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1  | INTRODUC TION

Understanding the responses and adaptations of organisms to 
environmental variability has received growing interest in ecol-
ogy, especially in the context of ongoing global change (Doney 
et al., 2012). The last IPCC Synthesis Report (IPCC, 2014) noted 
that marine ecosystems are the most vulnerable to climate change. 

Climate impacts are already observed from polar to tropical ma-
rine ecosystems through, for instance, increases in sea surface 
temperatures (SST) and altered patterns of ocean climate systems 
(e.g., El-Nino Southern Oscillation) (Doney et  al., 2012; Ramírez, 
Afán, Davis, & Chiaradia, 2017). Such changes in physical proper-
ties of oceans are associated with changes in marine productivity 
(Bakun et al., 2015; Polovina, Howell, & Abecassis, 2008), shifts in 
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Abstract
1.	 Changes in marine ecosystems are easier to detect in upper-level predators, like 

seabirds, which integrate trophic interactions throughout the food web.
2.	 Here, we examined whether diving parameters and complexity in the temporal 

organization of diving behavior of little penguins (Eudyptula minor) are influenced 
by sea surface temperature (SST), water stratification, and wind speed—three 
oceanographic features influencing prey abundance and distribution in the water 
column.

3.	 Using fractal time series analysis, we found that foraging complexity, expressed as 
the degree of long-range correlations or memory in the dive series, was associated 
with SST and water stratification throughout the breeding season, but not with 
wind speed. Little penguins foraging in warmer/more-stratified waters exhibited 
greater determinism (memory) in foraging sequences, likely as a response to prey 
aggregations near the thermocline. They also showed higher foraging efficiency, 
performed more dives and dove to shallower depths than those foraging in colder/
less-stratified waters.

4.	 Reductions in the long-term memory of dive sequences, or in other words increases 
in behavioral stochasticity, may suggest different strategies concerning the explo-
ration–exploitation trade-off under contrasting environmental conditions.

K E Y W O R D S

behavioral complexity, Eudyptula minor, foraging behavior, fractal analysis, little penguin, sea 
surface temperature, thermocline
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the distribution and dispersion of organisms (García Molinos et al., 
2015), and/or changes in the timing of ecosystem-level processes 
(Durant, Hjermann, Ottersen, & Stenseth,  2007). These changes 
are expected to affect trophic interactions and, by extension, 
the structure and functioning of ecosystems (Doney et al., 2012). 
However, due to the complexity of trophic pathways within marine 
ecosystems, and to the inaccessibility of marine environments, it 
is extremely difficult to monitor these changes. One approach 
to addressing these difficulties involves the study of upper-level 
predators, which are more sensitive to changes in the marine food 
chain (Hindell, Bradshaw, Harcourt, & Guinet, 2003; Ramírez et al., 
2016).

Among the parameters used to monitor upper-level preda-
tors (e.g., breeding success, populations dynamics), foraging be-
havior can highlight environmental change at short time scales 
(Lewis et  al.,  2006). As upper-level marine predators forage for 
resources that are distributed patchily across space and time 
(Weimerskirch, 2007), they require flexibility in foraging behavior to 
both meet their energy requirements and provide for their offspring 
(Weimerskirch, Cherel, Cuenot-Chaillet, & Ridoux, 1997). These ma-
rine predators exhibit variability in foraging behavior in response to 
variation in sea-ice distribution (e.g., Bailleul et al., 2007), bathyme-
try (e.g., Chiaradia, Ropert-Coudert, Kato, Mattern, & Yorke, 2007), 
marine currents (e.g., Bost et al., 2009), thermal stratification of the 
water column (e.g., Takahashi et  al.,  2008), wind (e.g., Dehnhard, 
Ludynia, Poisbleau, Demongin, & Quillfeldt,  2013), and SST (e.g., 
Bost et  al.,  2015). This variability in environmental features medi-
ates prey availability to predators (Mann & Lazier, 2005), in both prey 
abundance and distribution in the water column (Boyd et al., 2015; 
Goundie, Rosen, & Trites,  2015). Understanding how the physical 
environment and the distribution of prey influence predator activity 
patterns, and thereby the potential impacts on predator populations, 
is a research priority in the field of marine megafaunal ecology (Hays 
et al., 2016).

In that sense, exploring variation in emergent patterns across 
individuals experiencing different ecological conditions can en-
hance our understanding of animal–environment interactions 
(Reynolds, 2015). It has been proposed that complexity in behavior 
should correspond to complexity in the environment in terms of re-
source distributions, such that in heterogeneous environments, be-
havioral sequences are predicted to be more variable and complex, 
or in other words less deterministic, to enhance prey encounter rates 
(Alados, Escos, & Emlen, 1996; Humphries, Weimerskirch, Queiroz, 
Southall, & Sims,  2012; MacIntosh,  2014; MacIntosh, Alados, & 
Huffman,  2011; Shimada, Minesaki, & Hara,  1995; Viswanathan 
et  al.,  1999). For example, we previously showed that variation in 
the temporal organization of little penguin (Eudyptula minor) dive se-
quences varied across areas with different bathymetric profiles, with 
penguins foraging in deeper waters producing less deterministic or 
more stochastic sequences (Meyer et  al.,  2017). Thus, measuring 
temporal organization in behavior sequences across environmen-
tal gradients can potentially highlight the oceanographic conditions 
that represent challenging habitats.

In this light, the characterization of fractal properties in an-
imal-derived time series has emerged as a useful tool to model 
temporal patterns of animal behavior as a complex process ranging 
from stochastic, uncorrelated behavior, to deterministic, long-range 
dependent (auto-correlated) behavior that persists across measure-
ment scales (see review in MacIntosh, 2014). The balance between 
the stochastic and deterministic elements in behavioral sequences 
may be a critical point in the emergence and maintenance of behav-
ioral flexibility (MacIntosh, 2015; Reynolds, Ropert-Coudert, Kato, 
Chiaradia, & MacIntosh, 2015). The degree of complexity in these 
behaviors is shaped by both internal states (e.g., stress, disease; 
Alados et al., 1996; Cottin et al., 2014; MacIntosh et al., 2011) and 
external conditions (e.g., environment; MacIntosh et al., 2011; Meyer 
et  al.,  2017). Specific “complexity signatures,” as they have been 
termed (MacIntosh, 2014), are predicted to optimize the efficiency 
of biological encounters (Alados et al., 1996; MacIntosh et al., 2011; 
Shimada et  al.,  1995). For example, animals might exhibit greater 
stochasticity in more challenging environments as described above 
or rely on more ritualized patterns when conditions are amenable 
to them (MacIntosh et al., 2011; Meyer et al., 2017). Moreover, the 
competing demands of exploration versus exploitation of resources 
appear to be a key factor underlying the emergence of fractal pat-
terns in behavior, providing a way of interpreting variation in the 
scaling properties observed (Reynolds et al., 2015).

Identified as one of the fastest warming marine areas in the 
world (Hobday & Pecl, 2014; Ramírez et al., 2017; Wu et al., 2012), 
south-eastern Australia is experiencing significant changes in both 
oceanographic features and species distributions (Poloczanska 
et al., 2007). The region of Bass Strait, located between Tasmania and 
the Australian mainland, lies at the crossroads of three different ma-
rine currents (Sandery & Kämpf, 2005): (a) the warm, nutrient-poor 
South Australian Current (SAC); (b) the cold, nutrient-rich sub-Ant-
arctic Surface Water (SASW); and (c) the warm, nutrient-poor East 
Australian Current (EAC) (see Appendix S1). Changes in the predom-
inance and intensity of one ocean current over another are likely to 
alter species distributions and thus trophic interactions in the Bass 
Strait area, as shown previously for the EAC (Oliver et  al.,  2017; 
Poloczanska et al., 2007). These changes entrain cascading effects 
throughout the Bass Strait region's upper-level predators, such as 
little penguins (Afán, Chiaradia, Forero, Dann, & Ramírez,  2015; 
Chiaradia & Nisbet, 2006), Australian fur seals (Arctocephalus pusil-
lus doriferus; Hoskins & Arnould, 2014), Australasian gannets (Morus 
serrator; Angel et al., 2015), and short-tailed shearwaters (Puffinus 
tenuirostris; Berlincourt & Arnould, 2015a).

Among Bass Strait's upper-level predators, little penguins are use-
ful models for investigating the relationship between environmen-
tal variability and complexity in foraging behavior, as it has already 
been shown that they are sensitive to changes in SST (Berlincourt & 
Arnould, 2015b; Carroll, Everett, Harcourt, Slip, & Jonsen, 2016), ther-
mal stratification of the water column (Pelletier, Kato, Chiaradia, & 
Ropert-Coudert, 2012; Ropert-Coudert, Kato, & Chiaradia, 2009), and 
wind (Berlincourt & Arnould, 2015b; Saraux, Chiaradia, Salton, Dann, 
& Viblanc, 2016). Overall, relatively higher SST, stratified waters, and 
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weak winds are likely favorable for little penguins as they result in 
higher abundance or predictability of prey patches because prey are 
aggregated nearby a thermocline (Carroll et al., 2016; Cox, Embling, 
Hosegood, Votier, & Ingram, 2018). In contrast, lower SST, mixed water 
layers, or strong winds do not favor such aggregations or abundance, 
resulting in more challenging conditions for little penguins.

Under these challenging conditions (i.e., low SST, mixed water, 
and strong winds), we hypothesized that little penguins should exhibit 
greater stochasticity in the temporal organization of their diving be-
havior because the more persistent behavioral patterns expected to 
emerge under less challenging or more homogeneous conditions would 
be disrupted. Following Reynolds et al. (2015), we hypothesize that for-
aging sequences may lose their correlation structure if alternations be-
tween diving and surface times take on less characteristic or “noisier” 
patterns, for example, if penguins begin to prioritize exploration, which 
is freer to vary, overexploitation. To test this hypothesis, we used de-
trended fluctuation analysis (Peng et al., 1994; Peng, Havlin, Stanley, 
& Goldberger, 1995) to examine the temporal organization of diving 
behavior of little penguins in relation to sea surface temperature, water 
stratification, and wind speeds. We also examined other, more tradi-
tional diving variables (i.e., mean dive depth, mean foraging effort per 
day, foraging efficiency, and mean number of dives per day) in relation 
to these environmental factors. The study is based on an 11-year data-
set focusing on little penguins at Phillip Island Nature Parks, Australia, 
and additionally tests for associations between these dive parameters 
and other variables such as penguin sex (Pelletier, Chiaradia, Kato, 
& Ropert-Coudert, 2014) and breeding stage (i.e., incubation, guard, 
postguard; Chiaradia & Kerry, 1999; Saraux, Robinson-Laverick, Maho, 
Ropert-Coudert, & Chiaradia, 2011).

2  | METHODS

2.1 | Long-term monitoring of foraging behavior

The study was conducted on the little penguin breeding colony at 
Phillip Island, Australia (38°21′S, 145°09′E, Figure 1), which contains 
28,000–32,000 breeding adults (Sutherland & Dann, 2012). We col-
lected diving data from 353 foraging trips over 11 breeding seasons 
from 2001 to 2012 (except 2003) during the three stages of the 
breeding cycle, that is, incubation, guard, and postguard. Postguard 
data were not available for the 2006 season. We used three dif-
ferent types of data-loggers recording depth at 1 or 2  s intervals 
(see details in Table 1). Birds were captured inside their nest boxes. 
Loggers were attached to their lower backs with marine Tesa® tape 
(Beiersdorf AG, Hamburg, Germany; Wilson et al., 1997). Upon their 
return from a single trip at sea, birds were recaptured in the colony 
and loggers were retrieved. Each attachment and removal of the log-
gers were completed in less than 5 min. All animal research protocol 
across all years was carried out in accordance with the Phillip Island 
Nature Parks Animal Experimentation Ethics Committee approval 
and a research permit issued by the Department of Environment, 
Land, Water and Planning of the state of Victoria, Australia.

2.2 | Diving parameters

After recovery, raw data were downloaded from the loggers and 
analyzed using Igor Pro version 6.22A (Wavemetrics Inc.). We used a 
purpose-written script to adjust the depth to zero when birds were at 
the surface between two dives and extract diving parameters from the 
depth data, including maximum diving depth, dive and postdive dura-
tion, and the number of vertical undulations in the bottom phase of 
the dive for each dive deeper than 1 m, which are generally indica-
tive of prey pursuit (Kato, Ropert-Coudert, Grémillet, & Cannell, 2006; 
Ropert-Coudert, Kato, Wilson, & Cannell, 2006). A bottom phase was 
defined as the first and last time during a dive that the depth-change 
rate became <0.25  m/s (Kato, Ropert-Coudert, & Chiaradia,  2008). 
To allow comparison between the different stages, we calculated the 
mean foraging effort per day as the total diving duration (in minutes) 
divided by the trip duration (in days). Similarly, we calculated the mean 
number of dives per day as the total number of dives performed over 
a trip divided by the trip duration (in days). The prey encounters per 
unit time used as proxy for foraging efficiency was calculated as the 
total number of vertical undulations divided by the total diving dura-
tion over the trip (Sala, Wilson, & Quintana, 2012).

2.3 | Detrended fluctuation analysis

We used Detrended Fluctuation Analysis (DFA; Peng et al., 1994; Peng 
et al., 1995) to investigate long-range dependence in the sequential 
distribution of little penguin dive and postdive durations. DFA is re-
ported to be one of the more robust estimators of the Hurst exponent 

F I G U R E  1   Location of Phillip Island colony (grey dot), foraging 
area (black rectangle), and a simplified representation of the water 
masses in south-eastern Australia (Bass Strait region): South 
Australian current (SAC), East Australian current (EAC), and Sub-
Antarctic Surface Waters (SASW) (adapted from; Sandery & Kämpf, 
2005)
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(Cannon, Percival, Caccia, Raymond, & Bassingthwaighte,  1997), 
providing a scaling exponent (αDFA) that measures both long-range 
correlations and self-affinity across scales in time series data. 
Theoretically, αDFA is inversely related to the fractal dimension 
(Delignières, Torre, & Lemoine, 2005; Eke et al., 2000), which rep-
resents an index of structural complexity (Mandelbrot, 1977). This 
scaling exponent is bound to [0, 1] for fractional Gaussian noises 
(fGn) and [1, 2] for fractional Brownian motions (fBm) (Delignières 
et al., 2005; Eke et al., 2000). Values in the range [0.5, 1] and [1.5, 2] 
reflect persistence while those in the range [0, 0.5] and [1.5, 2] re-
flect antipersistence in the time series for fGn and fBm, respectively, 
with 0.5 and 1.5 reflecting randomness (white noise).

Previous studies have shown that dive sequences from foraging 
penguins are best characterized as persistent, long-range dependent 
fractional Gaussian noise (Cottin et al., 2014; Le Guen et al., 2018; 
MacIntosh, Pelletier, Chiaradia, Kato, & Ropert-Coudert,  2013; 
Meyer et  al.,  2017; Meyer, MacIntosh, Kato, Chiaradia, & Ropert-
Coudert,  2015). In other words, dive and postdive durations of a 
given length are typically followed by dive and postdive durations 
of a similar length, with such patterns of fluctuation between these 
two behavioral states persisting across a range of measurement 
scales. A figure illustrating the difference in diving sequences be-
tween individuals exhibiting high αDFA values and low αDFA values 
can be found in the supplementary material (Figure S1). We might in-
terpret this as persistent alternations between states of exploration 
and exploitation that repeat across measurement scales. However, 
variation in these patterns of fluctuation between states is reflected 
in variation in scaling exponents derived from DFA: Across penguin 
species, values can range from 0.75 (more stochastic and less cor-
related behavior) to 0.99 (heavily deterministic and long-range de-
pendent/auto-correlated behavior; MacIntosh et al., unpublished 
data). Such variation allows characterization of the temporal organi-
zation of diving behavior (i.e., foraging complexity) across individuals 
and conditions (MacIntosh, 2014).

We used two versions of the DFA algorithm in our study. The 
first (DFA) uses included a linear detrending method in which lin-
ear regressions are applied within each window to remove the 
trends (Peng et  al.,  1995). We used this algorithm on the first-or-
der integrated sequences, assuming the original diving data repre-
sented an fGn process (MacIntosh et al., 2013). The second (DFAb) 
uses a bridge detrending method in which the first and last points 
within each window are “bridged” to create a trendline (Cannon 
et al., 1997). We used this algorithm on the second-order integrated 
sequences, which reflect an fBm process (MacIntosh et  al.,  2013). 
The outputs of these variants (DFA and DFAb), insomuch as they re-
flect Hurst exponent estimators for fGn and fBm, respectively, are 
theoretically related to one another through the following relation-
ship: αfGn ≈ αfBm − 1 (Seuront, 2010). Their agreement provides an 
internal test of validation that the approach is appropriate.

Both methods were run using the package “fractal” (Constantine 
& Percival,  2014) in R statistical software v3.4.2 (R Development 
Core Team, 2017). As scaling is generally lacking at the smallest 
and largest scales, and to avoid any mathematical biases from their TA
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inclusion, we used methods provided in (Seuront, 2010) to calculate 
the best-scaling regions from which to estimate αDFA and αDFAb. A 
thorough description of this method applied to penguin diving se-
quence, including DFA calculation, validation of best-scaling regions, 
relationships between various fractal dimension estimates and fig-
ures are provided in MacIntosh et  al.  (2013), Cottin et  al.  (2014), 
Meyer et al. (2015) and Meyer et al. (2017). As little penguins are vi-
sual predators that forage diurnally (Cannell & Cullen, 2008), we only 
used active diving data (usually from dusk to dawn) and excluded 
nightly nondiving data. For multiday trips, we calculated αDFA for 
each day and averaged the daily values over the whole trip.

2.4 | Environmental variables

The remote-sensing environmental variables were extracted and 
averaged over the little penguins' foraging spatial area during the 
breeding season (approx. 37°45′S–39°38′S, 143°11′E–145°22′E; 
Collins, Cullen, & Dann,  1999; Hoskins et  al.,  2008; McCutcheon 
et  al.,  2011; Pelletier et  al.,  2014) unless otherwise specified. 
For the study period, daily satellite-derived SST (°C) had a spatial 

resolution of 0.25° from the National Oceanic and Atmospheric 
Administration (NOAA) (https://www.esrl.noaa.gov/psd/data/gridd​
ed/data.noaa.oisst.v2.highr​es.html#detail; Reynolds et  al.,  2007). 
Daily satellite-derived wind speed (m/s) had a spatial resolution of 
0.25° from NOAA (http://www.ncdc.noaa.gov/data-acces​s/marin​
eocea​n-data/blend​ed-globa​l/blend​ed-sea-winds; Zhang, Bates, & 
Reynolds, 2006).

Thermal structure in the water column was obtained for the en-
tire study period from a oceanographic simulation model of daily 
temperature aggregates at 22 depth levels between 0 and 77  m, 
with a spatial resolution of 0.25°. This dataset was obtained from 
the Mercator Ocean GLORYS2V4 (1993–2015) global ocean re-
analysis for the Global Ocean and Sea Ice Physics project available 
on the European Union Copernicus Marine Service Information 
website (http://marine.coper​nicus.eu/servi​ces-portf​olio/acces​s-to-
produ​cts/). These data were also used as a proxy of thermoclines, 
defined as layers of water in which temperature changes more rap-
idly with depth than the warm layers above and cold layers below 
(Fiedler,  2010). To do so, we computed the rate of temperature 
change with depth (dT/dD; T: temperature; D:depth) for each vertical 
temperature profile (Coyle, Pinchuk, Eisner, & Napp, 2008; Takahashi 

F I G U R E  2   Thermal profiles of the water column in the foraging area of little penguins between the 2001 and 2012 breeding seasons. 
Each profile corresponds to a day for which a little penguin's trip was recorded. The seabed is situated between 60 m and 80 m. Blue profiles 
indicate the absence of a thermocline, orange profiles indicate the presence of a weak thermocline, and red profiles indicate the presence of 
a strong thermocline
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et al., 2008). Based on visual analysis of the graphs (Figure 2) and 
previous studies in the same area (Ropert-Coudert et  al.,  2009), 
we considered that a thermocline was present in the water column 
when the highest dT/dD exceeded 0.07°C/m. Where thermoclines 
were detected, we measured the depth of the thermocline, corre-
sponding to the highest dT/dD. Based on this depth, we calculated 
the intensity of the thermocline as the difference between the aver-
age water temperature above and below the thermocline (Kokubun 
et al., 2010). The strength of the thermocline was then used to dis-
tinguish between weak (≤1.5°C) and strong (>1.5°C) thermoclines.

2.5 | Statistics

All statistical analyses were conducted in R v3.4.2 (R Development 
Core Team, 2017). Preliminary analysis and previous studies 
(Pelletier,  2013) have shown that SST and water stratification can 
change concomitantly in the study area. We first tested the effect 
of SST and wind speed on foraging complexity and diving variables; 
SST was then substituted by our proxy to the thermal structure of 
the water column. Models including both SST and thermoclines as 
predictor variables were not considered because their close corre-
spondence, that is, high SST usually corresponded to strong thermo-
clines, would lead to considerable variance inflation in the models. 
Thermocline strength was classified as absent, weak, or strong in the 
models according to the description above. The distribution of each 
response variable was checked using the “fitdistrplus” package in R 
(Delignette-Muller, Dutang, Pouillot, Denis, & Siberchicot, 2017). 
We constructed (a) linear mixed-effects models (LMMs, “lmerTest” 
package in R; Kuznetsova, Brockhoff, & Christensen,  2016) to in-
vestigate variation in αDFA and (b) generalized linear mixed-effects 
models (GLMMs, “MASS” package in R; Ripley et al., 2017) to inves-
tigate variations in mean dive depth, mean foraging effort per day, 
foraging efficiency and mean number of dives per day, as a function 
of SST, wind speed and thermocline presence and strength, as well 
as bird sex for each stage of the breeding season (detailed results are 
provided in Appendix S1). As different loggers were used and some 
individuals may have been sampled more than once across years, 
logger type and individual were added to the models as random fac-
tors. Numeric predictor variables were scaled and centered (z-trans-
formed) to simplify interpretation of the parameter estimates in the 
statistical model (Zuur, Ieno, & Smith, 2007). Models were validated 
by visual examination of histograms of the residuals to ensure homo-
geneity and plots of residuals versus fitted values to ensure homo-
scedasticity. Using Cook's distance and visual checking of outliers, 
we found no evidence of overly influential data points in our models 
(Fox,  1991). To test for multicollinearity, variance inflation factors 
(VIF) were calculated for each predictor variable with the package 
“fmsb” and only variables with values lower than 2 were retained in 
the models (Zuur, Ieno, & Elphick, 2010). We included a quadratic 
term for SST if that improved model fit. However, the quadratic term 
for SST did not explain additional variance in the model so it was 
removed in favor of better interpretation of the linear effect. All 

correlation tests were done using the Pearson method. Student's t 
tests were used to compare average SST and wind speed between 
each stage. Descriptive results are presented as means and standard 
errors (SE) unless otherwise specified, and we set the alpha level for 
all statistical analyses at 0.05.

3  | RESULTS

3.1 | Fractal analysis of dive sequences

The average scaling exponents observed for penguins foraging dur-
ing the incubation, guard, and postguard phases were 0.87 ± 0.0004 
(αDFA) and 1.89 ± 0.004 (αDFAb), 0.86 ± 0.0004 and 1.88 ± 0.005, and 
0.88 ± 0.0004 and 1.90 ± 0.004, respectively. We observed a strong 
correlation between the two DFA results at each breeding stage (in-
cubation: r = .95, p < .001; guard: r = .98, p < .001; postguard: r = .98, 
p <  .001). Thus, both methods converged to indicate that dive se-
quences from foraging little penguins are best characterized as per-
sistent, long-range dependent fractional Gaussian noise (Figure 3), in 
accordance with previous studies on penguins (Cottin et al., 2014; Le 
Guen et al., 2018; MacIntosh et al., 2013; Meyer et al., 2015, 2017). 
The observed best-scaling regions were similar for the three stages 
(incubation, guard and postguard) and included the scales 27–211, or 
128–2048 s.

3.2 | Oceanography

As breeding season progress from spring to summer, the mean 
SST recorded during the foraging trips increased from 14.44°C 
(SD = 1.16°C) to 15.76°C (SD = 1.46°C, Student's t test: all p < .01; 
Figure  4a). The water column remained well mixed at the begin-
ning of the breeding season, and stratification processes initiated 
between late October and December concurrently with an increase 
in SST (Figure  4b). No thermoclines were detected during forag-
ing trips of the 2001 and 2012 breeding seasons. Over the whole 
study period, only 8% of incubation trips showed the presence of a 
thermocline, whereas 22% of guard trips and 43% of postguard trips 
showed the presence of thermoclines. There was no difference in 
mean wind speed between stages across all years (Student's t tests: 
all p > .1). Moreover, no trips coincided with the occurrence of strong 
winds.

3.3 | Behavioral organization and 
environmental parameters

Little penguins exhibited higher values of αDFA with higher SST, ir-
respective of the breeding stage (Table 2; Figure 5a). Higher SST was 
also linked with shallower dives (Table 2; Figure 5b), higher foraging 
efficiency (Table 2; Figure 5c), and higher mean numbers of dives per 
day (Table 1; Figure 5e), again irrespective of breeding stage. Higher 
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SST led to a decrease in mean foraging effort per day only during 
the postguard stage. At the same time, little penguins exhibited 
higher values of αDFA (Table 2; Figure 6a), shallower dives (Table 2; 
Figure 6b), higher foraging efficiency (Table 2; Figure 6c), and larger 

mean numbers of dives per day (Table 2; Figure 6e) in the presence 
of stronger thermoclines, irrespective of breeding stage. The pres-
ence of a stronger thermocline did not affect mean foraging effort 
per day, and weak thermoclines were not associated significantly 
with any aspects of diving behavior observed in this study. Stronger 
wind speeds were marginally associated with diving variables, as it 
was only associated with lower values of αDFA during the guard stage 
for one of the model used (Table 2). Finally, males dived deeper than 
females during the guard stage, but also showed lower foraging effi-
ciency and lower mean numbers of dives per day than females during 
incubation (Table 2).

4  | DISCUSSION

Sea surface temperature and water stratification influenced the 
diving behavior of little penguins, in particular the temporal organi-
zation of their diving behavior. When exposed to lower SST and less-
stratified waters, little penguins exhibited greater stochasticity in 
their foraging sequences, but also deeper diving activity, lower for-
aging efficiency, and smaller numbers of dives, irrespective of breed-
ing stage. These findings suggest that little penguin prey are more 
dispersed and/or less abundant in colder and less-stratified waters, 
leading penguins to spend more time exploring the environment 
rather than exploiting prey during foraging sequences (Reynolds 
et al., 2015).

On the one hand, variation in SST is known to influence the 
abundance and spatial distribution of small pelagic prey. For ex-
ample, Rhinoceros auklets (Cerorhinca monocerata) breeding in the 
Sea of Japan are highly dependent on the seasonal availability of 
Japanese anchovy (Engraulis japonicas), which is positively related 
to increases in SST (Takahashi et  al.,  2001). Similarly, the optimal 

F I G U R E  3   Results of detrended fluctuation analysis (DFA) of 
diving sequences, showing scaling exponents for each stage

F I G U R E  4   (a) The mean sea surface 
temperature (2001−2002/2012−2013) 
for each breeding stage; (b) average sea 
surface temperature in the absence of a 
thermocline (AB), the presence of a weak 
thermocline (WT), and the presence of 
a strong thermocline (ST) in the water 
column
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offshore temperature range for little penguin prey–capture success 
(Carroll et al., 2016) seems to mirror the thermal peak of availabil-
ity of sardines (Sardinops sagax; Agenbag et  al.,  2003; Nevárez-
Martıńez et  al.,  2001). In our study, the maximum SST was in the 
optimal offshore temperature range for capture success observed 
by Carroll et  al.  (2016), so that the positive association between 
foraging parameters and increasing SST (i.e., more deterministic 
sequences, shallower dives, higher foraging efficiency and higher 
numbers of dives) can reflect an improvement in foraging conditions 
for these penguins (e.g., higher prey availability), although the situa-
tion could become detrimental to foraging success if SST continues 

to increase and move away from the optimal temperature noted by 
Carroll et al. (2016).

On the other hand, strong water stratification, an indication of 
the presence of a thermocline in the water column, could enhance 
prey availability in the foraging area by acting as a physical barrier 
to prey dispersion, creating an aggregation of marine life (McInnes, 
Ryan, et al., 2017; Ropert-Coudert et al., 2009). Here, with strong 
thermoclines in the water column, penguins showed more deter-
minism (less stochasticity) in their foraging sequences, as well as 
greater foraging efficiency, shallower dives, and higher numbers of 
dives, than they did in the presence of weak thermoclines or in their 

TA B L E  2   Summary of the effects on diving variables (αDFA, mean dive depth, foraging efficiency, foraging effort per day (min), and 
number of dives per day) of sea surface temperature (SST), wind speed (WS), thermoclines, and sex during the three periods of the breeding 
season using LMM and GLMM statistics

Incubation Guard Postguard

Variable SST WS
Weak
Th

Strong
Th

Sex 
M SST WS

Weak
Th

Strong
Th

Sex 
M SST WS

Weak
Th

Strong
Th

Sex 
M

αDFA + / / + / + /− / + / + / / + /

Mean dive depth − / / − / − / / − + − / / − /

Foraging 
efficiency

+ / / + − + / / + / + / / + /

Foraging effort/
day

/ / / / / / / / / / / / / / /

Number of dives/
day

+ / / + − + / / + / + / / + /

Note: The complete results are included in Appendix S1. No weak thermocline was recorded during the incubation stage.
Abbreviations: −, negative effect; /, no statistical effect; +, positive effect; Strong Th, strong thermocline; Weak Th, weak thermocline.

F I G U R E  5   Effects of sea surface 
temperature (SST in °C) on αDFA, mean 
dive depth (m), foraging efficiency, 
foraging effort per day, and number 
of dives per day (Panels a, b, c, d, e). 
Description of each variable is detailed in 
the methods. Incubation, guard, postguard 
stages are, respectively, indicated in 
red, green, and blue. Each open circle 
corresponds to one individual value. Each 
regression line is represented with a 95% 
confidence interval
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absence altogether. Interestingly, it has been shown that penguins 
foraging in shallower environments also exhibited greater deter-
minism in their foraging sequences, as well as greater foraging effi-
ciency and shallower dives, when compared to individuals foraging 
in deeper waters (Meyer et al., 2017). The potential for thermoclines 
to act as a physical barrier to prey, and thereby mimic the influence 
of bathymetric structure on both prey distribution and diving be-
havior, is also consistent with previous results concerning the role 
of the thermoclines/water stratification in prey encounters (Boyd 
et  al.,  2015; Kokubun et  al.,  2010; Pelletier et  al.,  2012; Ropert-
Coudert et al., 2009; Waggitt et al., 2018).

Our results suggest that both higher SST and the presence of 
thermoclines lead to increased prey availability in the foraging area, 
which is reflected in the higher foraging performance of little pen-
guins under such favorable environmental conditions. Moreover, 
such situations are likely to occur toward the second half of the 
breeding season, in particular during the chick-rearing (guard and 
postguard) stages. Both of these stages are critical periods for the 
growth and development of chicks, so changes in foraging efficiency 
at this stage may have dramatic consequences on reproductive out-
put (Chiaradia & Nisbet,  2006). Future studies should investigate 
how the absence/presence of thermoclines in the foraging area over 
a season may influence the breeding success at the colony level.

The link between the temporal organization of the diving be-
havior and thermocline strength seems to reflect a trade-off pit-
ting exploration of the environment against exploitation of prey as 
previously proposed (Reynolds et al., 2015). Under this exploration/
exploitation trade-off, the greater stochasticity in sequences of for-
aging behavior in colder and less-stratified waters resulted in an in-
crease in target depths or variance from one dive to the next, which 

is likely to enhance information gathering about prey locations with 
increasingly heterogeneous prey fields. This pattern would lead to 
deeper dives on average and induce variability in both dive and post-
dive durations, reducing long-range dependence in dive sequences 
and thus leading to greater stochasticity in behavior.

In this context, when exploration of the environment is favored, 
foraging efficiency and numbers of dives decrease. Conversely, 
warmer and strongly-stratified waters favor exploitation due to in-
creased accessibility and predictability of prey (Kokubun et al., 2010; 
Pelletier et al., 2012; Ropert-Coudert et al., 2009). Under favorable 
conditions, individuals may favor exploitation over exploration, lead-
ing to greater determinism in sequences of foraging behavior but also 
shallower dives, greater foraging efficiency and smaller overall num-
bers of dives performed. This more persistent and periodic behavior 
in periods of prey exploitation could reflect the physiological limits 
that constrain both dive duration and postdive duration, such as ox-
ygen reserves (Wilson, 2003) and lactic acid build-up (Butler, 2006). 
Under an environment of high prey availability at shallower depths, 
individuals could dedicate more significant amounts of time to the 
bottom phase of dives, wherein feeding events are likely to hap-
pen (Ropert-Coudert et  al.,  2006), ultimately increasing foraging 
efficiency.

Despite having a significant effect on some foraging parameters 
of little penguins (e.g., foraging effort, trip duration; Berlincourt & 
Arnould,  2015b; Saraux et  al.,  2016), wind speed had only a mar-
ginal effect on diving behavior in our study. Stronger wind speed 
was only associated with higher stochasticity in foraging sequences 
(for only one model) in guard stage. Wind are known to cause mix-
ing of the water column, modifying the stratification of the waters 
(Acha, Mianzan, Guerrero, Favero, & Bava,  2003) and by so the 

F I G U R E  6   Effects of the absence of a 
thermocline (AB), the presence of a weak 
thermocline (WT), and the presence of 
a strong thermocline (ST) in the water 
column on αDFA, mean dive depth, 
foraging efficiency, foraging effort per 
day, and number of dives per day (Panels 
a, b, c, d, e). Description of each variable 
is detailed in the methods. Incubation, 
guard, postguard stages are, respectively, 
indicated with a black circle, a black 
triangle, and a black square. Results are 
presented here as means by thermocline 
condition and stage with the associated 
standard errors. No data were collected 
in presence of weak thermocline (WT) 
during the incubation stage

 20457758, 2020, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.6393 by C

ochrane France, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



     |  6619MEYER et al.

predictability of prey fields. This is consistent with the other results 
described in this study in which penguins exhibited higher stochas-
ticity in foraging sequences in response to challenging environmen-
tal conditions. However, we only detected such effect during the 
guard stage and it could be explained by the fact we did not record 
extreme wind speeds (>14 m/s), representative of storm conditions 
(Dehnhard et al., 2013; Saraux et al., 2016), during this study.

Using a comprehensive dataset over an 11-year period, we 
showed how the temporal organization of the diving behavior in a 
seabird might vary according to intra- and interannual variability of 
environmental conditions. More stochastic foraging sequences may 
reflect more challenging environmental conditions (e.g., colder and 
less-stratified waters), where prey patches are less predictable and 
when a switch toward more exploratory behavior is needed to buf-
fer such changes. This approach might aid future studies aiming to 
understand how animal movement is affected by the distribution of 
prey and the physical environment. One component these studies 
could also take into account is how individual and social environment 
characteristics, especially for group-hunting species such as pen-
guins (Berlincourt & Arnould, 2014; McInnes, McGeorge, Ginsberg, 
Pichegru, & Pistorius, 2017), shape the temporal organization of the 
diving behavior in marine predators, and their decisions to explore or 
exploit the environment.
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