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Abstract: This work proposes to improve the accuracy of joint angle estimates obtained from an RGB-D
sensor. It is based on a constrained extended Kalman Filter that tracks inputted measured joint centers.
Since the proposed approach uses a biomechanical model, it allows physically consistent constrained joint
angles and constant segment lengths to be obtained. A practical method that is not sensor-specific for
the optimal tuning of the extended Kalman filter covariance matrices is provided. It uses reference data
obtained from a stereophotogrammetric system but it has to be tuned only once since it is task-specific
only. The improvement of the optimal tuning over classical methods in setting the covariance matrices is
shown with a statistical parametric mapping analysis. The proposed approach was tested with six healthy
subjects who performed four rehabilitation tasks. The accuracy of joint angle estimates was assessed
with a reference stereophotogrammetric system. Even if some joint angles, such as the internal/external
rotations, were not well estimated, the proposed optimized algorithm reached a satisfactory average root
mean square difference of 9.7◦ and a correlation coefficient of 0.8 for all joints. Our results show that
an affordable RGB-D sensor can be used for simple in-home rehabilitation when using a constrained
biomechanical model.

Keywords: markerless human motion analysis; extended Kalman filter and rehabilitation

1. Introduction

Physical rehabilitation is of crucial importance to maintaining or restoring body movement and
function. To improve its effectiveness, a rehabilitation session usually requires the presence of a
physiotherapist and/or a clinician to assess, encourage, and correct the patient in their realization of
the prescribed physical exercises. For example, squat and walking exercises are increasingly used in the
rehabilitation process and mobility assessment of age-related lower-limb pathologies. Having a reliable
estimate of a patient’s joint angles during the rehabilitation process is of great importance for mobility
assessment to better understand the physical and functional evolution of the patient’s recovery. However,
making a quantitative assessment of whole-body motions from a visual inspection is not an easy task,
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and there will be large inter/intra-clinician variability in the motion evaluation [1]. It has been reported that
therapists tend to underestimate the range of motion by 9◦ on average [2]. Measurement tools which are
capable of providing a consistent quantitative analysis are of crucial importance for the clinical community.
Nevertheless, even when using these measurement tools, typical errors with kinematics obtained from
inertial measurement units (IMU) or reference stereophotogrammetric systems (SS) can reach 22◦ for knee
rotations and 10◦ for shoulder rotations [3]. This is due more to experimental and model reconstruction
errors than to the sensor itself. Kinematics data, if provided in real-time, can also be integrated as feedback
in a game to increase patient interest and motivation [4]. Usually reference kinematics is estimated using a
SS that is accurate but costly and requires a rather complex hardware installation, making its use restricted
to laboratory settings. Consequently, such a system cannot be used for in-home applications. Recently,
numerous affordable and easy-to-use systems based on IMU [5], RGB cameras [6], and RGB-D sensors [7]
have been developed to generalize human motion analysis. Each of these systems has some drawbacks
(e.g., calibration, occlusion, accuracy), but it is often possible to improve their accuracy for human motion
analysis in different ways. The main advantage of the markerless camera-based system is that they do not
rely on embedded sensors or markers and do not require any particular dressing or undressing action.
In this context, the next section of this paper will focus on the literature related to camera-based systems.

2. Background

2.1. Related Work

Recently, markerless visual motion capture based on an RGB camera and a machine learning algorithm
has been used to estimate human motion in challenging scenarios [8]. However, such approaches are not
yet real-time or accurate enough to reliably estimate a patient’s joint angles and thus are not accessible to the
clinical community. Progress is expected in terms of accuracy thanks to new methods that combine machine
learning and model-based approaches [9]. Devices based on RGB-depth sensors with embedded skeleton
tracking algorithms are already available to the wider public. The most well-known of these is the Kinect
v1 sensor (K1S); however, this was shown to be insufficiently accurate for rehabilitation assessment due to
segment length variations [10]. With the release of the Kinect v2 sensor (K2S) in 2014, new studies [11,12]
showed that joint center position (JCP) estimates have significantly improved when compared to those
estimated by the K1S. In addition, fewer outliers were observed as K2S is more robust to occlusions and
body rotations thanks to a more accurate depth map. Naeemabadi et al. [12] compared K2S and K1S JCP
estimates with those obtained with an SS in the context of knee rehabilitation. They exhibited a promising
average root mean square difference (RMSD) of 4.9◦ for K2S, whereas the RMSD for K1S was much higher
at 13.4◦. Wochatz et al. [13] explored the validity of using a K2S during squat, hip abduction and lunge
rehabilitation exercises. They concluded that the accuracy decreased with small movement amplitudes and
with the increase of movement complexity. This was later confirmed by Galna et al. [14], who stated that the
Kinect can accurately measure the timing and gross spatial characteristics of clinically relevant movements
but not with the same spatial accuracy for smaller movements. With a K2S, spatio-temporal parameters
such as walking speed, time of movement up and down or the mean sway velocity of the body can be
estimated accurately [15,16]. However, it was shown that, since the segment lengths were not constant in
time, the resultant joint angles were not reliable enough for gait analysis [15]. For upper limb rehabilitation,
Kuster et al. [17] showed an average RMSD of 7◦ for the trunk and 11.8◦ for shoulder flexion/extension
when compared to an SS. This was considered to be sufficiently accurate for the investigated tasks. These
studies seem to demonstrate that the K2S may be used for quantitative rehabilitation assessment if data
from the skeleton extractor were more consistent.

Numerous methods have been developed in the literature to improve kinematic estimates of
RGB-D-like sensors. Three different approaches, which can be combined, are usually proposed to improve
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the accuracy of JCP estimates: (i) improvement of the skeleton tracking algorithm, (ii) adding sensors and
(iii) filtering.

Regarding the improvement of the skeleton tracking algorithm, Han et al. [18], in a survey on
skeleton tracking algorithms, showed that the main drawback of artificial intelligence approaches was their
computational expense, which means that they are not suitable for real-time applications. Model-based
methods are considered suitable for real-time applications but suffer from cumbersome and sensitive
parameter tuning. Plantard et al. [19] designed a pose graph filter that identified the most probable pose in
a database constructed a priori. Once a correspondence was found, the measured poses were reconstructed,
increasing their robustness to occlusion and overall accuracy. The RMSD between the reconstructed pose
and the reference system was 0.09 m for the estimated 3D joint center positions. This is better than the K2S
output, which was estimated at 0.15 m.

Regarding the addition of sensors, Kim et al. [20] proposed the determination of JCP with multiple
K2S devices. The merging of several sets of skeleton data allowed the authors to reduce the number of
occlusions. They compared their approach with the output of a commercial IMU system and reached 80%
motion similarity while a single K2S obtained only 20% similarity. Dual K1S devices were also used in
combination with a musculoskeletal model [21]. This setup showed encouraging results in the estimation
of the shoulder abduction/adduction angle (correlation up to 0.89). However, it was found to not be
sufficiently accurate to estimate lower-limb motions, as the tracking of the hip internal/external rotation
angles presented a correlation of −0.63. Sensor fusion was also proposed to improve the accuracy of joint
kinematics. In a survey [22], it was suggested that merging Kinect and IMU data can prevent occlusions
and improve joint angle estimate accuracy [23,24]. However, using embedded sensors is undesirable for
in-home rehabilitation.

Finally, regarding filtering, Tripathy et al. [25] developed a genetic algorithm based on a particle
filtering method to constrain the length of segments during shoulder motions. The mean absolute
difference between their segment length estimates and the reference estimates was only 3.44%.
Unfortunately, they did not consider the use of this algorithm for joint angle estimates. Shu et al. [26]
used an extended Kalman filter (EKF) to improve kinematic estimates from pose data. Unfortunately,
their algorithm was only implemented with the head joints, but they were able to obtain an accuracy of
0.039 m on the head JCP with Kalman filtering. Skals et al. [21] used multibody kinematic optimization
(MKO) instead of an EKF to introduce kinematic constraints. Both methods seem to provide similar results,
but the MKO cannot be implemented in real-time. This shows the importance of using anthropomorphic
constraints, a kinematic model and temporal relations between the state variables to improve the accuracy
of kinematics estimates from Kinect data. Moreover, model-based approaches have the advantages of not
being sensor-specific and requiring very little training/testing data compared to the methods based on
machine learning.

2.2. Contribution

The K2S was designed for in-home applications; however, its data, which are not consistent and thus
lead to variable segment lengths and infeasible joint angle estimates, should be corrected for rehabilitation
assessment. This paper proposes the use of a new constrained extended Kalman filter (CEKF) based on a
whole-body model of the human locomotor system including anthropomorphic constraints to improve the
accuracy of joint angle estimates from K2S data. The contributions of this paper are as follows:

• A new CEKF is proposed to obtain physically consistent joint angles in real-time and at low
computational cost. The constraints impose fixed segment lengths which do not require a subject-
specific calibration and joint angle physiological limits;
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• A pragmatic method is proposed to optimize the measurement and process covariance matrices of
the CEKF based on the SS data, depending only on the investigated task and not on the subject. Thus,
as for the segment lengths, all model and method calibrations can be performed a priori without
involving the subjects under study;

• An experimental validation based on a joint angle accuracy analysis (i.e., CEKF vs. MKO) of the
whole-body is presented.

3. Materials and Methods

3.1. Mechanical Model

The mechanical model is used to relate the output of the K2S with the human joint kinematics
through the calculation of the forward kinematics model. Figure 1 shows the proposed mechanical model
composed of Nθ = 22 revolute joints (θ) and NL = 12 segments. The green dots in this figure represent the
NJ = 15 retained JCPs estimated by the K2S. The forward kinematics model was calculated to express
the position of each estimated JCP as a function of θ (Nθ × 1) and of segment lengths L (NL × 1) using
the modified Denavit–Hartenberg convention [27]. Because of this convention, all Z-axes of the model
correspond to an actual rotation. Nevertheless, the joint definition follows the recommendations of the
International Society of Biomechanics [28,29].
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Figure 1. (Left) A 22 degree-of-freedom model of the locomotor system. θi is the ith joint angle
corresponding to a rotation along the ith local Z axis and Lj is the length of the segment j. (Right)
Location of the retro-reflective markers (blue), used by the reference stereophotogrammetric system (SS),
and of the Kinect sensor (K2S)-estimated joint center position (JCP) (green).
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3.2. Constrained Extended Kalman Filter

The aim of the proposed CEKF is to estimate the state vector Xk = [θ θ̇ θ̈ L]T while tracking the 3D
JCP T ((3NJ)× 1) provided by the K2S. θ̇ and θ̈ are the Nθ × 1 vectors of joint velocities and accelerations,
respectively. The state and measurement vectors are modeled as follows at time k:

Xk = f (Xk−1) + wk−1

Zk = h(Xk) + vk (1)

where f is the state model described by Equation (2), h is the measurement model given by the forward
kinematics model from the mechanical model described in Section 3.1, wk represents the system noise,
defined by p(w) ∼ N (0, Q) with Q being the model covariance noise matrix, and vk represents the
measurements noise defined by p(v) ∼ N (0, R), with R (3NJ × 3NJ) being the covariance matrix of
measurement noise.

The proposed state model f is approximated by a linear form, denoted as F. It is assumed that the
joint angles and velocities evolve linearly and that the joint accelerations and segment lengths are constant:

F =


INθ×Nθ

∆tINθ×Nθ
∆t2

2 INθ×Nθ

0Nθ×Nθ
INθ×Nθ

∆tINθ×Nθ

0Nθ×Nθ
0Nθ×Nθ

INθ×Nθ

 03Nθ×NL

0NL×3Nθ
INL×NL

 (2)

where ∆t is the sample time and 0 and I are the null and identity matrices, respectively.
At each time step, the prediction of the a priori state vector is calculated as follows:

X̂−k = FX̂k−1

P−k = FPk−1FT + Q (3)

where P−k is the a priori estimation of the error co-variance matrix.
In order to ensure the physical consistency of the state vector estimate, inequality constraints are

added to the EKF for each joint angle and for segment lengths. Gupta et al. [29] presented a method to
easily implement constraints on the state vector estimate as follows by calculating a restricted Kalman
gain matrix KR

k :

CX̂k ≤ d (4)

where d = [θ− θ+ L− L+]T and C are the inequality constraint vectors and matrices, respectively.
θ− and θ+ are the maximal and minimal joint angle values taken from the literature, and L−, L+

were set to ±20% of their initial estimate.
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The update of the restricted state vector can then be calculated based on the new measurement vector
as follows:

Sk = HkP−k HT
k + R

KR
k = Kk −CT(CCT)−1(CX̂−k − d)(vT

k S−1
k vk)

−1vT
k S−1

k

X̂k = X̂−k + KR
k (Zk − h(X̂−k ))

Pk = (I−KR
k Hk)P

−
k (5)

where Hk is the Jacobian matrix ∂h
∂Xk

, Sk is the innovations co-variance matrix, and Pk is the error
co-variance matrix.

Note that the segment lengths are also forced to converge to a constant value (see the definition of F
and Q) because physical lengths are considered constant in the human body.

3.3. Participants and Procedures

This study followed the principles of the Declaration of Helsinki. Six healthy male participants (age:
32± 17 years; weight: 78± 9 kg; height: 1.77± 0.05 m) participated in the experiment after giving their
written informed consent and permission for their image to be used. Participants performed four tasks
(illustrated in Figure 2): a deep squat with lateral extensions of their arms, stepping in position with
their left and right legs, tilting their trunk in their sagittal plane and tilting their trunk in frontal planes.
Each participant performed ten consecutive repetitions for each movement. All trials started in a resting
position: standing, arms along the body, facing the K2S.

Whole-body motion was simultaneously collected by a reference SS consisting of eight infrared
cameras (VICON, MX-16, Oxford metrics, 100 Hz) and by one Microsoft K2S (30 Hz). The skeletal tracking
method implemented in Kinect SDK v2.0 was used even if its functioning principle has not been fully
disclosed by Microsoft [30]. For an optimal field of view, the K2S was placed in front of the participant
at 2.5 m and at 0.85 m above the floor, as recommended in the literature [30]. Moreover, the combined
use of K2S and SS, both of which are infra-red sensors, might degrade the quality of K2S data [31]. Thus,
the SS was not located in the direct field of view of the K2S and the participants were always less than
3 m away from the K2S. The SS reflective markers could also impact the estimate of K2S JCP, and thus
their number was minimized and their position was as far as possible from the human joint centers.
Consequently, to estimate the reference joint angles, 39 reflective markers based on the popular reduced
marker-set “Plug-In Gait” [32] were used here (Figure 1). The trajectory of these reflective markers was fed
to a state-of-the-art MKO [3] to obtain the reference joint trajectories. Note that, without this optimization
step, the segment lengths may have been non-constant in time with the SS.
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Figure 2. Tasks for measurement : (1) squat with lateral arm extensions, (2) stepping (left and right),
(3) body tilt in sagittal plane and (4) body tilt in frontal plane.

3.4. Cekf Parameter Adjustment

The convergence rate and stability of the EKF filter depend on the tuning of its parameters;
i.e., the process and measurement covariance matrices, Q and R, the initialization of the error covariance
matrix P0 and the initial value of state variables. The tuning of these parameters is rarely discussed
in the human motion analysis literature. However, there is a consensus in the methodology for the
tuning of R based on the fact that the measurement noise is supposedly Gaussian-distributed. This
hypothesis is validated by calculating the difference between the SS’s JCP estimate and that of the K2S.
Figure 3 shows the Gaussian-like distribution of the average measurement noise for all JCPs for each
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axis. The Gaussian-distributed error of the x-axis has a mean µ = −0.06 m and variance σ2 = 0.0019;
for the y-axis, these values are µ = 0.06 and σ2 = 0.0050; and for the z-axis, these values are µ = −0.003
and σ2 = 0.0009. Finally, for the averaged distribution (i.e., for all dimensions), we obtain µ = 0.00 and
σ2 = 0.0052.

10000

0
0-0.1 0.1

Joint centers position error [m]

O
cc

u
re

n
ce

 [
-]

Figure 3. Distribution of the difference between joint position centers estimated from the SS and from the
K2S obtained for all recorded data along the x (blue), y (green) and z (yellow) axes. The grey distribution
indicates the average one.

The initial values of the state vector were set using another MKO [3] with the aim of finding the joint
angles and segment lengths that fit the K2S’s JCP estimate over the first sample as well as possible. To give
the same influence to all joints, P0 was set to the identity matrix. The tuning of the elements of Q was
sensitive and was task and joint-dependent [33]. The first set of state variables that were supposed to
be constant and independent during the task were the segment lengths. To enforce their convergence to
a constant value, their corresponding elements in Q were set to zero. This guaranteed the convergence
of the corresponding error covariance P to zero. For the tuning of Q elements corresponding to the
joint positions, velocities and accelerations, two tuning methods were investigated: the first one, based
on [33,34], assumed a priori knowledge of the state variable frequency content; the second one was based
on a task-specific optimization process using the reference joint angles obtained from the SS.

3.4.1. Data-Driven Tuning of Matrix Q

In human motion analysis, the process noise covariance matrix can be tuned with a priori knowledge
of the frequency content of the investigated motion. As proposed by De Groote et al. [34], this is calculated
for each joint k as follows:

Qj = σ2
k GTG where: G =

[
∆t3

3!
∆t2

2 ∆t
]

(6)

where σ2
k is the noise covariance factor, defined as follows:

σ2
k =

((Aω4
maxeωmax∆t/4π)∆t)2

3∆t
. (7)
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where ωmax is the cutoff frequency and A is the joint trajectory amplitude. The estimations of ωmax and A
are obtained thanks to a fast Fourier transform on the joint trajectories obtained from the SS and MKO for
each task.

3.4.2. Optimal Tuning of Q Matrix

An optimization process with the aim of determining the elements of Q, which minimizes the square
difference between the estimated joint angles and the reference ones obtained from the SS and MKO,
was developed. When dealing with an EKF for motion analysis, the hypothesis is that the tuning of Q is
task-dependent [34]. Consequently, the data of one randomly chosen subject were used to identify the
elements of Q. The same identified values were then used for the other subjects. Since the optimization
process is computationally expensive, due to the fact that the EKF will have to be run several thousand
times, and because the investigated tasks are symmetric, it was proposed to use the same set of values for
left and right joints. A total of 11 parameters, with four parameters for the legs, four parameters for the
arms, two parameters for the base-link and one for the trunk, needed to be identified. The elements of R
were set from the experimental distribution analysis described in Section 3.4. The problem of the optimal
tuning of Q can then be summarized as follows:

Find σ2∗
opt ∈ min

σ2
opt∈R11

Nθ

∑
j=1

N

∑
k=1

(qSSjk − qEKFjk )
2

subject to

σ2−
opt ≤ σ2

opt ≤ σ2+
opt

(8)

where N is the number of samples of a considered task, and σ2−
opt=1e-3 and σ2+

opt=1e2 are the lower and
upper boundaries on the Q elements. This problem was solved using a classical trust-region-reflective
optimization algorithm [35].

3.5. Performance Analysis

The ability of the proposed CEKF and of its optimal covariance matrix tuning to accurately estimate
the joint kinematics was assessed first by calculating the RMSD and the Pearson correlation coefficient (CC)
between the estimated and reference joint angles. These calculations were performed for joints that were of
interest for each task. Moreover, in order to assess the distribution of the differences between the estimated
and reference joint trajectories, a statistical parametric mapping (SPM) analysis was devised [36]. SPM
was developed to evaluate inferences regarding the topological features of statistical processes that are
continuous functions of space and time. Statistical differences among continuous curves can be analyzed
without reducing the dimensions of the test to summarize metrics such as mean, median, maximum or
minimum values. The SPM method is used to analyze the performance of the CEKF when the elements of
Q are optimized, as in Section 3.4.2, as opposed to when they are estimated based on a classical method
from the literature [34].

In order to determine the influence of this tuning, the absolute difference between the estimated and
reference joint angles was calculated and compared with a 1D paired t-test (α = 0.05). Tests were carried
out with the open-source package SPM1D for MATLAB [37], which generated the map of t-values SPM{t},
the t* boundaries and the areas for relevant p-values.
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4. Results and Discussion

Figure 4 shows a representative comparison between the joint angles estimated with the proposed,
optimally tuned CEKF and those obtained from the reference SS and MKO for a randomly chosen
subject over four repetitions of the squat task. The corresponding RMSD is 11.0 ± 7.8◦ and the CC
is 0.85 ± 0.19. The ability of the CEKF to constrain the joint kinematics is clearly visible for the hip
internal/external rotations.
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Figure 4. Representative comparison of joint trajectories estimated using the K2S and the proposed
constrained extended Kalman filter (CEKF) (blue) and the SS and multibody kinetic optimization (MKO)
(black) during the squat task. Flex/ext, int/ext and add/abd represent flexion/extension, internal/external
rotation and adduction/abduction, respectively
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The average RMSD and CC of all tasks and angles of interest are 9.7◦ and 0.8 when using the
optimally tuned CEKF, respectively. When the CEKF covariance matrices are tuned from measured data
only (see Section 3.4), these values are much larger (RMSD =16.4◦, CC = 0.70). Consequently, only the
results when CEKF is optimally tuned are presented in this section. RMSD and CC are calculated for all
joints of interest and all trials and are reported separately for each task in Table 1.

Figure 5 shows that, as expected, by setting the corresponding elements of Q to zero, the segment
lengths converge toward a constant value. This has the effect of constraining the joint kinematics solution,
similar to when state of-the-art MKO is used offline [3], and in contrast to when no model is used [38].
Moreover, one can see that the segment lengths are always positive and thus are physically consistent.
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Figure 5. Representative evolution of the estimation of the segment lengths corresponding to the model
described in Section 3.1. The segment lengths converge toward a constant fixed realistic value.

For all observed tasks, the internal/external rotations of the hips and of the shoulder display the
largest RMSD. This might be explained by the fact that, with the selected input data (i.e., joint center
positions), there are, in theory, an infinite number of solutions to solve the inverse kinematics for these
angles. The segment orientation estimate, provided as quaternions by the K2S, is not reliable enough to
be used as additional input data. With one degree-of-freedom at the knees and elbows, and using the
previous state in the CEKF, a reasonable solution can be found unless flexion remains close to 0 for these
joints. Adding the ankle and wrist joints into the kinematic model and the fingers and feet JCPs into the
input data would have also negatively impacted the results since their reliability is questionable.
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A large RMSD can also be observed for the shoulder flexion/extension, especially during the execution
of the squat exercise. This is due to the fact that the arm and shoulder elevations are shared between
the clavicle and the shoulder flexion/extension. In fact, unlike the reference system, which relies on a
redundant set of retro-reflective markers, the proposed CEKF cannot dissociate the contribution of each
joint. Moreover, the shoulder JCP only is provided by the K2S. Still, the clavicle segment is necessary due to
the nature of the investigated tasks and potential future tasks involving high arm elevations. Nevertheless,
as shown by the good average CC and by Figure 4, the shape of the joint angle is relatively well preserved.
Finally, a recent review has reported the typical errors for the model-derived glenohumeral rotations [3]
and showed that errors are maximal for internal/external rotations and reach 10◦ compared to the ground
truth (i.e., bone pins or fluoroscopy). This is close to the result obtained in this study, with an average of
14◦ RMSD and 0.80 CC for all data collected considering SS with MKO as the reference.

For the lower limbs, tasks 1 and 2 exhibited similar results despite the fact that the ankle JCP is moving
in task 2. The highest RMSD was obtained for the hip joints θ4, θ6, θ8 and θ10. Interestingly, knee joint
angles were well estimated with an average RMSD of 7◦ and an excellent CC of 0.985. As exemplified in
Figure 4, the difference in the knee joint angle essentially arises from the amplitude, which is systematically
reduced when using K2S data.

The internal/external rotation of the hip showed worse results in task 2 (above 17◦) than Task 1
(below 13◦). The difference in the internal/external rotation between these two trials can be explained by
the position of the ankles, which are fixed in squat exercises but not in the stepping task. Moreover, these
joints can be compared to the shoulder and suffer from the same type of error stated above.

In the literature about K2S, the best results were obtained for the trunk with a calculated RMSD and
CC of 3.7◦ and 0.83, respectively. Consequently, as expected, tasks 3 and 4 presented very satisfactory
results for trunk and hip joint angle estimates, with an average RMSD of 3.6◦ and 5.5◦ for task 3 and 3.5◦

and 5.5 ◦ for task 4, respectively.
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Table 1. Joint angle estimation obtained using the optimal tuning of Q. Accuracy for angles of interest have been reported as mean ± SD over all the analyzed trials.
RMSD: root mean square difference; CC: correlation coefficient.

Task 1

θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

RMSD (◦) 11.3 ± 2.6 3.0 ± 1.1 8.6 ± 3.5 6.5 ± 1.1 12.2 ± 3.3 3.9 ± 2.3 13.4 ± 7.0 7.2 ± 2.2
Lower Body CC 0.98 ± 0.01 0.85 ± 0.06 0.93 ± 0.05 0.99 ± 0.00 0.98 ± 0.01 0.85 ± 0.09 0.76 ± 0.35 0.98 ± 0.01

θ14 θ15 θ16 θ17 θ19 θ20 θ21 θ22

RMSD 7.5 ± 3.1 25.6 ± 6.4 15.3 ± 6.0 9.8 ± 2.4 8.3 ± 5.2 20.0 ± 5.3 17.5 ± 4.7 10.2 ± 2.1
Upper Body CC 0.78 ± 0.01 0.78 ± 0.15 0.94 ± 0.05 0.66 ± 0.24 0.80 ± 0.12 0.70 ± 0.18 0.93 ± 0.06 0.62 ± 0.2

Task 2
θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

RMSD 8.1 ± 3.5 4.0 ± 2.0 17.9 ± 10.1 8.3 ± 5.4 9.7 ± 5.4 3.7 ± 2.5 20.4 ± 12.9 8.2 ± 8.1
Lower Body CC 0.98 ± 0.03 0.54 ± 0.33 0.81 ± 0.19 0.98 ± 0.03 0.97 ± 0.06 0.76 ± 0.16 0.69 ± 0.26 0.97 ± 0.05

Task 3
θ4 θ5 θ8 θ9 θ12

RMSD 9.1 ± 1.9 4.7 ± 2.6 9.7 ± 2.3 4.3 ± 2.5 6.7 ± 1.9
Lower Body + Trunk CC 0.97 ± 0.04 0.86 ± 0.15 0.97 ± 0.04 0.86 ± 0.19 0.79 ± 0.31

Task 4
θ4 θ5 θ8 θ9 θ12

RMSD 8.7 ± 3.8 5.6 ± 1.6 8.9 ± 3.6 5.0 ± 1.2 5.4 ± 2.5
Lower Body + Trunk CC 0.88 ± 0.09 0.98 ± 0.01 0.85 ± 0.10 0.98 ± 0.01 0.77 ± 0.32
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4.1. Q Matrix Estimation

Since each task contains ten repetitions, a total of 40 different 1D paired t-tests were performed
on angles of interest. Representative examples of these tests are shown in Figure 6. The upper figures
show descriptive statistics while the bottom ones present results of the t-test obtained with the SPM
method. A large number of tests (33/40) showed significant differences in favor of the method optimizing
the CEKF’s covariance matrices. This means that, when optimizing the CEKF covariance matrices,
the estimated joint angles are significantly closer to the reference estimates than when using the classical
tuning method of the CEKF covariance matrices. However, the evolution of these differences during the
motion cycle should be assessed. The use of the SPM analysis allows us to show when the differences are
significant during motion. Figure 6a, obtained for the flexion/extension of the right shoulder (θ14) during
task 1, shows the only case in which a significant difference between the optimally and data driven tuning
methods was observed during the whole motion. Figure 6b, obtained for the right hip flexion/extension
(θ4) during task 1, illustrates the 22 cases over 33 when significant differences for more than 60% of the
motions are observed. The most significant differences are consistently observable at the beginning and at
the end of the motion.

Four tests illustrate significant differences in favor of both tuning methods. Figure 6c shows this for
the right hip abduction/adduction (θ5) of task 4. This test obtains a p-value = 0.043 at the beginning of the
motion in favor of the optimization approach (positive supra-threshold), a p-value = 0.003 at 25% of the
motion cycle in favor of the classical tuning method, a p-value < 0.0001 at 50% and a p-value = 0.021 at the
end of the motion. Similar results are found for the first and third tasks, for the joint angles θ15, θ21 and θ5.

Figure 6d, obtained for the right hip abduction/adduction (θ5) of task 2, presents the only test in which
the classical method to tune the CEKF covariance matrices gives a better result than when an optimization
process is used. Consequently, the supra-threshold clusters are negative, but with a small amplitude and
only for some limited phases of the motion. Two tests show no significant differences between the two
CEKF covariance matrices tuning methods. Figure 6e, obtained for the left hip abduction/adduction (θ9)
of task 3, exemplifies this observation. In this figure, it can be seen that the SPM{t} curve is always located
between the horizontal dashed lines indicating the critical t* (α = 0.05). It is interesting to note that both
non-significant and significant outcomes of t-test SPM in favor of the classical tuning method presented
a small RMSD (about 5◦). This analysis shows that the method is indeed sensitive to the definition of Q
and R. In the present study, the covariance matrices, whether optimized or not, are determined based
on the data coming from the SS. This impedes the current use of the method as a stand-alone approach;
i.e., without referring to SS with MKO to adjust these parameters for each task.
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Figure 6. Representative results obtained with the paired t-test statistical parametric mapping (SPM).
The top figures show descriptive statistics for each motion (Mean ±1 SD error cloud from between-subject
variability) when the CEKF’s covariance matrices are optimized (green) and when classical methods are
used to tune them (blue). Bottom figures show the most frequent inferences. The thick black line depicts the
test statistic continuum or SPM{t}. The red horizontal dashed lines illustrate the critical t* based on α = 0.05.
All areas outside the dashed red lines (grey) represent a p-value inferior to 5%. (a) is the angle θ14 for task 1,
(b) the angle θ4 of task 1, (c) the angle θ5 of task 4, (d) the angle θ5 of task 2, and (e) is the angle θ9 of task 3

5. Conclusions

The purpose of the present study was to show the possibility of improving the accuracy of joint
angle estimates from data provided by a Kinect sensor 2 using a constrained biomechanical model.
The covariance matrices of the proposed constrained EKF were optimally tuned for each investigated task
from the data of one subject. When applying the identified parameters to the other subjects, the accuracy
analysis showed a relatively good estimate of joint angles with the exception of the internal/external
rotations of hip and shoulder joints. This shows that the proposed tuning method is task-dependent and
thus that the same values of Q and R can be used for any other healthy individual. If a new exercise is
investigated or if the K2S location is largely modified, then the optimal tuning described in Equation (10)
should be performed again.
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Additionally, the tuning of Q allows us to obtain constant segment lengths that are robust to the
disturbance of the K2S JCP estimates. Figure 5 shows the good convergence to each of the segment lengths
while realistic positive values and realistic segment proportions are maintained. In addition to always
having realistic segment lengths, the physical constraints described in Equation (7) ensure that the joint
angle estimates are physically feasible, as shown in Figure 4. As supported by the literature, having a
physically consistent estimate of segment lengths and joint angles is of crucial importance to conveying
meaningful information in both rehabilitation and training settings. The proposed approach can be easily
transferred to daily practice outside the laboratory, and its use requires no special skills. A limitation of
the proposed approach is that it does not rely on the full set of information provided by the K2S. Analyses
are only performed with 15 of the 24 JCPs estimated by the K2S, and the quaternions used to represent
the segment orientations are not included. In fact, large variations and discontinuities in the quaternion
data were observed during the investigated tasks. Similarly, ankle angles are not estimated because of
the noisy feet positions obtained by the skeleton extractor of the K2S. However, thanks to the simple
formulation of constraints in the proposed CEKF, it is possible to get the ankle angles by adding constraints
on feet positions. A state estimator monitoring the height of the ankle and foot JCPs would have to be
added to the proposed CEKF. Affordable balance sensors (e.g., a Wii Balance Board) could provide more
information on foot position and the dynamic behavior of the locomotor system. Including dynamics
would improve the consistency of joint kinematics [21]; however, its inclusion into a CEKF would have a
large computational cost that might not meet the requirement of a low-cost device which could be used for
in-home rehabilitation.

If lifting weights were to be used in the hands and/or attached to a specific segment, the accuracy
of the KS2 JCP estimate should be assessed. The Microsoft SDK JCP estimation method, and thus its
robustness to modifications, is undisclosed. Thus, any new modification of the experimental setup would,
in theory, require a new calibration procedure with a reference motion capture system. This is the main
limitation of the proposed approach.

Although it was not investigated in this study, the spatio-temporal parameters of gait, which are
of great interest to the clinical community, could be estimated with the proposed approach. Indeed,
variables such as gait velocity, pelvis oscillation amplitude or step lengths can be reconstructed from joint
kinematics and a correct estimate of segment lengths. However, this would have to be done on a treadmill;
i.e., keeping the patient–K2S distance within strict limits.

Finally, the proposed CEKF method and its tuning could be used to ensure physical consistency with
the new generation of Kinect sensor. This new sensor is expected to have a largely improved accuracy
that might allow the use of additional information (hand and foot positions and segment orientation) that
are ignored in this study. One advantage of the proposed solution is that a change of the sensor will only
impact the algorithm tuning. Covariance matrices will need to be optimized for each task with a reference
SS and MKO. However, unlike algorithms based on machine learning which are sensor-dependent and
necessitate a large amount of data, only one subject per task could be used to tune the parameters of the
proposed method.
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