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A unified model of ultracold molecular collisions

A scattering model is developed for ultracold molecular collisions, which allows inelastic processes, chemical reactions, and complex formation to be treated in a unified way. All these scattering processes and various combinations of them are possible in ultracold molecular gases, and as such this model will allow the rigorous parametrization of experimental results. In addition we show how, once extracted, these parameters can to be related to the physical properties of the system, shedding light on fundamental aspects of molecular collision dynamics.

I. INTRODUCTION

Ultracold samples of molecules can be exquisitely controlled at the quantum state level, allowing fundamental physical and chemical process to be studied with unprecedented precision. This control has been used to study state-to-state chemistry with full quantum state resolution for all reactants and products [START_REF] Wolf | State-to-state chemistry for three-body recombination in an ultracold rubidium gas[END_REF], to probe the potential energy surface with exquisite resolution [START_REF] Klein | Directly probing anisotropy in atommolecule collisions through quantum scattering resonances[END_REF][START_REF] Yang | Observation of magnetically tunable feshbach resonances in ultracold 23 Na 40 K + 40 K collisions[END_REF], and to study the role of nuclear spins in molecular collisions [START_REF] Ospelkaus | Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules[END_REF][START_REF] Kilaj | Observation of different reactivities of para-and ortho-water towards cold diazenylium ions[END_REF], More recently an experiment has managed to probe the intermediate complex of an ultracold ultracold reaction [START_REF] Hu | Direct observation of bimolecular reactions of ultracold KRb molecules[END_REF] as such it is now possible to track the complete chemical process from reactants, through intermediates, to products.

Understanding the fundamental physical and chemical process of ultracold molecular collisions is also important because ultracold gases are fragile systems, prone to collisional processes that can transfer their atomic or molecular constituents into untrapped states or else release large amounts of kinetic energy, leading to trap loss and heating. A new mechanism for loss in an ultracold molecular gas was proposed [START_REF] Mayle | Statistical aspects of ultracold resonant scattering[END_REF][START_REF] Mayle | Scattering of ultracold molecules in the highly resonant regime[END_REF], namely a half-collision process in which the reactant molecules share energy in rotational and vibrational degrees of freedom, spending a long time lost in resonant states of a four-body collision complex rather than promptly completing the collision process. This idea of transient complex formation, colloquially dubbed "sticking", takes on an added significance for ultracold molecular collisions where the number of available exit channels can be very small compared to the number of resonant states.

Initial experiments on non-reactive ultracold molecules, such as NaRb [START_REF] Ye | Collisions of ultracold 23 Na 87 Rb molecules with controlled chemical reactivities[END_REF][START_REF] Guo | Dipolar collisions of ultracold ground-state bosonic molecules[END_REF] and RbCs [START_REF] Gregory | Sticky collisions of ultracold RbCs molecules[END_REF], observed two-body collisional losses, even though these species are nonreactive and are in their quantum mechanical ground state, so have no available inelastic loss channels. As these complexes were not directly observed, it remained an open question whether these experiments have pro-duced long-lived collisional complexes and what the loss mechanism was. However, a subsequent experiment on RbCs [START_REF] Gregory | Loss of ultracold 87 Rb 133 Cs molecules via optical excitation of long-lived two-body collision complexes[END_REF] showed that turning on or off the trapping light that confines the molecules can increase or decrease the losses of the molecules. This confirmed the hypothesis of a theoretical study [START_REF] Christianen | Photoinduced two-body loss of ultracold molecules[END_REF] that the non-reactive molecules first form tetramer complexes, and then the complexes are lost due to light scattering in the optical dipole trap. In addition, an experiment on chemically reactive ultracold molecules such as KRb succeeded in directly observing the corresponding ions of the intermediate complex K 2 Rb 2 [START_REF] Hu | Direct observation of bimolecular reactions of ultracold KRb molecules[END_REF], as well as of the products K 2 and Rb 2 of the chemical reaction. Just as for non-reactive molecules, the trapping light has a strong effect on the losses of the reactive molecules as well as on the lifetime of the transient complex [START_REF] Liu | Steering ultracold reactions through long-lived transient intermediates[END_REF], sharing the same conclusion as [START_REF] Gregory | Loss of ultracold 87 Rb 133 Cs molecules via optical excitation of long-lived two-body collision complexes[END_REF][START_REF] Christianen | Photoinduced two-body loss of ultracold molecules[END_REF]. It is therefore clear that any theoretical treatment of ultracold molecular collisions must be flexible enough to account for the formation of the complexes. These experiments can be described by a model that assumes an absorption probability p abs for any two molecules that get within a certain radius [START_REF] Idziaszek | Universal rate constants for reactive collisions of ultracold molecules[END_REF], without ascribing any particular mechanism to the absorption. Energy and electric field dependence of two-body loss rates are well-fit by the resulting formulas. For example, the reactive molecules in the KRb experiment vanish with unit probability p abs = 1 with or without electric field [START_REF] Ospelkaus | Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules[END_REF][START_REF] Ni | Dipolar collisions of polar molecules in the quantum regime[END_REF][START_REF] De Marco | A degenerate fermi gas of polar molecules[END_REF]. The non-reactive species NaRb and RbCs vanish with probabilities 0.89 [START_REF] Bai | Model for investigating quantum reflection and quantum coherence in ultracold molecular collisions[END_REF] and 0.66 [START_REF] Gregory | Sticky collisions of ultracold RbCs molecules[END_REF] respectively, in zero electric field. Notably, when an electric field is applied to NaRb, its absorption probability climbs to p abs = 1 [START_REF] Guo | Dipolar collisions of ultracold ground-state bosonic molecules[END_REF]. Assuming the origin of this loss is due to complex formation, the increased loss with electric field may be attributed to the increased density of accessible states of the complex and/or coupling of these states to the continuum scattering channels. It is therefore conceivable that complex formation may be a phenomenon that can be turned on or off as desired.

While the influence of light scattering on molecular collisions is undeniable, it should also be possible for the molecules to be confined in "box" traps, where the molecules remain mostly in the dark, encountering trapping light only at the peripheries of the trap [START_REF] Gaunt | Bose-Einstein condensation of atoms in a uniform potential[END_REF]. In this case, loss due to complex formation would allow a more direct probe of the fundamental four-body physics of the collision.

In this paper we propose a phenomenological model of collisional losses, based on the theory of average cross sections [START_REF] Feshbach | Model for nuclear reactions with neutrons[END_REF], that encompasses both direct collisional losses and loss due to complex formation. As such this model serves not only to parametrize experimental measurements, but also allows those parameters to be related to the physical properties of the system, potentially shedding light on the dynamics of the molecular complex.

II. THEORY

The theory must be flexible enough to describe the various outcomes available when two molecules collide. These include elastic scattering of the reactants; inelastic scattering, where the reactants emerge with the same chemical identity but in different internal states; reactive scattering into various product states; and absorption into the collision complex. Moreover, depending on the experiment, the various outcomes of the collision may or may not be observed. Note that, within this model, formation of a collision complex will always be regarded an outcome in and of itself: we do not consider where the complex ultimately decays to.

A. Molecular scattering, observed and unobserved processes

To this end, we define a flexible system of notation as illustrated in Fig. 1. This figure shows schematically the distance r between two collision partners (which may be reactants or products), and the various possible outcome channels. Channels whose outcome is observed by a particular experiment are labelled by roman letters while channels whose outcome is unobserved are labelled by greek letters. The channels labelling observed processes are further differentiated as follows. Channels labelled a, b, c, . . . correspond to the elastic and inelastic channels of the reactants, while channels labelled k, l, m, . . . correspond instead to channels of a different molecular arrangement and correspond to the product channels of a chemical reaction. Note that the unobserved processes may include both inelastic scattering, as well as chemical reactions: the criterion is simply that this outcome is not observed.

By convention, we take a to label the incident channel. In general, scattering events that initiate in channel a and terminate in any channel i, where i serves as a running index, are described by the elements S ia of a scattering matrix S. The list of channels i will of course depend on the details of a particular experiment. In some experiments, all the final states can be measured so that there are no channels denoted by greek letters, while in others none of the final states can be measured so that there are no channels denoted by roman letters (except the incident channel a). In some experiments, inelastic channels are measured but reactive ones are not, or vice versa. Therefore one has to determine which processes are labelled as observed or unobserved processes for a particular experiment of interest. In Sec. II D, we will detail how these unobserved processes can be gathered into an overall, absorption term.

The observed and unobserved processes are those that are expected to produce inelastic scattering or chemical reactions immediately, that is, without forming a collision complex, shown in Fig. 1 by the red arrow labelled direct scattering. Typically, the results of these processes release kinetic energy greater than the depth of the trap holding the molecules, and hence lead to what we term direct loss. By contrast, indirect scattering processes which proceed via complex formation, shown in Fig. 1 by the blue arrows, will not immediately lead to trap loss. Molecules lost into the collision complex require a second step to leave the trap, which consists of either absorbing a photon of trapping light, colliding with another molecule, or decaying into an allowed channel of reactants or products. The present theory will not explicitly address this second step, focusing only on the formation of the complex.

B. Scattering cross sections for various processes

Corresponding to each S-matrix element is the stateto-state probability of a scattering process from channel a to channel i, with i = a, b, c, . . ., k, l, m, . . ., ρ, σ, τ , . . ., given by

p a→i = |S ia | 2 . ( 1 
)
As the S-matrix is unitary, we have for each incident channel a

=

i=a,b,c,..., k,l,m,...

|S ia | 2 + i=ρ,σ,τ,... |S ia | 2 ≡ p obs + p unobs , (2) 
where we have separated the scattering matrix into an observed block (i running on roman letters) and unobserved block (i running on greek letters). The probability for observed processes, p obs , can be further subdivided into elastic, inelastic and reactive parts p obs = p el + p in + p re , with

p el = p a→a = |S aa | 2 p in = i=b,c,... p a→i = i=b,c,... |S ia | 2 p re = i=k,l,m,... p a→i = i=k,l,m,... |S ia | 2 .
(

There is of course no reason to subdivide unobserved processes in this way.

In general, if some processes are unobserved, then from Eq. (2), the observed block of the scattering matrix will appear sub-unitary:

i=a,b,c,...,k,l,m,...

|S ia | 2 ≤ 1. (4) 
The amount by which this sum falls short of unity will be a measure of the unobserved probability, which in general is recast into an overall, absorption probability p abs . Therefore

p abs ≡ p unobs = 1 -p obs = 1 -p el -p in -p re . (5) 
In the next subsection we will see that collisions resulting in complex formation can also be properly included in the absorption probability. It is also convenient to define a quenching probability, which is the sum of the inelastic, reactive and absorption probabilities

p qu = p in + p re + p abs = 1 -p el = 1 -|S aa | 2 . (6)
Finally, the corresponding state-to-state cross section is given by

σ a→i = g π k 2 |δ ai -S ia | 2 , (7) 
where g = 2 if the identical collision partners are initially in the same quantum mechanical state, and g = 1 otherwise. The cross sections corresponding to these processes are given by

σ el = g π k 2 |1 -S aa | 2 , σ in = g π k 2 p in , σ re = g π k 2 p re , σ abs = g π k 2 p abs , σ qu = σ in + σ re + σ abs . (8) 

C. Complex formation and highly resonant collisions

The treatment so far has ignored the possibility of complex formation. The collision complex is comprised of a dense forest of resonant states, depicted schematically in Fig. 1 by horizontal lines. These states, denoted µ, are potentially numerous and complicated, and are therefore best characterized by statistical quantities, such as their mean level spacing d (equivalently mean density of states ρ = 1/d) and their coupling matrix elements W iµ to the open channels. For the purposes of a theory on complex formation, it is assumed that the lifetime of the complex is long compared to the mean collision time, so that the complex formation and decay are distinct events. This assumption appears to be validated by the observation of K 2 Rb 2 complexes in KRb + KRb ultracold reactions [START_REF] Hu | Direct observation of bimolecular reactions of ultracold KRb molecules[END_REF] and by the measure of their lifetimes [START_REF] Liu | Steering ultracold reactions through long-lived transient intermediates[END_REF]. In this case, losses due to complex formation can also occur. This process will be considered as an unobserved process, as defined in the previous section. We will see that the theory of highly resonant collisions can recast this type of loss into a phenomenological absorption term, included in the definition (5) as for the unobserved processes discussed above. This will also enter as a parameter of our theory in the following.

The key concept for understanding highly resonant collisions and the corresponding complex formation can be found in the compound nucleus (CN) model introduced by Bohr for understanding nuclear collisions [START_REF] Bohr | Neutron capture and nuclear constitution[END_REF]. This theory postulates that a compound state involving all the nucleons forms immediately when a particle (such as a neutron) encounters the nucleus. These compound states have long lifetimes which leads to a dense set of narrow resonances in the cross section as a function of energy. Since Bohr's initial insight, the statistical theory of highly resonant scattering has been developed considerably [START_REF] Feshbach | Model for nuclear reactions with neutrons[END_REF][START_REF] Feshbach | A schematic theory of nuclear cross sections[END_REF][START_REF] Weisskopf | Compound nucleus and nuclear resonances[END_REF][START_REF] Pauli | Niels Bohr and the development of physics[END_REF][START_REF] Feshbach | The optical model and its justification[END_REF][START_REF] Feshbach | Unified theory of nuclear reactions[END_REF][START_REF] Feshbach | A unified theory of nuclear reactions[END_REF]. We draw heavily on this literature in what follows.

The essential simplification of the statistical theory is the assumption that the density of states is too great for any of the individual resonances to be resolved, therefore scattering observables can be replaced by suitable averages [START_REF] Feshbach | Model for nuclear reactions with neutrons[END_REF][START_REF] Pauli | Niels Bohr and the development of physics[END_REF]. The virtue of this approach can be illustrated using an example with a single channel, where the cross sections for elastic and absorption scattering are given by

σ el = g π k 2 |1 -S| 2 σ abs = g π k 2 (1 -|S| 2 ), (9) 
the overall absorption process accounting for all but the elastic process, similar to what can be seen in Eq. ( 8) and Eq. ( 5). If all the incident flux were reflected, then |S| 2 = 1 and there would be no absorption. If only a part of the flux were reflected |S| 2 would be less than unity, due to absorption. For indirect processes like complex formation, there is no true absorption: eventually the molecules reemerge and complete a scattering event. However, longlived complexes can give the appearance of absorption if the lifetime of the complexes is long enough, and moreover leads to true loss if the complex is destroyed by a photon or by a collision with another molecule. These effects are accounted for in the following. The lifetime and subsequent decay of the complex is not treated within the model we detail here.

In the statistical theory of scattering, the average of any energy-dependent quantity f (E) can be defined as

f (E) = 1 Z d f ( ) D(E; ), (10) 
where D(E; ) is the distribution, centered at E, that defines the average, and Z = d D(E; ). D is often taken to be either a Lorentzian function or else a finite step function centered at E. In any event, here D is assumed to be broad enough to contain many resonances.

In these terms and factoring out the explicit momentum dependence, an average cross section can be written [START_REF] Pauli | Niels Bohr and the development of physics[END_REF] 

σ = g π k 2 k 2 σ . (11) 
To calculate the average elastic cross section then requires taking the average |1 -S| 2 . Using the definition for the variance for a variable

X ∆X ≡ |X| 2 -| X | 2 , (12) 
we obtain

|1 -S| 2 = |1 -S | 2 + ∆S. ( 13 
)
The average elastic cross section can therefore be written in the form

σ el = g π k 2 |1 -S| 2 = g π k 2 |1 -S | 2 + g π k 2 ∆S ≡ σ se + σ ce . (14) 
These two contributions comprise a mean cross section, denoted the "shape elastic" cross section; and a contribution from the fluctuations, denoted the "compound elastic" cross section [START_REF] Feshbach | Model for nuclear reactions with neutrons[END_REF][START_REF] Pauli | Niels Bohr and the development of physics[END_REF]. Since the lifetime of a collisional process is proportional to the energy derivative of the S-matrix [START_REF] Eisenbud | The Formal Properties of Nuclear Collisions[END_REF][START_REF] Wigner | Lower limit for the energy derivative of the scattering phase shift[END_REF][START_REF] Smith | Lifetime matrix in collision theory[END_REF][START_REF] Frye | Time delays in ultracold atomic and molecular collisions[END_REF], writing the cross section in this way elegantly separates out the cross section for direct scattering, the shape elastic part, from indirect scattering, the compound elastic part. Meanwhile, the average absorption cross section is

σ abs = g π k 2 (1 -|S| 2 ). ( 15 
)
The essence of the CN model is to associate elastic scattering with just the shape elastic part of the elastic cross section and include the compound elastic part in the absorption cross section. This is achieved by simply making the replacement S → S in Eq. ( 9). The elastic cross section in the CN model is therefore

σel = g π k 2 |1 -S | 2 = σ se . ( 16 
)
while the absorption cross section is

σabs = g π k 2 (1 -| S | 2 ), = g π k 2 (1 -|S| 2 ) + g π k 2 ∆S = σ abs + σ ce . ( 17 
)
again using the definition of the variance. As desired, simply by replacing S in Eq. ( 9) with S , the compound elastic part now appears in the absorption cross section.

D. Generalized theory of average cross sections

Generalizing the averaging procedure above to the multichannel case, one incorporates the effect of resonant complex formation by energy averaging the appropriate cross sections over many resonances [START_REF] Mitchell | Random matrices and chaos in nuclear physics: Nuclear reactions[END_REF],

σ a→i = g π k 2 |S ia | 2 = g π k 2 | S ia | 2 + g π k 2 ∆S ia ≡ σ dir a→i + σ ind a→i . (18) 
Doing so defines two components of the scattering. The first component, associated with an energy-smooth Smatrix S , is direct scattering which is scattering from channel a to i which proceeds without forming a collision complex-this is the generalization of the "shape elastic" cross section in the single channel example above. The second component, associated with the energy fluctuations of the S-matrix ∆S, is indirect scattering which is also scattering from channel a to i but which proceeds via a collision complex-this is the generalization of the "compound elastic" cross section in the single channel example above.

Following the prescription of the CN model, the cross sections for any process whose outcome is observed are associated with the corresponding direct scattering cross section. The elastic, inelastic, and reactive cross sections are therefore given by σel

≡ σ dir el = g π k 2 |1 -S aa | 2 σin ≡ σ dir in = g π k 2 i=b,c,... | S ia | 2 σre ≡ σ dir re = g π k 2 
i=k,l,m,...

| S ia | 2 . ( 19 
)
These are presented as total cross sections, for example, σin is the total inelastic cross section and includes all inelastic scattering of molecules that is observed. If individual inelastic channels are resolved experimentally, they correspond to individual terms of this sum; and the same for reactive scattering. Direct processes to channels that are not observed contribute to the absorption cross section, σabs , and their total contribution is formally given by

σdir abs ≡ σ dir abs = g π k 2 i=ρ,σ,τ,... | S ia | 2 . ( 20 
)
The cross section for complex formation also contributes to the absorption cross section, and is simply the total cross section for all indirect processes. As such it is given by

σind abs ≡ σ ind el + σ ind in + σ ind re + σ ind abs = g π k 2 
i=a,b,c,..., k,l,m,..., ρ,σ,τ,...

∆S ia . (21) 
The total absorption cross section is then the sum of the direct and the indirect contributions σabs = σdir abs + σind abs .

This is the generalization of Eq. [START_REF] De Marco | A degenerate fermi gas of polar molecules[END_REF]. In this theory, the matrix elements of the highly-resonant S-matrix S ia (and therefore also ∆S ia ) are presumed to be unknown. Information about absorptive scattering will be inferred from the sub-unitarity of the energy averaged S-matrix, S , in the observed channels. Appropriate forms of these effective S-matrices will be derived in Sec. II F.

It should be emphasized that by treating the complex as an absorption process, we are describing only the phenomenon of molecules combining to form a collision complex. Eventually such a complex would decay producing outcomes in any available channel, but a full treatment of this process would require detailed understanding of the decay mechanism of the complex, or equivalently the full S-matrix on a fine enough energy grid that the appropriate averages given in Eqn. ( 18) could be meaningfully performed.

Finally, it is often useful to define a quenching cross section, which describes scattering into any channel other than the incident channel, regardless of what that channel is. The quenching cross section is therefore given by σqu

= σin + σre + σabs = g π k 2 (1 -| S aa | 2 ). ( 23 
)
The corresponding rate coefficients β to the cross sections given above are obtained by replacing 1/k 2 in Eqs. [START_REF] Feshbach | A schematic theory of nuclear cross sections[END_REF] by /µk where µ is the reduced mass of the colliding molecules.

Hereafter, we adopt the perspective of CN theory: Smatrices will be averaged over many resonances, and the resulting mean values will be used to evaluate cross sections.

E. Threshold Behavior

To facilitate applying the CN model to ultracold molecular scattering, it is useful to separate the effects of averaging and absorption from threshold effects due to low collision energies.

Elements of the scattering matrix S ij quantify the amount of incoming flux in channel j that leads to outgoing flux in channel i, where i, j = a, b, c, . . . , k, l, m, . . . , ρ, σ, τ . . . . At asymptotic separations r between the collision partners, the wave function is given by

lim r→∞ Ψ = ψ - j (r) - i S ij ψ + i (r), (24) 
in terms of energy-normalized asymptotic incoming and outgoing spherical waves

ψ ± i (r) = 1 √ k i exp(±i(k i r -πl i /2)), (25) 
where k i is the asymptotic wave vector for channel i. The S-matrix defined in Eq. ( 24) is, in general, energy dependent which leads to the usual Bethe-Wigner threshold laws for the cross section [START_REF] Bethe | Theory of disintegration of nuclei by neutrons[END_REF][START_REF] Wigner | On the behavior of cross sections near thresholds[END_REF]. This energy dependence is unrelated to the microscopic interactions between the colliding molecules at small r that dictate the molecular scattering processes. As such these processes are better parametrized by energy-independent short-range quantities. To do so, we employ the ideas and methods of Multichannel Quantum Defect Theory (MQDT) [START_REF] Seaton | Quantum defect theory I. general formulation[END_REF][START_REF] Fano | Unified treatment of perturbed series, continuous spectra and collisions[END_REF][START_REF] Greene | General form of the quantum-defect theory[END_REF][START_REF] Greene | General form of the quantum-defect theory[END_REF][START_REF] Mies | A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering[END_REF][START_REF] Mies | A multichannel quantum defect analysis of two-state couplings in diatomic molecules[END_REF][START_REF] Burke | Multichannel cold collisions: Simple dependences on energy and magnetic field[END_REF][START_REF] Gao | Quantum-defect theory of atomic collisions and molecular vibration spectra[END_REF][START_REF] Mies | Analysis of threshold effects in ultracold atomic collisions[END_REF][START_REF] Gao | General form of the quantum-defect theory for-1/r α type of potentials with α > 2[END_REF][START_REF] Croft | Multichannel quantum defect theory for cold molecular collisions[END_REF][START_REF] Ruzic | Quantum defect theory for high-partial-wave cold collisions[END_REF][START_REF] Jachymski | Quantum-defect model of a reactive collision at finite temperature[END_REF], which has been successfully applied in various ways and with various notations to the problem of ultracold scattering. At present, the version of this theory most commonly applied in ultracold collisions is the Mies-Julienne version, whose notation we follow here [START_REF] Mies | A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering[END_REF][START_REF] Mies | A multichannel quantum defect analysis of two-state couplings in diatomic molecules[END_REF]. Scattering theory is usefully described in terms of real-valued, asymptotic reference functions in each channel. These functions are solutions to a single-channel Schrödinger equation, with some predetermined potential. They therefore do not represent free plane waves, but possesses a phase shift ξ i , their asymptotic form is

f i (r) = 1 √ k i sin(k i r -πl i /2 + ξ i ) g i (r) = 1 √ k i cos(k i r -πl i /2 + ξ i ). ( 26 
)
In terms of these functions, the asymptotic wave function can be written

lim r→∞ Ψ = f j + i R ij g i , (27) 
where R ij are the elements of the reactance matrix R.

The scattering matrix in Eq. ( 24) is then given by

S ij = e iξi 1 + iR 1 -iR ij e iξj (28) 
for general running indexes i, j. Defined in this way, the scattering matrix still has an energy dependence due to threshold effects. MQDT gets around this by choosing a new set of reference functions, fi , ĝi , defined by WKB-like boundary conditions at short range, in the classically allowed region of channel i (details of these wave functions are given in Ref. [START_REF] Mies | A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering[END_REF]). For our purposes here the key property of these reference functions is that they are related in a standardized way to the usual energy-normalized asymptotic reference functions by the transformation

f i g i = C -1 i 0 C i tan λ i C i fi ĝi ( 29 
)
where C i (E) and tan λ i (E) are explicitly energydependent factors, with E being the total energy of the system. The dependence of C i and tan λ i with energy has been given explicitly near threshold [START_REF] Gao | Solutions of the schrödinger equation for an attractive 1/r 6 potential[END_REF], enabling analytical scattering formulas to be constructed. The pair of reference functions fi and ĝi are used as follows. Supposing that strong channel couplings lead to a complicated many-channel scattering wave function, nevertheless there is an intermolecular distance r 0 beyond which the channels are essentially uncoupled (this radius is indicated schematically in Fig. 1). The wave function at radii r > r 0 can then be written

Ψ(r > r 0 ) = fj + i Y ij ĝi , (30) 
in terms of a short-range reactance matrix Y . Because of the carefully chosen normalization of fi and ĝi , Y does not carry the energy dependence characteristic of the threshold behavior. From the standpoint of the threshold, Y can be considered constant (later, we will incorporate an explicit energy dependence due to resonant states).

The threshold energy dependence is then restored via the transformation

R = C -1 Y -1 -tan λ -1 C -1 , (31) 
where C and tan λ are the appropriate diagonal matrices defined in [START_REF] Mies | A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering[END_REF]. Alternatively, the energy-independent reference functions can be written in terms of incoming and outgoing waves

f ± i = ĝi ± i fi . (32) 
The scattering wave function can then be represented at short-range by a scattering matrix S, defined via

S = 1 + iY 1 -iY (33) 
with inverse transformation

Y = i 1 - S 1 + S . (34) 
The bar notation refers to the S-matrix at short-range.

In the next section we will apply the statistical theory approach to highly resonant scattering from nuclear physics to replace S with a suitably energy averaged version, S , that is itself energy independent and includes the absorption effect due to the unobserved and indirect absorption processes.

F. The short-range S-matrix accounting for absorption processes

This section details the construction of the short-range energy-averaged scattering matrix Sabs , which accounts for any absorption processes that may be present in a given experiment. The elements Sabs ij of this matrix are indexed by the observable channels i, j = a, b, c, . . . , k, l, m, . . . . It is constructed so that it may be sub-unitary to account for absorption due to the two effects described above, direct absorption and complex formation.

The derivation of this matrix proceeds in three steps: the first constructs an effective, sub-unitary S-matrix Sunobs that accounts phenomenologically for direct absorption to unobserved channels, based on an optical potential; the second constructs an energy smooth S-matrix that accounts for absorption due to complex formation by averaging a highly resonant S-matrix Sres ; finally, both types of absorption are combined to obtain a matrix Sabs for the combined absorption processes. Sabs will then be used in the next section to complete the construction of the matrix S .

Absorption due to unobserved channels

Flux entering in any channel that vanishes due to unobserved processes is conveniently modeled by incorporating a complex-valued optical potential in each channel

V i (r) + 2 l i (l i + 1) 2m r r 2 -i γ i (r) 2 , ( 35 
)
where V i is the real-valued potential in the absence of such absorption for channel i [START_REF] Idziaszek | Universal rate constants for reactive collisions of ultracold molecules[END_REF][START_REF] Bethe | A continuum theory of the compound nucleus[END_REF][START_REF] Osséni | Optimization of generalized multichannel quantum defect reference functions for feshbach resonance characterization[END_REF]. In the absence of an exact treatment of the short-range interactions using a full potential energy surface and a full collisional formalism, the influence of the optical potential γ i is to create a new linear combination of asymptotic functions. Specifically, the short-range Y -matrix in Eq. ( 30) can be replaced in each channel by a purely imaginary quantity iy i [START_REF] Osséni | Optimization of generalized multichannel quantum defect reference functions for feshbach resonance characterization[END_REF]. The wave function in this channel now reads fi + iy i ĝi ,

for a real-valued parameter y i , which we term the unobserved absorption coefficient in channel i. The optical potential reproduces the overall phenomenological loss from channel a to all the unobserved channels ρ, σ, τ , . . . Recasting the wave function in terms of incoming and outgoing waves from Eq. [START_REF] Mitchell | Random matrices and chaos in nuclear physics: Nuclear reactions[END_REF] gives

fi + iy i ĝi = 1 2i ( f + i + f - i ) + iy i 2 ( f + i -f - i ) = i 2 (1 + y i ) f - i - 1 -y i 1 + y i f + i . ( 37 
)
Here the prefactor i 2 (1 + y i ) represents an overall normalization, such that the coefficient of the outgoing wave term in the square brackets gives the short-range scattering matrix

Sunobs ii = 1 -y i 1 + y i . (38) 
This is a unique, overall term for the channel i as the unobserved channels ρ, σ, τ . . . are not explicitly enumerated in Eq. [START_REF] Seaton | Quantum defect theory I. general formulation[END_REF]. We note that Sunobs is by definition independent of energy and as such does not need to be energy-averaged.

The coefficients y i are purely phenomenological parameters of the theory. By considering 0 ≤ y i ≤ 1, as Ref. [START_REF] Idziaszek | Universal rate constants for reactive collisions of ultracold molecules[END_REF] does, Sunobs is in general sub-unitary, becoming unitary when y i = 1. A special case of this result is in the incident channel, where i = a. In this case, | Sunobs aa | 2 is the probability that the molecules incident in channel a are not lost to the unobserved process. Then, the (short-range) unobserved absorption probability is given by punobs

= 1 - 1 -y a 1 + y a 2 = 4y a (1 + y a ) 2 . ( 39 
)

Absorption due to complex formation

The next step is to include the possibility for the scattering wave function to span the region of the resonances, resulting in indirect absorption due to resonant complex formation. The indirect processes all couple to the dense forest of resonant states µ which results in a highly resonant short-range scattering matrix, here denoted Sres . As described in Sec. II C, we average the resonant matrix to get an energy-smooth scattering matrix Sres .

In order to determine the average of Sres we exploit the chaotic nature of highly resonant collisions [START_REF] Croft | Long-lived complexes and chaos in ultracold molecular collisions[END_REF][START_REF] Frye | Approach to chaos in ultracold atomic and molecular physics: Statistics of near-threshold bound states for Li+CaH and Li+CaF[END_REF][START_REF] Croft | Universality and chaoticity in ultracold K+KRb chemical reactions[END_REF][START_REF] Yang | Classical fractals and quantum chaos in ultracold dipolar collisions[END_REF][START_REF] Croft | Long-lived complexes and signatures of chaos in ultracold K2+Rb collisions[END_REF], and treat Sres statistically using random-matrix theory (RMT) [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF][START_REF] Dyson | Statistical theory of the energy levels of complex systems[END_REF]. Here we only sketch the essential steps of the derivation, see Ref. [START_REF] Mitchell | Random matrices and chaos in nuclear physics: Nuclear reactions[END_REF] and references therein for a more complete treatment. We first introduce an effective Hamiltonian H eff for the resonances,

H eff µν = E µ δ µν -iπ i W µi W iν (40) 
in the diagonal representation, which describes the dynamics of the resonances [START_REF] Mitchell | Random matrices and chaos in nuclear physics: Nuclear reactions[END_REF][START_REF] Peskin | On the relation between unimolecular reaction rates and overlapping resonances[END_REF]. Eq. ( 40) is based on a partitioning of the Hilbert space into a bound state space and a scattering channel space, introduced by Feshbach [START_REF] Feshbach | The optical model and its justification[END_REF][START_REF] Feshbach | Unified theory of nuclear reactions[END_REF][START_REF] Feshbach | A unified theory of nuclear reactions[END_REF]. While Eq. ( 40) is complete, the effort involved in computing all the parameters, especially for the large number of bound states that we are interested in here, make this approach impractical [START_REF] Feshbach | Unified theory of nuclear reactions[END_REF]. Following RMT, we therefore consider the parameters as purely statistical quantities. Generally in statistical theories, the energies E µ of the resonances are assumed to form a distribution whose nearest-neighbor spacing statistics satisfy the Wigner-Dyson distribution with mean level spacing d, and the coupling matrix elements W iµ between a channel i and a resonant state µ are assumed to be Gaussian random variables with vanishing mean and second moment

W µi W νj = δ µν δ ij ν 2 i . ( 41 
)
ν i is the magnitude of the bound state-scattering channel coupling for channel i. We will, however, not need to specify the distributions for our present purposes.

In terms of the MQDT reference functions fi , ĝi defined above, resonant scattering will result in a short-range Y res matrix, defined as

Ψ = fj + i Y res ij ĝi , (42) 
similar to Eq. ( 30) with the running indices i, j = a, b, c, . . ., k, l, m, . . . It is assumed that all the resonant states have outer turning points at distances r < r 0 , so that Y res contains the full structure of the resonances and therefore takes the form [32]

Y res ij = π µ W iµ W µj E -E µ . ( 43 
)
In the weak-coupling limit, ν i d the resonances are isolated and can, if desired, be described in terms of resonant widths given by γ

µ = 2π i |W iµ | 2 .
In order to average over many resonances, we use the statistical independence of the coupling matrix elements,

W iµ W µa = δ ia ν 2 i , (44) 
to assert that Y res is diagonal. This implies that Sres ij = 0 if i = j which confirms that Y res contains no direct contribution to the scattering and describes purely resonant scattering as desired. Moreover, the average of Y res over many isolated resonances is equivalent to the average over a single representative resonance. As the resonances are separated on average by a spacing energy d, this average becomes

Y res ii = 1 d Eµ+d/2 Eµ-d/2 dE πν 2 i E -E µ . ( 45 
)
Evaluating this integral in the principal value sense gives

Y res ii ≈ πν 2 i d lim t→0 + P ∞ -∞ dE exp(itE) E = i π 2 ν 2 i d , (46) 
where the contour is closed on the upper half of the complex plane. Therefore, in each channel, the wave function accounting for indirect absorption due to complex formation is given by fi + ix i ĝi ,

in terms of a real-valued parameter

x i = π 2 ν 2 i d , (48) 
which we term the indirect absorption coefficient in channel i. Although coming from an entirely different mechanism, the form of the wave function in Eq. ( 47) is exactly the same as that for unobserved absorption given by Eq. [START_REF] Fano | Unified treatment of perturbed series, continuous spectra and collisions[END_REF]. Similarly, this leads to a short-range scattering matrix in each channel i that corresponds to indirect absorption

Sres ii = 1 -x i 1 + x i . (49) 
This is a unique term for the channel i due to the fact that the off-diagonal elements are zero. Again specializing to the case of the incident channel, i = a, the (short-range) indirect absorption probability in channel a is given by

pres = 1 - 1 -x a 1 + x a 2 = 4x a (1 + x a ) 2 . ( 50 
)
The unobserved and indirect absorption cases are formally similar. In both cases, the short-range scattering matrix is given by an absorption coefficient y i and x i in each channel i. For unobserved processes, the absorption coefficient y i is a purely phenomenological fitting parameter, whereas for indirect processes, the indirect absorption coefficient x i contains information about the complex itself, namely, the ratio of bound states-scattering channel coupling to the mean level spacing. The form of x i is reminiscent of Fermi's golden rule as it connects the average scattering matrix to the square of the bound-continuum matrix element ν 2 i and the density of states ρ = 1/d. It should be noted that this result is quite general, and need not rely on the assumption of weak coupling. Eq. ( 48) can be derived in a number of ways: using a Born expansion of the S-matrix [START_REF] Mitchell | Random matrices and chaos in nuclear physics: Nuclear reactions[END_REF][START_REF] Agassi | The statistical theory of nuclear reactions for strongly overlapping resonances as a theory of transport phenomena[END_REF]; via the replica trick [START_REF] Weidenmüller | Statistical theory of nuclear reactions and the gaussian orthogonal ensemble[END_REF]; or using the supersymmetry approach [START_REF] Efetov | Supersymmetry and theory of disordered metals[END_REF][START_REF] Verbaarschot | Critique of the replica trick[END_REF].

Total absorption

As the unobserved and indirect cases are formally similar, we can combine both processes to recover the total absorption process in Eq. ( 22). The resulting short-range scattering matrix is given by Sabs = Sunobs Sres [START_REF] Croft | Long-lived complexes and chaos in ultracold molecular collisions[END_REF] so that

Sabs ii = 1 -y i 1 + y i 1 -x i 1 + x i . ( 52 
)
The two kinds of effects can be consolidated into a unified form

Sabs ii = 1 -z i 1 + z i ( 53 
)
in terms of an effective absorption coefficient

z i = x i + y i 1 + x i y i (54) 
that combines both unobserved and indirect types of absorption. Fig. 2 illustrates Eq. ( 54) and the interplay of the different values x i and y i . Notice that if either y i or x i should be zero, then z i automatically reverts to the other one. Once again, specializing to the case of the incident channel i = a, The (short-range) absorption probability in the incident channel a as defined in Eq. ( 5) is then given by pabs

= 1 - 1 -z a 1 + z a 2 = 4z a (1 + z a ) 2 . ( 55 
)
Therefore, even in the presence of both types of absorption, if the only observable fact is that absorption has occurred, then a value z a (or an equivalent parametrisation) can be extracted, as has been done in several studies [START_REF] Gregory | Sticky collisions of ultracold RbCs molecules[END_REF][START_REF] Idziaszek | Universal rate constants for reactive collisions of ultracold molecules[END_REF][START_REF] Bai | Model for investigating quantum reflection and quantum coherence in ultracold molecular collisions[END_REF][START_REF] Kotochigova | Dispersion interactions and reactive collisions of ultracold polar molecules[END_REF][START_REF] Idziaszek | Simple quantum model of ultracold polar molecule collisions[END_REF][START_REF] Frye | Cold atomic and molecular collisions: approaching the universal loss regime[END_REF][START_REF] Li | Universal scattering of ultracold atoms and molecules in optical potentials[END_REF].

Finally, the coefficients z, y or x can also depend implicitly on different experimental tools of control such as an electric field E [10], a magnetic field B, or the intensity of surrounding electromagnetic waves, whether it is due to the surrounding trapping laser [START_REF] Christianen | Photoinduced two-body loss of ultracold molecules[END_REF], red-detuned photo-association [START_REF] Pérez-Ríos | Theory of longrange ultracold atom-molecule photoassociation[END_REF], or blue-detuned shielding [START_REF] Lassablière | Controlling the scattering length of ultracold dipolar molecules[END_REF][START_REF] Karman | Microwave shielding of ultracold polar molecules[END_REF][START_REF] Karman | Microwave shielding with far-from-circular polarization[END_REF]. Therefore, the coefficients should carry such dependence so that z = z(E, B, I), similarly for x and y. We omit this dependence to simplify the notations in the following, unless stated otherwise. 

G. The complete short-range S-matrix

We now combine the short-range absorption scattering matrix Sabs , which gathers the unobserved direct processes and all the indirect processes, with a short-range direct scattering matrix S0 that includes all the direct processes (elastic, inelastic, reactive) to obtain S -which is the energy average of the physical short-range S-matrix of the system of interest S.

The starting point is a short-range unitary scattering matrix S0 that contains all the direct processes such as the molecular elastic, inelastic and reactive scattering in the absence of any absorption due to unobserved channels or complex formation. For example S0 could be obtained from a scattering calculation containing only asymptotically open channels. As S0 contains no resonances it is by definition energy insensitive and there is no need to take its energy average. S0 is defined at r 0 by a wave function of the form

f - j - i S0 ij f + i (56)
restricting, as usual, the indices i, j to the observed channels i, j = a, b, c, . . . , k, l, m, . . . Starting with this foundation, we transform S0 to include the effect of the absorption processes contained in Sabs .

Generically, a short-range process, 1, makes itself apparent through the linear combination of outgoing waves that accompany a certain flux of incoming waves, thus process 1 defines the long-range wave function at r > r 0 ,

Ψ 1 = N f --S 1 f + , ( 57 
)
where f -and f + are diagonal matrices consisting of incoming and outgoing channel wave functions, respectively, and N is a overall normalization matrix that is not relevant to our purposes here. We are interested in how the linear combination of f -and f + would change if a second short-range process, for example absorption, would be introduced.

To this end, we first diagonalize S 1 so as to write it in terms of its eigenphases δ α ,

(S 1 ) ij = α i|α exp(2iδ α ) α|j . ( 58 
)
It is then possible to define the square root of this matrix, (S

1/2 1 ) ij = α i|α exp(iδ α ) α|j . ( 59 
)
The wave function in the presence of process 1 can then be written

Ψ 1 = N S 1/2 1 S -1/2 1 f --S 1/2 1 f + , (60) 
thus effectively defining a new set of incoming and outgoing reference functions S -1/2 1 f -and S 1/2 1 f + . We now introduce a second short-range scattering process, which changes the boundary condition of the wave function at the asymptotic matching radius r 0 . This new scattering wave function, due to both processes, can be written as a linear combination of the new incoming and outgoing waves, defining a second scattering matrix S 2 by

Ψ 1,2 = (S -1/2 1 f -) -S 2 (S 1/2 1 f + ) , (61) 
where we have left off another arbitrary normalization. Finally, factoring out S -1/2 1

gives

Ψ 1,2 = S -1/2 1 f --S 1/2 1 S 2 S 1/2 1 f + . ( 62 
)
This identifies the joint scattering matrix for both processes together as

S 1,2 = S 1/2 1 S 2 S 1/2 1 . (63) 
Notice that when we shut off process 1 by setting S 1 = I we get S 1,2 = S 2 , the scattering matrix in the absence of process 1. Consider for example a single-channel, with S 1 = exp(2iδ 1 ), S 2 = exp(2iδ 2 ) then Eqn. ( 63) simply asserts that the phase shifts add. This approach to combine S-matrices can be applied recursively to include other processes as desired. Using Eq. ( 63) can combine S0 and Sabs

S = S0 1/2 Sabs S0 1/2 . (64) 
Eq. ( 64) is the main result of the paper and is quite general. Of course from Eq. ( 51), Sabs in Eq. ( 64) can reduce to either Sunobs or Sres if only unobserved or indirect absorption is present. Therefore, the size of the matrix considered in Eq. ( 64) can be as high as the number of elastic, inelastic and reactive channels that are observed in an experiment being modeled. 

III. THE TWO-CHANNEL CASE

Rather than study any particular system, in order to gain insight we consider the case with just two open channels, consisting of an incident channel a, and one additional observed channel b, with channel a higher in energy, as illustrated in Fig. 3. We emphasize that while we label the second channel with a b, which identifies the channel with an inelastic scattering process, it could equally well be labelled k, and be identified with a reactive scattering process. Whatever the nature of the scattering to channel b is, we contemplate the scattering process a → b and the influence that absorption has on this process.

Upon reaching short range r = r 0 , each channel experiences some kind of absorption with coefficient z a , z b , whose exact origin we do not worry about here. It could consist of direct scattering to unobserved channels, or to complex formation, or some combination of both, as described above. In the absence of these processes, the two channels would be somehow coupled and scattering from one to the other could occur when they are both open. Using the convention in [START_REF] Idziaszek | Universal rate constants for reactive collisions of ultracold molecules[END_REF][START_REF] Jachymski | Quantum-defect model of a reactive collision at finite temperature[END_REF], we select reference functions f and ĝ in each channel so that the diagonal matrix elements of the short-range matrix Y vanish [START_REF] Giusti-Suzor | Alternative parameters of channel interactions. I. symmetry analysis of the twochannel coupling[END_REF], as such the scattering length in each channel may appear in the MQDT parameters C and tan λ introduced in Sec. II E. The short-range matrix Y 0 is therefore defined by a single, real-valued, off-diagonal coefficient w, via

Y 0 = 0 √ w √ w 0 . ( 65 
)
This notation uses the letter w to designate the coupling between the observed channels, since y was already used above to denote the unobserved absorption coefficient.

This matrix Y 0 gives the form of the unitary short-range matrix S0 that characterises the direct inelastic/reactive scattering as

S0 = 1 + iY 0 1 -iY 0 = 1 1 + w 1 -w 2i √ w 2i √ w 1 -w (66) 
as also given in Ref. [START_REF] Jachymski | Quantum-defect model of a reactive collision at finite temperature[END_REF]. Written in this way, we could of course regard scattering from a to b as yet another absorption process, writing S0 aa = (1w)/(1 + w) and identifying an inelastic/reactive absorption coefficient w. However here we are interested in the prospect of observing the molecular product directly, and so to treat the scattering matrix element S0 ab explicitly. From Eq. ( 53), we have

Sabs = 1-za 1+za 0 0 1-z b 1+z b . ( 67 
)
To construct the complete short-range matrix S using Eq. ( 64), we require the square root of S0 , which is given by

S0 1/2 = 1 √ 1 + w 1 i √ w i √ w 1 , (68) 
from which we obtain

S = S0 1/2 Sabs S0 1/2 (69) 
= 1 1 + w r a -w r b i √ w(r a + r b ) i √ w(r a + r b ) r b -w r a , using the shorthand notation r i = (1-z i )/(1+z i ), i = a,b.
The expression in Eq. ( 69) is quite general. It is however instructive to make the assumption that z a = z b = z, that is, the two channels experience the same absorption, to simplify results and gain intuition. In this case the short-range matrix S simplifies to

S = 1 (1 + w)(1 + z) (1 -w)(1 -z) 2i √ w(1 -z) 2i √ w(1 -z) (1 -w)(1 -z) .
(70) Notice that, in a case where channel b were not observed, this model would return to the single matrix element S aa = (1q)/(1 + q), written in terms of an effective absorption coefficient

q = w + z 1 + wz (71) 
that describes composite absorption from the combination of inelastic/reactive scattering to unobserved channel with absorption due to complex formation. This nicely illustrates the flexibility of the model to treat channels as either observed or unobserved, as required.

To see the basic interplay between direct scattering and absorption, it is worthwhile to consider the probabilities for various outcomes, shorn of the additional complications of threshold effects. Eq. ( 70) encodes three types of probability: the elastic scattering probability for the incident channel a,

pel = | Saa | 2 = (1 -w) 2 (1 -z) 2 (1 + w) 2 (1 + z) 2 . (72) 
the probability to enter in channel a and emerge in channel b due to a direct process,

pin = | Sba | 2 = 4w (1 + w) 2 (1 -z) 2 (1 + z) 2 . ( 73 
)
the absorption probability due to unobserved channels and/or complex formation

pabs = 1 -| Saa | 2 -| Sba | 2 = 4z (1 + z) 2 , (74) 
where we recover Eq. ( 55).

These various probabilities are shown in Fig. 4 as a function of the interchannel coupling w and the absorption coefficient z. As seen in the top figure, the elastic probability is quite low, unless both w or z have a low value.

In the other panels the influence of each process on the other can be appreciated. The middle panel shows that direct scattering only happens with appreciable probability when the absorption coefficient z is small, below around 0.2. On the other hand, the absorption probability is indifferent to coupling strength w as can be seen on the bottom panel and implied by Eq. (74) which is independent of w. This kind of absorption is a one-way journey: incident flux that gets to short range is lost and will not emerge from channel b. Note that the coefficients w and z are not interchangeable and do not play equivalent roles in the theory. One observable actually pertains to seeing the scattering end in a particular observable channel, whereas the other is simply absorption. So far, we have just dealt with the short-range scattering matrix S . In order to get the asymptotic S-matrix, S , we need to include threshold effects using MQDT. The QDT parameters C a and tan λ a in Eq. ( 31) are known analytically for s-wave threshold collisions for a 1/r 6 longrange potential [START_REF] Idziaszek | Universal rate constants for reactive collisions of ultracold molecules[END_REF][START_REF] Gao | Solutions of the schrödinger equation for an attractive 1/r 6 potential[END_REF] 

C -2 a ≈ kā(1 + (s a -1) 2 ), tan λ a ≈ 1 -s a , (75) 
where s a = a/ā, a being the scattering length in channel a, ā = 2πR 6 /Γ(1/4) is the Gribakin-Flambaum length [START_REF] Jachymski | Quantum-defect model of a reactive collision at finite temperature[END_REF][START_REF] Gribakin | Calculation of the scattering length in atomic collisions using the semiclassical approximation[END_REF], R 6 = (2µC 6 / 2 ) 1/4 is the van der Waals length. We further assume that channel b is far from threshold, as such C b = 1, tan λ b = 0. Following the approach outlined in Section II E, S and the corresponding cross sections and rate coefficients, can be obtained from S and the QDT parameters in each channel. We first consider the case, where no exit channel is explicitly observed. In this case the quenching coefficient q in (71) plays the role of an absorption coefficient. Then q can directly replace y in the quenching formulas of Ref. [START_REF] Jachymski | Quantum-defect model of a reactive collision at finite temperature[END_REF]. For example, the physical quenching probability is

p qu pqu × C -2 (1 + q) 2 (1 + q C -2 ) 2 + q 2 tan 2 λ . ( 76 
)
Here the factor pqu = 4q/(1 + q) 2 is the probability for quenching given that the molecules get close together, while the final factor modifies this probability due to the quantum reflection effects that modify the molecules chances of getting close together. This effect has been discussed at length elsewhere [START_REF] Jachymski | Quantum-defect model of a reactive collision at finite temperature[END_REF] and we do not repeat the discussion here.

In terms of the elastic and quenching rate coefficient, we have from Eq. ( 26) and Eq. ( 28) of Ref. [START_REF] Jachymski | Quantum-defect model of a reactive collision at finite temperature[END_REF] βel = g 4π µ kā 2 s 2 a + w+z . (77)

Of course when z = 0, two channels with inelastic collisions but no absorption, βqu identifies with βin = g 4π µ āw 1 + (s a -1)

2 1 + w 2 (s a -1) 2 ( 78 
)
or when w = 0, one channel with absorption but no coupling to inelastic channels, βqu identifies with

βabs = g 4π µ ā z 1 + (s a -1) 2 1 + z 2 (s a -1) 2 (79) 
which are the equations found previously in Ref. [START_REF] Jachymski | Quantum-defect model of a reactive collision at finite temperature[END_REF].

As a simple illustration of the relation between direct scattering and absorption, Fig 5 shows several representative cross sections for the two-channel case. For concreteness, we show cross sections for molecules with the mass and C 6 coefficient of NaRb. In this case, there are several undetermined coefficients, z a , z b , s a , s b , and w, likely too many to make a meaningful fit to the NaRb data. For this illustration we have somewhat arbitrarily set z b = 0.5, set the incident channel scattering length to s a = 1.0, and set the interchannel coupling to w = 1.0, which would give the maximum inelastic scattering in the absence of absorption. Note that the phase parameter s b in the final channel is irrelevant, as this channel is assumed far from threshold.

The left and right panels in the figure give results for absorption coefficients in the incident channel of z a = 0.2 and z a = 0.8, respectively. In each panel, results from an explicitly two-channel model are shown in color. Specifically, the blue and red curves describe the quenching and inelastic cross sections, respectively. Unsurprisingly, the total quench cross section is greater than the cross section for inelastic scattering alone. As a comparison, the black line shows the cross section that results if we use a one-channel scattering model with the same absorption coefficient z = z a and phase parameter s = s a in that channel. It is seen that the inelastic process alters the quenching cross section significantly. The right panel repeats this calculation, for a larger incident channel absorption coefficient z a = 0.8. This larger value of z a both 72), [START_REF] Christianen | Quasiclassical method for calculating the density of states of ultracold collision complexes[END_REF], and (70), fixing za = 0.5, sa = 1.0, and w = 1.0. For comparison, the black curve shows the cross section for the single-channel case (w = 0) with an absorption coefficient za and phase factor sa.

raises the total quenching cross section, and reduces the relative cross section for inelastic scattering.

In practice, if both the quenching and inelastic cross sections were measured, their energy-dependent cross sections (or temperature-dependent rate coefficients) could be simultaneously fit by formulas such as these, yielding consistent values of the absorption coefficients w, z a , and z b , and the incident phase parameter s a .

IV. APPLICATION TO VARIOUS EXPERIMENTAL SITUATIONS

Cast in terms of the present theory, it is interesting to draw some tentative conclusions about the experiments that have been performed so far. Quantitative description will likely require further information, yet the basic formulas Eq. ( 55) and Eq. ( 54) may guide our thinking. Note that in this section we remove the subscript a of the absorption coefficients, for clarity.

A. Collisions of endothermic processes

The most basic collision of ultracold molecules is one in which both molecules are in their absolute ground state and are not chemically reactive and the temperature is low enough such that all other channels are asymptotically closed. This was achieved in collisions of NaRb molecules [START_REF] Ye | Collisions of ultracold 23 Na 87 Rb molecules with controlled chemical reactivities[END_REF] and RbCs molecules [START_REF] Gregory | Sticky collisions of ultracold RbCs molecules[END_REF]. In this case the presumed losses are due to complex formation, as such z reduces to x. Light is present in these experiments and may strongly affect the molecular losses [START_REF] Gregory | Loss of ultracold 87 Rb 133 Cs molecules via optical excitation of long-lived two-body collision complexes[END_REF], therefore x should in general depend on I, the intensity of the trapping laser.

Knowing the energy dependence of the loss cross section enables one to extract the absorption coefficients from experimental data. Thus for NaRb collisions, the fitted parameter gave x(I) = 0.5 [START_REF] Bai | Model for investigating quantum reflection and quantum coherence in ultracold molecular collisions[END_REF] while for RbCs collisions it gave x(I) = 0.26(3) [START_REF] Gregory | Sticky collisions of ultracold RbCs molecules[END_REF], at the specific laser light intensities of these experiments. While the intensity dependence of x remains unknown, we can make the following assumption. If the light absorption is saturated with intensity, we assume that any complex that is formed decays immediately. In this case the value of x is a measure of the formation of the complex, and represents a direct measure of the ratio between the mean bound state-scattering channel coupling and the mean level spacing of resonances in the complex at the specific laser light intensities. Interpreting the mean coupling as a mean width, via ν 2 = γ/2π, Eq. ( 48), would give the ratio of mean resonance width γ to mean level spacing d, γ/d = 2x/π. The ratio would be γ/d = 0.32 for NaRb and γ/d = 0.17 for RbCs. Thus the theory produces from the data a concrete prediction that can be used to test a microscopic theory of molecular collisions. This interpretation relies on the assumption that the measured x in the presence of the light truly represents the complex formation. This assumption would of course not be necessary if the measurement were repeated in a box trap.

Even under this assumption, the comparison between empirical and calculated values of γ/d is complicated by the presence of external fields in the experiment, as x can also depend on those fields in addition to the intensity, so that x = x(E, B, I). For a pure field-free case (no electric field nor magnetic field), a coupled representation scheme can be used to estimate d when the total angular momentum quantum number J and its laboratory projection M are conserved [START_REF] Christianen | Quasiclassical method for calculating the density of states of ultracold collision complexes[END_REF]. However, even though the electric field is zero, the NaRb and RbCs measurements are performed in a non-zero magnetic field. It seems therefore appropriate to include in the microscopic estimates, collections of states with different values of J that are mixed by the field. It remains uncertain, however, how many values of J are relevant to the estimate of γ/d for a given magnetic field value. It should also be noted that the application of an electric field appears to alter the absorption coefficient, raising it to the universal value x(E > 0) = 1 [START_REF] Guo | Dipolar collisions of ultracold ground-state bosonic molecules[END_REF], indicating that the electric field increases the strength of channel coupling, the density of resonant states, or perhaps both.

B. Chemically Reactive Collisions

An alternative set of experiments, spanning the past decade, has measured loss in ultracold KRb molecules, distinguished from NaRb or RbCs in that the KRb + KRb → K 2 + Rb 2 reaction is exothermic. In the pioneering experiments [START_REF] Ospelkaus | Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules[END_REF], the products were not observed, therefore reactive scattering contributed to the unobserved processes described by the coefficient y in addition to the x in the endothermic case. In general, these experiments exhibit loss consistent with an absorption coefficient z(I) = 1 from Eq. ( 54), corresponding to loss of all molecules that get close enough to react or form a collision complex [START_REF] De Marco | A degenerate fermi gas of polar molecules[END_REF]. However, Eq. ( 54) does not lead to the identification of the separate mechanism for unobserved (chemical reaction in that case) and indirect (complex formation) processes. Nevertheless, the existence of both processes has been verified experimentally, by the identification in REMPI spectroscopy of both the products K 2 and Rb 2 , and the intermediaries K 2 Rb + 2 [START_REF] Hu | Direct observation of bimolecular reactions of ultracold KRb molecules[END_REF]. From Eq. ( 54), we note that in this parametrization z(I) = 1 can occur only if x(I) = 1 or y(I) = 1. It seems likely that indirect loss from complex formation does not occur with unit probability, that is, x(I) is likely less than unity, since this is certainly the case for the non-reactive species NaRb and RbCs (see above). The difference in energies that renders the KRb reaction exothermic, a mere 10 cm -1 , is decided at long range as the products recede from one another, and likely has little bearing on the complex itself and the couplings that determine the value of x(I). We therefore provisionally conclude that the loss of KRb molecules with unit probability is mainly due to the unobserved loss (chemical reactions) compared to indirect loss and that y(I) z(I) 1.

An additional possibility occurs for vibrationally excited states of NaRb [START_REF] Ye | Collisions of ultracold 23 Na 87 Rb molecules with controlled chemical reactivities[END_REF]. These molecules experience loss due to complex formation when in their ground state, but in their first vibrationally excited state they also have sufficient energy to inelastically de-excite or to chemically react. In this experiment, neither the inelastic nor the reactive products are observed. Therefore, inelastic and reactive processes should be regarded as unobserved absorption processes. The total loss is therefore described by the absorption coefficient z(I) of Eq. ( 54). Here x(I) would characterize the loss due to complex formation, which, in the simplest interpretation, can be taken as the same as for the non-reactive ground state scattering, x(I) = 0.5. While y(I) characterizes the losses due to the inelastic and reactive processes. From the data of the NaRb experiment in v = 1, the total absorption coefficient z(I) = 0.93 has been extracted [START_REF] Bai | Model for investigating quantum reflection and quantum coherence in ultracold molecular collisions[END_REF]. From Eq. ( 54), we infer that the unobserved absorption coefficient is y(I) = 0.8. This value, lying close to unity, emphasizes that the unobserved absorption coefficient, responsible for losses due to inelastic collisions and chemical reactions, takes a high value close to unity, just as in the KRb case.

V. CONCLUSION

As the poet decreed, "Those whom the gods would destroy, they first make mad", and so it is for ultracold molecules. When ultracold molecules collide, a likely outcome is a transformation that releases energy and sends the molecules fleeing from the trap, effectively destroying the gas. But for ultracold alkali dimers, this destruction need not be immediate, if the molecules first, maddeningly, form a collision complex. Various fates await the molecules upon collisions: elastic scattering, inelastic scattering, reactive scattering, or resonant complex formation. In the work we have detailed a simple quantum-defect model capable of treating all these myriad processes on an equal footing.

In the absence of full scattering matrices, the model captures the essence of these various processes, providing parameterizations of the various cross sections. The model is flexible enough to account explicitly for those processes that are ultimately observed, and to account implicitly for those that are not. The result is a framework capable of being adapted to fit the available data for a given experiment, relating the observables to a small set of parameters. These parameters, in turn, represent a tangible goal for microscopic theories of the four-body dynamics.

The theory as presented treats only the first step of the scattering process, molecules colliding and heading off on one of the paths, elastic, inelastic, reactive, or complex formation. In particular, the theory does not treat the possible decay of the complex, to do so will require a more detailed treatment of the decay rate and product distribution of the complex, work that is currently in progress.
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 1 FIG.1. Schematic outlining the various scattering processes and channel labels. Direct and indirect scattering processes are shown by red and blue arrows respectively. The incoming channel is labelled a; inelastic scattering channels that can be observed in an experiment are denoted by roman letters b, c, . . .; reactive scattering channels that can be observed in an experiment are denoted by roman letters k, l, m, . . .; inelastic or reactive channels that are unobserved in a given experiment are denoted by letters ρ, σ, τ , . . . Finally a dense forest of resonant states labelled by µ of the collision complex, of, with a mean level spacing d, is shown in the well of the potential.
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 12 FIG. 2. Interplay of the indirect and unobserved absorption coefficientsx and y on the absorption coefficient z given by Eq. (54).
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 3 FIG.3. The two-channel case. The two channels, labelled a and b, are coupled by w. At short-range, absorption from direct and/or indirect processes is described by an effective, absorption coefficient za, z b in each channel.
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 221214 FIG. 4. Top to bottom: short-range probabilities for elastic scattering, inelastic scattering, and absorption, versus the interchannel coupling strength w and absorption coefficient z.

1+wz 2 ( 2 -

 22 

FIG. 5 .

 5 FIG. 5. Schematic cross sections for NaRb molecules colliding in an excited state for two different values of za = 0.2 (left panel) and 0.8 (right panel). Shown for the two-channel case are the quenching (blue) and inelastic cross sections as computed from Eqs. (72),[START_REF] Christianen | Quasiclassical method for calculating the density of states of ultracold collision complexes[END_REF], and (70), fixing za = 0.5, sa = 1.0, and w = 1.0. For comparison, the black curve shows the cross section for the single-channel case (w = 0) with an absorption coefficient za and phase factor sa.

  The incoming channel is labelled a; inelastic scattering channels that can be observed in an experiment are denoted by roman letters b, c,

. . .; reactive scattering channels that can be observed in an experiment are denoted by roman letters k, l, m, . . .; inelastic or reactive channels that are unobserved in a given experiment are denoted by letters ρ, σ, τ , . . . Finally a dense forest of resonant states labelled by µ of the collision complex, of, with a mean level spacing d, is shown in the well of the potential.

ACKNOWLEDGMENTS J. F. E. C. acknowledges that this work was supported by the Marsden Fund of New Zealand (Contract No. UOO1923) and gratefully acknowledges support from the Dodd-Walls Centre for Photonic and Quantum Technologies. J. L. B. acknowledges that this material is based upon work supported by the National Science Foundation under Grant Number 1734006, and under grant number 1806971. G. Q. acknowledges funding from the FEW2MANY-SHIELD Project No. ANR-17-CE30-0015 from Agence Nationale de la Recherche.