
HAL Id: hal-02638770
https://hal.science/hal-02638770

Submitted on 28 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-User and Multi-Purpose CA Simulator
Hayk Nahapetyan, Jean-Pierre Jessel, Suren Poghosyan, Yuri Shoukourian

To cite this version:
Hayk Nahapetyan, Jean-Pierre Jessel, Suren Poghosyan, Yuri Shoukourian. A Multi-User and Multi-
Purpose CA Simulator. International Conference on Computer Science and Information Technology
(CSIT 2017), Sep 2017, Yerevan, Armenia. pp.39-42. �hal-02638770�

https://hal.science/hal-02638770
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1109/CSITechnol.2017.8312133

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22285

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Nahapetyan, Hayk and Jessel, Jean-Pierre

and Poghosyan, Suren and Shoukourian, Yuri A Multi-User and

Multi-Purpose CA Simulator. (2018) In: International Conference

on Computer Science and Information Technology (CSIT 2017),

25 September 2017 - 29 September 2017 (Yerevan, Armenia).

A Multi-User and Multi-Purpose CA Simulator

Hayk E. Nahapetyan

IIAP

NAS of RA

Yerevan, Armenia

hayknahapetyan@yahoo.com

Jean-Pierre Jessel

IRIT

University of Toulouse

Toulouse, France

jessel@irit.fr

Suren S. Poghosyan

IIAP

NAS of RA

Yerevan, Armenia

psuren55@yandex.ru

Yuri H. Shoukourian

IIAP

NAS of RA

Yerevan, Armenia

shouk@sci.am

Abstract—In this paper, a software package for cellular au-
tomata simulation, 2D/3D visualization with a shared work
support system was introduced, that was designed considering the
needs of researchers in both local and virtual laboratories. As an
example of cellular automata, abelian sandpile model has been
chosen. An appropriate software package has been developed
using Microsoft .Net and C# enabling users to work at the same
time on the same models independent of the geographical location
of users within the public network.
Keywords— CA, ASM, .Net, C#, multi-user, simulation, visu-

alization

I. INTRODUCTION

Cellular automata (CA) are discrete models studied in com-

putability theory, mathematics, physics, complexity theory,

theoretical biology and microstructure modeling. The concept

of self-organized criticality was Þrst introduced by Bak, Tang

and Wiesenfeld in 1987 [1], and gave rise to growing interest

in the study of self-organizing systems. Bak et al. argued

that in many natural phenomena, the dissipative dynamics

of the system is such that it drives the system to a critical

state, thereby leading to ubiquitous power law behaviors.

This mechanism has been invoked to understand the power

law distributions observed in turbulent ßuids, earthquakes,

distribution of visible matter in the universe, solar ßares and

surface roughening of growing interfaces. The Sandpile mod-

els, being a class of cellular automata, are among the simplest

theoretical models which exhibit self-organized criticality. A

special subclass of interest consists of so called Abelian

sandpile models (ASM). The Abelian property means that the

Þnal stable state of the CA is independent of the order in

which the updates of cells are carried out. This property plays

a key role during the numerical, as well as analytical studies

of the ASM [2]– [4].

Many scientists and students previously presented research

works on various types of CA, included ASM, and provided

the relevant modeling and simulation [5]. Undoubtedly, it is

vital for researchers to have tools for simulating the models

under consideration. For this purpose, software solutions with

appropriate functionality are required to visualize the models,

also to perform simultaneous changes with provision of getting

and viewing the results. Besides, the solution should provide

logging the changes made during the model exploration; intro-

duce required attributes for accounting each change, as well

as memorize the model current state for further investigation.

Researchers in virtual laboratories are in need of sharing and

processing the same models at the same time independent of

the team members geographical locations. There are a number

of software solutions developed to meet the researchers needs.

For this purpose, NetLogo [6] can be selected as an

appropriate development environment supporting multi-agent

programmable modeling with provision of simulation and vi-

sualization of discrete models and cellular automata. NetLogo

has its own programming language based on Lisp which allows

users to create and develop their own models. Besides, Net

Logo provides the researchers to work on the same model at

the same time within local network (See Fig. 1).

Fig. 1. Sandpile 3D simulation and visualization from NetLogo library.

Note that to obtain a 3D visualization, Wolfram Mathemat-

ica or MatLab can be used, meanwhile they do not support

a shared work. Studies were conducted on the problem of

information sharing, like the one introduced in [7] which

presents a research on distribution and stream of large-scale

3D data in an efÞcient way. There are also studies regarding

different implementations of collaborative virtual environ-

ments, as given in [8], where the importance of awareness

and communication in collaborative virtual environments are

evaluated. Along with the research done before, still there

is a need for tools to merge the studies conducted, also to

support modeling; simulation; 2D/3D visualization; access and

availability aiming at provision of working on the same models

within global networks (collaborative work).

II. DISTRIBUTED SIMULATION CONTEXT (AND STATE OF

THE ART)

As an example of cellular automata ASM has been chosen.

CA simulator (See Fig. 2) supports 2D/3D visualization along

with model rotation and zooms in/out possibilities. For creat-

ing a new model, the user selects ”File” from the top panel,

chooses the ”New Sandpile Model” option, and then inserts a

size for the parameter n. Changes, such as adding grains, are

made by selecting ”Edit”, and then ”Add Grain” on the top

panel (See Fig. 3). It is possible to add as many grains as it is

required to a node with the given coordinates or with a layer

selected.

Fig. 2. CA simulator environment on the example of ASM.

Fig. 3. Dialog for adding grain.

Microsoft .Net implements a strategy for web services to

connect information; people; systems, and devices through

software, thus making easier sharing and using the information

between multiple websites; programs, and computers. Also,

it is developed to establish client-server-client connections

and to implement working on shared models. To proceed

with sharing the model, user starts broadcasting from the top

panel ”Broadcasting”, and then selects ”Start Broadcasting”

by ordering the name of the channel. Meanwhile,the other

users open the channels list from the top panel ”Broadcasting”;

select the ”Connect to Chanel (See Fig. 4), and then choose

the desired channel from the list. A prominent advantage

of the software is that it provides simulation of all changes

made during the model exploration, even in case of users

lateness. Besides, accounting of attributes is implemented for

each change in state, such as: average/layer/critical solidities;

the model stability/non stability; belonging to recurrent states,

count of nodes of the same height, etc (See Fig. 5).

Fig. 4. Dialog of channels’ list.

Fig. 5. Attributes.

III. SANDPILE MODEL

Consider an undirected graph G = (V, E) described with

the set of vertices V = {v1, v2, . . . , vN} and the set of edges

E. Each vertex vi ∈ V is assigned a variable hi which takes

integer values and represents the height of the sand at that

vertex. hmax
i denotes the maximal allowed height for the

vertex vi in the graph G. For a d-dimensional lattice we take

hmax
i = 2d + 1. CT denotes the set of heights hi which

determines the conÞguration of the system at a given discrete

time T . A conÞguration is called stable, if all heights satisfy

hi < hmax
i . The vertex vi is called closed, if hmax

i = deg(vi),
where deg(vi) indicates degree of vi. The dynamics of the

system is deÞned by the following rules. Consider a stable

conÞguration CT at a given time T . We add a grain of sand

at a random vertex vi ∈ V by setting hi to hi + 1 (we

assume that the vertex is chosen randomly with a uniform

distribution on the set V). This new conÞguration, if stable,

deÞnes CT+1. If hi ≥ hmax
i , then the vi becomes unstable

and topples losing hmax
i grains of sand, while all neighbors

of vi receive one grain. Note that if the vertex is open, then

the system loses grains. During the toppling of the closed

vertices, the number of grains is conserved. Note also that

toppling of a vertex may cause some of its neighboring vertices

to become unstable. In this case those vertices also topple

according to the same toppling rule. Once all unstable vertices

are toppled, a new stable conÞguration CT+1 is obtained. If

the Þnite connected graph G has at least one open vertex, then

all vertices become stable after Þnite number of topplings.

Moreover, the new stable conÞguration is independent of the

toppling order. Therefore, the dynamics is well deÞned. Let âi

be an operator, which acts on sandpile conÞgurations and adds

a grain at vertex i. It can be easily be shown that âiâj = âj âi.

This is the reason why the sandpile model is called Abelian.

IV. APPLICATION

As already mentioned, CA simulator was developed using

.Net and C#. To facilitate the collaborative work in the global

network, Microsoft Azure has been used. From the developers

view point, the CA simulator may be divided into three

modules: ”Visualization”; ”Local Simulation” and ”Service-

client Architecture”. In order to visualize the model zooms

in/out and provide rotation, .Net’s native libraries have been

used (See Fig. 6).

Fig. 6. Visualization class diagram.

Within the “Local Simulation” module, a GuiHelper class

has been designed to provide the models creation; saving

and loading; grains adding and toppling, as well as attributes

counting, as follows:

p u b l i c s t a t i c c l a s s GuiHelpe r {
ev en t Even tHand l e r GrainAdded ;

Viewport3D mainViewPort ; i n t s i z e ;

L i s t<I n t e r a c t i v e S p h e r e>

p o i n t s ; L i s t<I n t e r a c t i v e S p h e r e > Po i n t s

/ / I n i t i a l i z e 3D view

p u b l i c s t a t i c vo id I n i t (Viewport3D vp) ;

/ / C r e a t e s model wi th g iven s i z e s

p u b l i c s t a t i c vo id Crea teModel (S i z e s i z e) ;

/ / Draws S andp i l e model

p u b l i c s t a t i c vo id DrawSandpi leModel () ;

/ / Add g r a i n on S andp i l e model

p u b l i c s t a t i c vo id AddGrain (P o s i t i o n pos) ;

/ / Adds g r a i n from v i s u a l a s p e c t s

p r i v a t e s t a t i c vo id addGra inOnVer tex

(I n t e r a c t i v e S p h e r e p o i n t) ;

/ / Re t u r n s c o l o r r e g a r d e d t o g r a i n s coun t

p r i v a t e s t a t i c Brush GetColorByWeight

(i n t we igh t) ;

r e g i o n F i l e / S t r i n g IO

/ / Save model i n f i l e

p u b l i c s t a t i c vo id Wr i t eToF i l e () {}

/ / Load model from f i l e

p u b l i c s t a t i c vo id LoadFromFi le (){}

end r e g i on

}

Within the ”Service-client Architecture” module, we have a

BroadcastingHelper class which includes essential functions

to enable the broadcaster-subscriber connection, and a SeSer-

vice class which implements the ISeService interface. The

logic behind is to provide for a broadcaster to subscribe itself

the same channel in order to get changes from other users. The

channel keeps the whole information about changes made by

all subscribers. Meanwhile ,when a new user starts to listen to

that channel, he/she not only gets up-to-date knowledge of the

model, but also he/she gets provided with all the changes made

since the moment of broadcasting. For the channels’ database,

SQLite has been chosen.

p u b l i c s t a t i c c l a s s B r o a d c a s t i n gHe l p e r

{
p u b l i c s t a t i c l ong S e l fCh ann e l I d ;

p u b l i c s t a t i c l ong Sub s c r i b edChanne l I d ;

p r i v a t e s t a t i c l ong La s tA c t i o n I d ;

p r i v a t e s t a t i c Timer t ime r ;

p r i v a t e s t a t i c Act ionModel l o c k e r ;

p u b l i c s t a t i c Even tHand le r<> Channe lC losed ;

/ / S t a r t s t o l i s t e n t o t h e g iven ch anne l

p u b l i c s t a t i c vo id L i s t e nChanne l

(ChannelModel ch anne l) ;

/ / D i s c onn e c t s from channe l i f i t ’ s c l o s e d

s t a t i c vo id t ime r E l a p s e d

(o b j e c t s ende r , E l ap sedEven tArgs e)

/ / Ends b r o a d c a s t i n g

p u b l i c s t a t i c vo id EndBroadca s t i ng () ;

/ / D i s c onn e c t s from channe l

p u b l i c s t a t i c vo id Disconnec tFromChanne l () ;

p u b l i c i n t e r f a c e I S e S e r v i c e

{
[Op e r a t i o nCon t r a c t]

l ong S t a r t B r o a d c a s t i n g (s t r i n g name) ;

[Op e r a t i o nCon t r a c t]

vo id EndBroadca s t i ng (long i d) ;

[Op e r a t i o nCon t r a c t]

vo id AddAction (long channe l I d ,

Act ionType type , s t r i n g d a t a) ;

[Op e r a t i o nCon t r a c t]

Act ionModel Ge tNex tAc t ion (long channe l I d ,

l ong l a s t A c t i o n I d) ;

[Op e r a t i o nCon t r a c t]

L i s t<ChannelModel> Ge tAc t i v eChanne l s () ;

}

As already mentioned, CA simulator has been created on the

example of ASM. There are two main ASM related functions:

the DrawSandpileModel() which provides visualization of

changes in already created model for ASM vision, and the

AddGrain(Position pos) which supports changes performed

by the user on an ASM model. It is quite easy to generate

another CA model simply by manipulating the visualization

and model modiÞcation functions. In order to make it a new

CA available within a global network, a fewl functions of the

ISeService interface should be adapted to the new CA model

described within the SeService class. The sources of the CA

simulator can be found in, Bitbucket under

https://nhayk@bitbucket.org/nhayk/ca simulator.git link.

V. CONCLUSION

In this paper, a software package, namely, “CA Simulator”,

for collaborative work implementation has been presented.

The goal of the CA Simulator is to provide joint research of

models under consideration. Features developed currently, are:

simulation of ASM; visualization within 2D and 3D space;

shared work on the same model at the same time within

global networks; models’ attributes counting. The concept of

the multiuser simulator was introduced and implemented in a

way to make the solution available and Þtting to any other

type of cellular automata. The solution presented is easily

reproducible. Perspectives on the work will be outlined in

the near future in order to make the simulator more user-

friendly, as well as to increase its usability and scalability.

Enhancements in visualization techniques will be implemented

to make the simulator applicable for larger graphs.

VI. ACKNOWLEDGEMENT

The authors are grateful to Dr. V. Poghosyan and Dr. Y.

Alaverdyan for important discussions and critical remarks at

all stages of the work. This work was supported by the State

Committee of Science MES RA,in the frames of the research

project No. 16YR-1B008 and Erasmus Project Armnie/ KA1

Mobilit internationale de crdits/Appel 2017 (Nr. 2017-1-FR01-

KA107-036342).

REFERENCES

[1] P. Bak, C. Tang, and K. Wiesenfeld,“Self-organized criticality: An expla-
nation of the 1/f noise”,Phys. Rev. Lett., vol.59, no. 4, pp. 381384, 1987.

[2] V. S. Poghosyan, S. Y. Grigorev, V. B. Priezzhev, and P. Ruelle, , “Pair
correlations in the sandpile model: A check of logarithmic conformal Þeld
theory”, Phys. Lett. B, vol. 659, pp. 768 772, 2008.

[3] Su. S. Poghosyan, V. S. Poghosyan, V. B. Priezzhev, and P. Ruelle,
“Numerical study of correspondence between the dissipative and Þxed-
energy Abelian sandpile models”, Phys.Rev. E, 84, 066119, 2011.

[4] V.S. Poghosyan, S. S. Poghosyan, and H. E. Nahapetyan, “The Inves-
tigation of Models of Self-Organized Systems by Parallel Programming
Methods Based on the Example of an Abelian Sandpile Model”, Proc.
CSIT Conference 2013, Yerevan Armenia, Sept. 23-27, 2013, pp. 260-262.

[5] H. E. Nahapetyan, S. S. Poghosyan, V. S. Poghosyan, and Yu. H.
Shoukourian, “The Parallel Simulation Method for d-dimensional Abelian
Sandpile Automata”, Mathematical Problems of Computer Science, vol.
46, pp. 117125, 2016.

[6] S. Tisue and U. Wilensky, “NetLogo: A simple environment for modeling
complexity”, International Conference on Complex Systems, Boston, May
1621, 2004.

[7] C. Desprat, J.-P. Jessel, and H. Luga, “3DEvent: a framework us-
ing event-sourcing approach for 3D web-based collaborative design in
P2P.”International Conference on Web3D Technology (Web3D 2016), Ana-
heim, CA, ACM, july 2016, pp. 73-76.

[8] Thi Thuong Huyen Nguyen and Thierry Duval, “A Survey of Communica-
tion and Awareness in Collaborative Virtual Environments”, International
Workshop on Collaborative Virtual Environments (3DCVE), Minneapolis,
United States. IEEE, Mar 2014.

