conversely.
But, none of them are capable to capture this total ordering in the CP-net set-
ting. Indeed, this total order exhibits a violation of the Ceteris Paribus prin-
ciple. However, such preferences can be represented by a joint possibility dis-
tribution such that: π(ab) > π(¬a¬b) > π(a¬b) > π(¬ab). Thus, we have
� : a � ¬a, a : b � ¬b and ¬a : ¬b � b. It corresponds to a network with two
nodes and their corresponding conditional possibility distributions are: π(a) = 1,
π(¬a) = α, π(b|a) = 1, π(b|¬a) = γ, π(¬b|a) = β and π(¬b|¬a) = 1. This yields
π(ab) = 1 > π(¬a¬b) = α > π(a¬b) = β > π(¬ab) = αγ taking α > β and
β = γ.

5 Related Works

Despite the existence of various graphical models for preferences [3], only few
works have been concerned in comparing their expressive power. We can, in
particular, mention two interesting results. The first concerns OCF-nets, which
are preference networks where possibility distributions are replaced by ranking
(ordinal conditional) functions (OCF) valued in the set of integers and the chain
rule is additive. These functions may be transformed into possibility distrib-
utions [12]. [13] proved that OCF-nets can refine CP-net orderings. Precisely,
OCF-nets will always lead to total orderings that are compatible with CP-nets.
To do so they use a set of particular constraints to be imposed on their integer
weights, which basically correspond to our constraints (3), albeit between numer-
ical values. In contrast, the use of symbolic weights in our approach preserves
the partiality of the ordering, and, if the CP-net order does refine the inclusion
ordering, the CP-net configuration graph can be exactly recovered. Moreover the
use of symbolic weights does not commit us to the choice of particular numerical
values.

There were several attempts to represent CP-net orderings using a possi-
bilistic logic base (a logical counterpart of π-pref nets), where the product is
replaced by the minimum. See [10] for a bibliography and a discussion. It was
observed that an exact logical representation of CP-nets was not possible when
variables in the net have several children variables even though good approxi-
mations could be built. This is because additional constraints in this framework
compare individual symbolic weights, not product thereof.

Some extensions of CP-nets can be considered as akin to π-pref nets. TCP-
nets [9] also add priority constraints between variable nodes, that we can render
in π-pref nets by inequalities between symbolic weights pertaining to different
CP-tables. Utility-enhanced CP-nets (UCP-nets) [6] add additive utility func-
tions to CP-nets in order to encode total orderings consistent with the ceteris
paribus assumption. To do so, linear constraints are added on utility values that



are somewhat similar to constraints (4). They express that for any variable,
given an instantiation of its parents, the utility gain in choosing the good value
rather than the bad one in this context, should be more important than the
maximum value of the sum of the possible utility loss for its children over all
possible instantiations of the other related variables. Up to a log transformation
this is like comparing products.

π-pref nets can also be compared with so-called CP-theories [16]. The lat-
ter interpret conditional preference statements assuming they hold irrespec-
tively of the values of other variables. It means that any configuration ω such
that ωA = a+ and ωP(A) = p(A) is preferred to any configuration ω such
that ωA = a− and ωP(A) = p(A). In terms of possibility functions, it reads
Δ(p(A) ∧ a+) > Π(p(A) ∧ a−), where Δ(ϕ) = minω|=ϕ π(ω). In [16] are studied
hybrid nets where some variables are handled ceteris paribus, while the prefer-
ence holds irrespectively of other variables. In π-pref nets preference statements
are interpreted by π(a+|p(A)) > π(a−|p(A)) which is provably equivalent to
Π(p(A) ∧ a+) > Π(p(A) ∧ a−), i.e. comparing best configurations. It is clear
that if ω �CP ω′ holds, then ω � ω′ holds in a CP-theory, where conditional
preference holds irrespectively of other variables, because the CP-theory gen-
erates more preference constraints between configurations, including the ones
induced by the ceteris paribus assumption. Constraints induced by CP theories
can thus be captured in π-pref nets by adding more constraints between products
of symbolic weights.

6 Conclusion

In this paper, we have explored the expressive power of π-pref nets. First, we
have proved that the CP-net configuration orderings cannot contradict those
of the π-pref nets and we found suitable additional constraints to refine π-pref
net orderings in order to encompass ceteris paribus constraints of CP-nets. CP-
nets would then be exactly captured by π-pref nets with constraints if their
configuration graph did refine the inclusion-based ordering. This indicates that
CP-nets potentially represent a subclass of π-pref nets with constraints. One may
further refine CP-net preferences by adding more constraints between symbolic
weights appearing in π-pref nets. For instance, one may introduce priorities
between two parents nodes or between two child nodes.

Regarding query processing, finding an optimal configuration is straightfor-
ward, for both CP-nets and π-pref nets. In fact, it consists in traversing the net-
work from root to leaves and choose the best value for each variable depending on
its parents configuration. The complexity is linear with the size of the network.
As to comparing two configurations, the dominance query for CP-nets consists
in finding a chain of worsening flips from one configuration to the other. It is NP-
complete to PSPACE-complete depending on the graph structure [8]. For π-pref
nets, without constraints this query comes down to a Pareto-comparison of vec-
tors symbolic weights. If there are constraints, the approach requires a reordering



of coefficients and the complexity is at most equal to O(n!) [2]. Dominance and
optimization queries on instantiated π-pref nets respecting constraints will have
the same complexities as for UCP-nets.
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