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Abstract 

In the last few years, there has been a growing interest in the disassembly scheduling problem to fulfill 

the demands of individual disassembled parts over a given planning horizon. Planners have to determine 

the timing and the optimal quantity of ordering the end-of-life products. This paper focuses on the case 

of a multi-period planning problem, a single product type and multi-level structure. In this paper, we 

suggest a new mixed integer linear programming model for solving the capacitated disassembly 

scheduling problem in order to maximize total profit while minimizing of the sum of setup, inventory 

holding, external procurement, disposal, backlogging and overload costs in each time period. In other 

words, the objective function aims to (i) maximize the profit obtained by the resale of the recovered 

components after disassembly, from the valuation of the end-of-life products, and (ii) to minimize the 

costs related to the operation of disassembly process. Our computational experiments show that the 

proposed model gives the optimal solutions for all the test instances within acceptable time. Sensitivity 

studies on capacity, procurement and sale costs are also conducted, which provide some useful insights 

for industrial makers. 

Keywords: Reverse logistic, Disassembly, Capacitated disassembly scheduling, Disposed items, 

Backordering, Extra capacity.  

1 Introduction 

In the past decade, environmental protection has received growing attention. For economic, 

environmental and legislative reasons, waste reduction and recovery of end-of-life products have 
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become a major preoccupation (Benaissa et al. 2018). Reverse logistics, as the name suggests, 

refers to the logistics activities of an organization but in a reverse direction to what it may be in 

forward logistics. Their activities aim to plan collection, disassembly, repair, recycling, disposal, 

etc. of end-life products (Kim et al. 2018). 

This research focuses on disassembly, which is one of the essential activities for recovering and 

elimination of used products in reverse logistics. In other words, the disassembly is one of the 

important domains in reverse logistics, since the end-of-life products cannot be recovered or even 

disposed of without disassembling them (Kim et al. 2018). 

According to the classifications discussed by (Kim et al. 2018), the disassembly process 

necessitate to solve six categories of problems: disassembly planning, disassembly sequencing, 

disassembly line balancing, design of disassembly to order system, ergonomics and automation 

of disassembly systems. Among the disassembly problems mentioned earlier, our paper is based 

on R-MRP (Reverse-Material Requirements Planning) taking into account end-of-life products 

recovery process. R-MRP tends to be a disassembly planning system to determine when and how 

much end-of- life products to disassemble (Lee and Xirouchakis 2004). The goal is to meet 

customer components requirements over the planning horizon while minimizing the costs 

associated with the disassembly process.  

Therefore, the following two questions are asked to optimize given performance indicators: (i) 

when to disassemble the end-of-life products? and (ii) how much end-of-life products must be 

disassembled to cover the demand for items used? 

The literature on disassembly planning provides answers to these questions and offers a variety 

of approaches to help decision makers manage problems and improve their decisions in an 

unstable environment. (Lambert and Gupta 2004) highlighted that “a breakthrough in this domain 

came by considering the assembly process as a reverse of disassembly, which is valid under some 

specific assumptions”. (Kim and Xirouchakis 2010) argued the same point but went further to 

state that the disassembly planning problem can be regarded as a reverse version of the lot sizing 

problem for assembly systems. Authors indicated that, compared to assembly process, 

disassembly process is characterized by more different and complex physical and operational 

properties. In fact, the disassembly is a divergent process where a product is broken down into 

several parts and subassemblies, unlike the assembly where several parts converge to a single 

product. Due to divergence properties, the disassembly planning is more complex than lot sizing 

problem in the assembly systems. For more details of the divergence characteristics, readers can 



refer to (Kim et al. 2007), or to (Morgan and Gagnon 2013), (Gagnon and Morgan 2014) and 

(Lee et al. 2001) for comprehensive reviews. 

The main contributions of this paper include: 

(1) A new compact and effective mixed-integer linear programming model (MIP) for the 

disassembly planning is suggested. 

(2) In order to get close to reality as much as possible, we extend existing models to include 

additional parameters such as external procurement, disposed and backordered of items, setup 

time and extra capacity. These parameters make the problem more complex to handle 

mathematically. To the best of our knowledge, it is the first time to consider these parameters 

simultaneously.  

(3) Some interesting managerial insights are observed. For example, increasing the disassembly 

capacity increase the quantities resulting from the disassembly. Moreover, small disassembly 

capacities extremely worsen the situation. They cause loss in profit. Therefore, managers 

should pay more attention to decreasing profit margin and procurement cost. 

This paper is organized as follows. In the next section, we present a literature review on the 

relevant researches dealing with the disassembly planning problems. The studied problem is 

described in Section 3. Different mathematical programming models have been applied for 

disassembly planning with different objective functions. A new mathematical model is presented 

in Section 4. Numerical results are reported in Section 5. Finally, conclusions are drawn, and 

future studies are given in Section 6. 

2 Related publications 

This section reviews the previous studies on disassembly planning problems. Table 1 shows a 

summary of the relevant papers including our new approach. The classification is done according 

to two/multi levels structure, single/multi items, one/multi periods, commonality/no 

commonality of parts, capacitated/incapacitated constraints, and deterministic or stochastic 

approaches. In the next subsections, we review literature on approaches employed to model 

deterministic or stochastic, capacitated or incapacitated problems. 

2.1 Deterministic and incapacitated models 

Most of the earlier studies consider the deterministic incapacitated disassembly planning 

problems. To our knowledge, the first model was proposed by (Gupta and Taleb 1994) to study 

one-product type with multi-level structure and without parts commonality. They proposed a 

reverse material requirement planning algorithm (RMRP) without explicit objective function. 

Later, (Gupta et al. 1997) extended this basic case by considering the commonality of parts, and 



suggested another RMRP algorithm to minimize the number of products to be disassembled. 

Parts commonality implies that a product or a sub-assembly shares its components and/or parts. 

(Taleb and Gupta 1997) considered the same problem but in the case of multiple types of products 

with parts commonality and suggested heuristics in two phases to optimize two independent 

objectives: to minimize the number of products to be disassembled and to minimize the total 

costs related to disassembly operations. (Kingdom 1998) proposed a mixed integer nonlinear 

program (MINLP) to maximize the profit and to satisfy the components demand by 

disassembling multi-products in each time period. Drawing on the work of (Taleb and Gupta 

1997). (Neuendorf et al. 2001) proposed an algorithm based on Petri net that gives better solution 

than the reverse MRP algorithm. (Kim et al. 2003) derived the properties of the basic problem 

proposed by (Taleb and Gupta 1997) and applied in their work a heuristics algorithm and a linear 

programming (LP) relaxation approach to a case study to minimize the sum of setup, disassembly 

operation and inventory holding costs. (Lee and Xirouchakis 2004) derive the properties of the 

basic problem proposed by (Gupta and Taleb 1994) and suggested a two-phase heuristic in order 

to minimize the sum of purchase product, setup, disassembly operation and inventory holding 

costs. (Lee et al. 2004) proposed and solved three integer programming models for three problem 

cases, i.e. a single product type without parts commonality and single and multiple product types 

with parts commonality, they used CPLEX to solve the problem, the test results showed that the 

integer programming approaches can give optimal or near-optimal solutions only for small to 

medium size test problems. (Kim et al. 2006a) considered the disassembly planning problem with 

multiple product types and parts commonality and proposed a two-phase heuristic to minimize 

the sum of setup, disassembly operation and inventory holding costs. Later, (Langella 2007) 

presented an integer model and proposed a heuristic to solve a demand-driven disassembly 

planning problem with multiple product types, multi-levels product structure with the objective 

of minimizing the sum of separation, disposal, inventory holding and procurement costs. To solve 

this problem, they proposed a heuristic procedure that modifies the algorithm proposed by (Taleb 

and Gupta 1997) in order to alleviate the potential of infeasible solutions. (Gao and Chen 2008) 

proposed a genetic algorithm to solve the disassembly planning problem with a multi-level 

structure and one type product. The objective function is to minimize the sum of setup, inventory 

holding and disassembly operation costs. The results of computational experiments on randomly 

generated test problems indicate that the proposed approach gives the optimal solutions up to all 

moderate-sized problems in a short amount of computation time (less than 1 minute). (Kim et al. 

2008) proposed a two-level disassembly structure and single type of product, to formulate the 

problem mathematically; they suggested an integer programming model and then reformulated 



it into a dynamic programming model after having characterized properties of optimal solutions. 

(Barba-Gutiérrez et al. 2008) refocused attention on the use of MRP-like strategies proposed by 

(Gupta and Taleb 1994) and incorporated the lot sizing (LS-RMRP) to facilitate its use. Later, 

(Kim et al. 2009) proposed the Lagrangian relaxation-based heuristics with a branch and bound 

algorithm to address a multi-level and single-item disassembly planning problem without parts 

commonality. 

Table 1.  Summary on the literature review. 

Authors 

Level Product 

PC 

C
ap

ac
it

y
 

C
ri

te
ri

a
 

Approach 

resolution 

Model type 

T
w

o
 

M
u

lt
i 

O
n

e 

M
u

lt
i 

D
et

er

m
in

is
t 

S
to

ch
a

st
ic

 

Gupta and Taleb (1994)       NP RMRP   

Taleb et al. (1997)       NP RMRP   

Taleb and Gupta (1997)       NP, 𝑑𝑐 Two phase Heuristics   

(Kingdom 1998)       Max profit MINLP   

Neuendorf et al. (2001)       NP Petri Nets   

Lee et al. (2002)       𝑃𝐶 , 𝐻𝑐 ,𝑑𝑐 LP   

Kongar and Gupta (2002)       Max profit, NPD Goal programming   

Kim et al. (2003)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 LP   

Lee et al. (2004)        𝑆𝑐 , 𝑃𝑐 , 𝐻𝑐 ,𝑑𝑐 LP   

Lee and Xirouchakis (2004)       𝑆𝑐 , 𝑃𝑐 , 𝐻𝑐 ,𝑑𝑐 Heuristics   

Kim et al. (2005)       NP Dynamic programming   
Inderfurth and Langella (2005)       𝑑𝑐 , 𝑍𝑐,𝑤𝑐 Heuristics   

Kim et al. (2006a)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 Two phase Heuristics   

Kim et al. (2006b)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 Lagrangian Heuristics   

Kim et al.(2006c)       NP Heuristics   

Kongar and Gupta (2006)       Max Profit, NPD Fuzzy goal programming   

Langella (2007)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 , 𝑍𝑐,𝑤𝑐 Heuristics   

Kim et al. (2008)       𝑆𝑐 , 𝐻𝑐  Dynamic programming   

Gao and Chen (2008)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 Genetic algorithm   

Barba-Gutiérrez et al. (2008)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 LS-RMRP   
Barba-Gutiérrez and Adenso-

Díaz (2009) 
      NP F-RMRP   

Kim et al. (2009)       𝑆𝑐 , 𝐻𝑐 , branch and bound   

Kim and Xirouchakis(2010)       𝑆𝑐 , 𝐻𝑐 ,𝑅𝑐 Lagrangian heuristics   

Kang et al. (2011)       𝑆𝑐 , 𝑑𝑐 Optimal algorithm   

Kang et al. (2011)       𝑆𝑐 , 𝑑𝑐 Heuristics   

Kim and Lee (2011)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 Heuristics   

Prakashet al. (2012)       𝐻𝑐 ,𝑑𝑐 CBSA   

Ullerich (2013)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 , 𝑍𝑐 Heuristics   
Sung and Jeong (2014)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 , 𝑍𝑐 Heuristics   

Ji et al. (2015)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 , 𝑍𝑐, 𝐶𝑐 Lagrangian heuristics   

Godichaud and Hrouga (2015)       𝑆𝑐 , 𝐻𝑐 ,𝐿𝑐 , 𝑂𝑐 
Mixed Integer programming 

(MIP), Genetic algorithm  
  

Inderfurth et al. (2015)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 , 𝑍𝑐,𝑤𝑐 
Empirical and mathematical 

analysis 
  

Hrouga et al. (2016a)       𝑆𝑐 , 𝐻𝑐 ,𝐿𝑐 GA and Fix and optimize   

Hrouga et al. (2016b)       𝑆𝑐 , 𝐻𝑐 ,𝐿𝑐 , 𝑂𝑐 Heuristics   

Liu and Zhang (2018)       𝑆𝑐 , 𝐻𝑐 ,𝑃𝑐 Outer approximation   

Kim and Lee (2018)       𝑆𝑐 , 𝐻𝑐 ,𝑑𝑐 Two phase heuristics   

Tian and Zhang (2018) 
  

 
  

  
  

𝑆𝑐 , 𝑃𝑐 , 𝐻𝑐 , 𝑤𝑐 
PSO and dynamic 

programming 

  
 



Current paper       𝑆𝑐 , 𝐻𝑐 ,𝐴𝑐,𝑍𝑐,𝑂𝑐,𝑤𝑐, 

Max Profit 
MILP   

 

PC: Parts commonality, NP: Number of products to be disassembled, NPD: number of products to be disposed,𝑆𝑐: setup 

cost,𝑃𝑐: purchase cost of root,𝐻𝑐: Holding cost,𝑑𝑐:disassembly operation cost, 𝑍𝑐: purchase cost of parts,𝑊𝑐: disposal 

cost,𝑅𝑐 : unsatisfied demand penalty cost, 𝐶𝑐: Start-up cost, 𝐿𝑐: lost sales penalty cost, 𝑂𝑐: overload cost, 𝐴𝑐: 

Backlogging cost, CBSA: Constraint-Based Simulated Annealing Algorithm. 

Unlike in the previous studies, (Kang et al. 2011) are the first to integrate the leveling and the 

disassembly planning problems at the same time. In this research, an optimal algorithm was 

proposed for the basic case problem with multiple products and single period and a heuristic for 

the extended problem with parts commonality after proving that the problem is NP-hard. (Kim 

and Lee 2011) extended the research result of (Kang et al. 2011) by considering a multi-period 

version. To solve this problem, they suggested a heuristics algorithm using a priority rule. 

Recently, (Kim et al. 2018) used the model suggested by (Kim and Lee 2011) and proposed a 

two-phase heuristic that consists: firstly, constructing an initial solution using a priority-based 

greedy heuristic and then improving it by removing unnecessary disassembly operations. 

2.2 Stochastic and incapacitated models 

Regarding the stochastic models, the authors generally consider uncertain parameters such as 

demands and yields. Considerations of uncertainties in the disassembly scheduling problem have 

not been addressed much in the literature. In fact, very few studies that dealt with the stochastic 

aspect have been published. To the best of our knowledge only three previous researches 

considered a non-deterministic incapacitated disassembly planning problem and they are 

confined to a single period planning. (Inderfurth and Langella 2006) consider multiple product 

types, parts commonality, two-level structures and yield uncertainty. A heuristic introduced to 

minimize the sum of disassembly operation, purchasing and disposal expected costs. By 

contrast,( Kongar and Gupta 2006) extends their earlier work (Kongar and Gupta 2002) by 

incorporating uncertainty in the number of end-of-life products retrieved, the total profit goal and 

the sum of recycled components. They utilized the fuzzy goal programming, which allow the 

goals of the problem to be characterized using intentional vagueness. (Barba-Gutiérrez and 

Adenso-Díaz 2009) extended the model proposed by (Barba-Gutiérrez et al. 2008) by integrating 

the uncertainty demand. For solving this problem, they proposed an algorithm F-RMRP (R-MRP 

based on a fuzzy logic). 

2.3 Deterministic and capacitated models 

There is a few of literature treats the capacitated disassembly planning problem. In fact, the 

capacity constraint makes the problem much more complex (Lee et al. 2002). The previous 



researches on capacitated disassembly planning can be classified into single and multi-product 

structures. 

 

For a single item, (Lee et al. 2002) are the first to study a deterministic capacitated problem. 

They suggested an integer programming model to minimize the sum of disassembly operation, 

purchase products and inventory holding costs. For the same problem, (Kim et al. 2005) minimize 

the number of disassembled products and suggested an optimization algorithm. Authors prove 

that its optimal solution value is equal to the one found in an incapacitated problem. Then, (Kim 

et al. 2006b) extended the research result of , (Kim et al. 2005) by adding setup, disassembly 

operation and inventory holding costs in the objective function and proposed a Lagrangian 

heuristic algorithm. On the other hands, (Prakash et al. 2012) proposed a constraint-based 

simulated annealing algorithm to solve a single item disassembly planning problem with parts 

commonality. 

For multiple items, (Ullerich and Buscher 2013) formulated a complete disassembly planning as 

an integer linear programming model and considered a capacity constraint in each period. 

However, this work ignored the set-up cost which is a common and indispensable parameter in 

the industrial reality. On their part, (Ji et al. 2016) extended the work of (Ullerich and Buscher 

2013) by introducing the start-up and the set-up costs and proposed a Lagrangian relaxation 

heuristic to address a capacitated disassembly planning with parts commonality. Another study 

was proposed by (Godichaud et al. 2016) to treat a capacitated lot-sizing disassembly problem 

with lost sales and penalty cost for overloading disassembly capacity, this problem was 

formulated as a MIP model and a GA was proposed to give a solution to this problem in a 

reasonable completion time for a large instance. In their study, (Hrouga et al. 2016a) combined 

a GA and Fix-and-Optimize heuristics to solve the multiple type products disassembly lot sizing 

problems with lost sales and capacity constraints. (Hrouga et al. 2016b) considered the 

disassembly lot sizing problem with lost sales, multi-product types, two levels and capacity 

constraint. To solve this problem, they proposed an efficient optimization method based on 

genetic algorithm and Fix-and-Optimize heuristics in order to minimize of the sum of setup, 

inventory holding, lost sales and overload costs.  The last paper dealing with the studied problem 

has just been published by (Tian et Zhang 2018)  in which the return of the returned products 

depends on the purchase price. The problem is formulated as a Nonconvex Mixed Integer 

¨Program. The Particle Swarm Optimization (PSO) algorithm and dynamic programming are 



combined to solve the problem in order to determine the correct acquisition prices of returned 

products, the appropriate timing and quantity of disassembly. 

 

 

2.4 Stochastic and capacitated models 

The existing literature on the stochastic capacitated disassembly planning problems is limited. 

Only three publications populate this category. (Kim and Xirouchakis 2010) considered the 

problem with multiple periods, multiple product types, two-level product structures, and 

stochastic demands. The objective is to minimize the sum of expected setup, inventory holding, 

and penalty costs on the non-satisfaction of requests. To solve this problem, they developed 

Lagrangian relaxation heuristics to solve it. (Inderfurth et al. 2015) formulated a disassembly 

planning problem, which stochastic yield, and suggested two-root and three-leaf mathematical 

model to illustrate the effect of yield uncertainty in stochastically proportional and binomial 

models respectively.  In a recent paper by (Liu and Zhang 2018) a capacitated disassembly 

planning problem with random yields and demands is proposed. This problem is formulated as a 

mixed integer nonlinear program (MINLP) and an outer approximation-based solution algorithm 

is proposed to solve it. 

In most studies, the authors considered that the disassembled items are all in a perfect condition 

besides and their state satisfies the demand. However, in the industrial reality, these items can be 

defective. Therefore, very few studies have studied the disassembly planning problem with the 

integration of disposal decisions. For this reason, it seems interesting for us to build a good 

example of the capacitated disassembly planning problem with certain specified demands for 

items, disposed items, external procurement, setup time, backordering and extra capacity. The 

relevant questions become how many roots should be disassembled in order to fulfill the demand 

in a cost-efficient manner. With only one item, the answer can be simply calculated and will be 

explained in the next section. 

3 Problem description  

3.1 Basic problem  

This section will put forth a new mixed-integer linear program (MIP) model which can be used 

to obtain optimal solutions for a capacitated disassembly planning problem. We consider a 

problem with the disassembly product structure shown in Fig 1. 



The disassembly structure with only one type of product must be explained first. The end-of-life 

product to be disassembled represents the root item, and the leaf items are the parts/components 

to be requested and not disassembled further. The parent element has more than one child and a 

child element denote item that has only one parent. Fig 1 shows an example of the disassembly 

structure, where element 1 designates the root item, items 2 and 3 represent the subassemblies 

items, and items 4-7 designate the parts or the leaf items. Similarly, the number in parentheses 

represents the number of units (yield) of the element obtained when a unit of its parent is 

disassembled; for example, item 2 is disassembled in three units of item 4 and one unit of item 

5. Here, item 2 is called parent item, while items 4 and 5 are called child items.  Also, the 

disassembly lead time denote by DLT implies the total time required to disassemble a parent item 

(Kim et al. 2006). 

 

Fig 1. Disassembly structure: example  

According to the disassembly structure described above, we consider the capacitated 

disassembly planning problem while satisfying the capacity over a planning horizon, that is to 

say, the total time required to perform the disassembly operations in each period must be less or 

equal than the available disassembly capacity in this period (Hrouga et al. 2016a) .  

It is often too easy to impose a single capacity constraint over the planning horizon. This is 

because it is often the case that capacity can be added as would be the case if the disassembly 

plan called for it. Typical examples are the use of overtime or to bring in extra resources (VoB 

and Woodruff 2003). To keep our language simple, we refer to all these capacity additions such 

as overtime. Moreover, we assume that the capacity on overtime is limited.  

The most researches on planning problem consider the setup cost in the objective function, that 

is to say when a parent item is disassembled, the equipment required for that item has to be set 

DLT=1 

DLT=0 DLT=1 



up. This results in a set-up cost that is specific for each non-leaf item (can be root or 

subassemblies item). Although several previous researches on the capacitated disassembly 

planning problem do not consider the corresponding setup time required for preparing the 

disassembly operation. In general, the setup time is important, especially in manual disassembly 

operations, and hence should be integrated in the capacity constraint ( Kim et al. 2007). However, 

this issue increases the problem complexity more significantly. To the best of authors’ 

knowledge, no one has addressed the optimization of capacitated disassembly planning problem 

with setup time. 

3.2 Problem statement and assumptions 

In our model, the most goal is to fulfill the demand for items (can be subassemblies, or leaf 

items), which can either be seen as direct or external demand for non-root items (subassemblies 

and leaf items), or an internal demand for non-leaf items stemming from demand for 

remanufactured products and subassemblies items. All requirements must be satisfied either by 

disassembling the end of- life products, or we have assumed that we have access to new non-root 

items and can choose to buy these directly as a way to avoid disassembly with a very high penalty 

in the objective function. Inventory holding costs occur when are held in order to satisfy future 

demand.  

The non-root items are also allowed to be disposed of at given costs and to be late with a penalty 

function may be used to model the fact that delay is a problem for some customers. Our concern 

is to make a simple model that allows non-root-items to be tardy but requires the end-of-life 

product to be on time. We assume that every unsatisfied demand on times is backordered.  

The disassembly planning problem considered in this paper can be defined as the problem of 

determining the disassembly plans of all parent items for a given disassembly product structure, 

while satisfying the external demand of non-root item over a certain planning horizon with the 

objective of maximizing the profit obtained by the resale of the recovered components after 

disassembly while minimizing the sum of setup, inventory holding, purchase, disposal, 

backlogging and overload costs over the planning horizon.  

Given a deterministic demand for non-root items, a product structure, and the above-described 

relevant costs, this work concentrates on answering the following questions: 

When should be disassembled the parent items, how much of each non-root item should be 

purchased, stored, backordered, sold, or disposed of, and how much of extra capacity can be 

added over a given planning horizon in order to meet this demand?  



The conceptual model for the studied problem is presented by a mass flow diagram in Fig 2. 

 

 

 

 

 

 

 

 

 

Fig2. Mass flow diagram of decision environment   

The assumptions can be summarized as follows:  

- The demands of the components are given and deterministic. 

- The demand can be satisfied with the disassembly operation and/or the external procurement. 

- The backlogging is allowed; hence the demand may not be satisfied on time. 

- The initial inventory of the items is assumed to be zero. 

- The items obtained may not all be in good condition to meet the demand. 

- There is no storage for the end-of-life products that can be obtained once they are requested. 

- Disassembly operation time and setup time of all parent items and deterministic. 

- The capacity on overtime disassembly is limited. 

- The cost parameters are assumed to be constant. 

4 New problem formulation 

This paper presents the optimization of an R-MRP model. The objective is to find the optimal 

used/end-of-life products to satisfy customer demands on a given delivery date. To formulate 

this problem, all items in the disassembly structure are numbered in the topological order from 

bottom to top and from left to right, starting with number one for the root item. In our model, 

without loss of generality, all items are numbered by integers: 1,2, … . , 𝑖𝑙, 𝑖𝑙+1 … , 𝑃 where 𝑖𝑙+1 

denote the index for the first leaf item. Hence, all indices that are larger than 𝑖𝑙 represent leaf 

items. 

Disassembly planning 

Items from disassembly operation 

Items from stock 

Items externally purchased  

Items stored for future demand 

Items consumed 

by costumers 

Items disposed of 

Items backordered 



 In order to suggest a new problem formulation, the idea is to compact the inventory balance 

equations for the parent items and the one for each leaf item as it is proposed in the literature in 

a single inventory equation. Indeed, we have inspired the idea from the mathematical formulation 

of MRP (Material Requirements Planning) production planning problem proposed by (VoB and 

Woodruff 2003) and we have adopted it  in a R-MRP model , since the problem is basically a 

reversed form of the regular MRP (Lee et al. 2001).  

Let 𝑖 = 1 be the index of the end-of-life product and 𝑃 the index of the last item obtained by 

disassembling it. Let the following three sets: (i) ℰ the set of items 𝑖 with 𝑖 = 1, … , 𝑃, (ii) 𝒜 the 

set of items 𝑖 of the last level of product structure which cannot be disassembled. These items 

verify the following equality: ∀ 𝑖 ∈ 𝒜, ∀𝑗 ∈ ℰ| 𝑅(𝑖, 𝑗) = 0, and (iii) 𝒜𝐶 the set of remaining 

items such as 𝒜 ∪ 𝒜C = ℰ. To facilitate model reading, we introduce a macro, denoted by ≡ to 

indicate the inventory of an item 𝑖 in each time period 𝑡. 

The full list notations used throughout this paper is given below: 

Indexes 

𝑖 index for items 𝑖 = 1,2, . . . . . . . . , 𝑃 

𝑡 index for periods 𝑡 = 1,2, … … . , 𝑇 

Parameters 

𝑃 Number of items  

𝑇 Number of time buckets 

ℰ Set of items 𝑖 with 𝑖 = 1,2, . . . . . . . . , 𝑃 

𝒜𝐶 Set of items 𝑖 such as 𝒜 ∪ 𝒜𝐶 = ℰ (non-leaf items) 

𝒜 Set of items 𝑖 of the last level of the product structure (leaf items) 

𝑅(𝑖, 𝑗) number of units (yield) of item 𝑗 obtained from disassembling one unit of item 𝑖(𝑖 < 𝑗) 

𝐷(𝑖, 𝑡) External demand of item 𝑖 (part or subassembly) in period 𝑡 

𝐼(𝑖, 0) Beginning inventory of item 𝑖 

𝐷𝐿𝑇(𝑖) Disassembly lead time of item 𝑖 

𝐻(𝑖) Per period inventory holding cost of one unit of item 𝑖 

𝑆(𝑖) Per period set-up cost of parent item 𝑖 

𝜑(𝑖) parent of item 𝑖 

𝐴(𝑖) Per period backlogging costs of one unit item 𝑖 

𝐶(𝑖) Unit purchasing cost of one unit item 𝑖 



 
 

𝛼(𝑖, 𝑡) Waste rate of item 𝑖 in period 𝑡 

𝐺(𝑖) Disassembly operation time of item 𝑖  

𝑈(𝑡) Disassembly capacity in time, in period 𝑡 

𝑂(𝑡) Penalty cost disassembly time in period 𝑡 

𝐹(𝑡) Disassembly capacity on overtime in time, in period 𝑡 

𝐸(𝑖) Per period disposal cost of one unit item 𝑖 

𝑆𝐶(𝑖) Per period sale’s cost of item 𝑖 

𝑆𝑇(𝑖) Setup time of item 𝑖 

𝑀 A large number 

Decision variables 

𝑥𝑖𝑡 Order release quantity of item 𝑖 in period 𝑡, ∀ 𝑖 ∈ 𝒜𝐶  

𝛿𝑖𝑡 Binary indicator of disassembly of item 𝑖 in period 𝑡, ∀ 𝑖 ∈ 𝒜𝐶  

𝐼𝑖,𝑡
+  Inventory level of item 𝑖 at the end of period t ∀ 𝑖 ∈ ℰ∖{1} 

𝐼𝑖,𝑡
−  Backordered quantity of item 𝑖 in period t ∀𝑖 ∈ ℰ∖{1} 

𝑧𝑖𝑡 Procurement quantity of item 𝑖 in period t ∀𝑖 ∈ ℰ∖{1} 

𝑤𝑖𝑡 Disposal quantity of waste of item i in period t ∀ i ∈ ℰ∖{1} 

𝑦𝑡 Disassembly “Overtime” in period 𝑡 

𝑄𝑖𝑡 Sale quantity of item 𝑖 in period t ∀ 𝑖 ∈ ℰ∖{1} 

 

The optimization model is as follows. The objective function (1) maximizes the total sale cost 

while minimizing of the sum of inventory holding, backlogging, external procurement, disposal, 

setup, and overload costs over the planning horizon. 

 

𝑀𝑎𝑥 ∑ (∑(𝑆𝐶(𝑖). 𝑄𝑖𝑡 − 𝐻(𝑖). 𝐼𝑖,𝑡
+ − 𝐴(𝑖). 𝐼𝑖,𝑡

− − 𝐶(𝑖). 𝑧𝑖𝑡 − 𝐸(𝑖). 𝑤𝑖𝑡)

𝑃

𝑖=2

− 𝑂(𝑡). 𝑦𝑡

𝑇

𝑡=1

− ∑ 𝑆(𝑖). 𝛿𝑖𝑡

𝑖∈𝒜𝐶

) 

 

(1) 

 

Eq. (2) represents the demand and materials requirement for all non-root item 𝑖 and period 𝑡: In 

other words, at the end of the planning horizon, all requests of non-root item 𝑖 must be satisfied  



𝐼𝑖,𝑡(𝑥) + ∑ 𝐷(𝑖, 𝜏) ≥ 0

𝑡

𝜏=1

 ∀ 𝑖 ∈ ℰ∖{1} ;  ∀ t = 1, . . , 𝑇 (2) 

 

Where 𝐼𝑖,𝑡(𝑥) the macro defined as follows: 

 

𝐼𝑖,𝑡(𝑥) ≡ ∑ ∑(𝑅(𝜑(𝑖), 𝑖). 𝑥𝜑(𝑖),𝜏)

𝑃

𝑖=2

+ 𝐼(𝑖, 0) − ∑(𝐷(𝑖, 𝜏) + 𝑥𝑖,𝜏 + 𝑤𝑖,𝜏 − 𝑧𝑖𝜏)

𝑡

𝜏=1

𝑡−𝐷𝐿𝑇[𝜑(𝑖)]

𝜏=1

 

 

Eq. (3) defines the inventory balance for each non-root item 𝑖 at the end in each period 𝑡: 

𝐼𝑖,𝑡
+ − 𝐼𝑖,𝑡

− =   𝐼𝑖,𝑡(𝑥) ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (3) 

 

Eq. (4) represents the modeling constraint for disassembly indicator for each non-leaf item 𝑖 and 

period 𝑡: 

𝛿𝑖𝑡 −
𝑥𝑖,𝑡

𝑀
≥ 0 ∀ 𝑖 ∈ 𝒜𝐶, ∀ 𝑡 = 1, . . , 𝑇 (4) 

 

Eq. (5) represents the waste quantity for each non-root items 𝑖 and period 𝑡: 

w𝑖𝑡 = 𝛼(𝑖, 𝑡). 𝑅(𝜑(𝑖), 𝑖). 𝑥𝜑(𝑖),𝑡−𝐷𝐿𝑇[𝜑(𝑖)] ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (5) 

 

Eq. (6) represents the capacity constraint in each period 𝑡: 

∑ (𝑆𝑇(𝑖). 𝛿𝑖𝑡 + 𝐺(𝑖)

𝑖∈𝒜𝐶

. 𝑥𝑖,𝑡) ≤ 𝑈(𝑡) + 𝑦𝑡 ∀ 𝑡 = 1, . . , 𝑇 (6) 

 

Eq. (7) represents the disassembly capacity on overtime in each period 𝑡: 

𝑦𝑡 ≤ 𝐹(𝑡) ∀ 𝑡 = 1, . . , 𝑇 (7) 

 

Eq. (8) guarantees that the backordered quantity for each item 𝑖 and period 𝑡 should be less than 

or equal to the demand in that period 𝑡: 

𝐼𝑖,𝑡
− ≤ 𝐷(i, 𝑡) ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (8)                      

 



Eq. (9) ensures that any quantity externally purchased of each item 𝑖 and period 𝑡 cannot exceed 

the demand in that period 𝑡: 

𝑧𝑖𝑡 ≤ 𝐷(i, 𝑡) ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (9)                      

 

Eq. (10) represents the sale quantity for each non-root item 𝑖 and period 𝑡: 

𝑄𝑖𝑡 = (𝐷(i, 𝑡) − 𝑧𝑖𝑡) ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (10)                      

 

Eq. (11) – (19) provides the conditions on the decision variables: 

𝑤𝑖,𝑡 ≥ 0 ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (11) 

𝑦𝑡 ≥ 0 ∀ 𝑡 = 1, . . , 𝑇 (12) 

𝐼𝑖,𝑡
− ≥ 0 ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (13) 

𝐼𝑖,𝑡
+ ≥ 0 ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (14) 

𝑧𝑖𝑡 ≥ 0 ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (15) 

𝑥𝑖,𝑡 ≥ 0 ∀ 𝑖 ∈ 𝒜𝐶 , ∀ 𝑡 = 1, . . , 𝑇 (16) 

𝑥𝑖,𝑡 ≤ 0 ∀ 𝑖 ∈ 𝒜, ∀ 𝑡 = 1, . . , 𝑇 (17) 

𝑄𝑖,𝑡 ≥ 0 ∀ 𝑖 ∈ ℰ∖{1}, ∀ 𝑡 = 1, . . , 𝑇 (18) 

𝛿𝑖,𝑡 ∈ {0,1} ∀ 𝑖 ∈ 𝒜𝐶 , ∀ 𝑡 = 1, . . , 𝑇 (19) 

 

5 Numerical results 

The CPLEX 12.6 commercial software package was used to solve optimally the new mixed 

integer linear programming (MILP). In fact, the program which generates the MILP formulations 

was coded in C with an Intel (R) Core ™ i7-5500 CPU @ 2.4 GHz.  

5.1 Sensibility analysis 

Sensitivity analysis is generated on a small instance on the product structure shown in Fig 1, 

when T = 10, P = 7. We conduct sensitivity study on three main parameters of the problem, 

namely disassembly capacity, sale and procurement costs. All these tests are carried out under 

parameters costs generated in table 2. The demand of non-root items is generated from the 

discrete uniform distribution 𝐷~𝑈(0,100) over the planning horizon. The units inventory 

holding, disposal, setup, and penalty disassembly time costs are generated from the discrete 

uniform distribution with [a, b]. For each non-root item, the unit backlogging cost 𝐴(𝑖) is 



assumed twice as large as the unit inventory holding cost. The waste rate 𝛼(𝑖, 𝑡), for item 𝑖 ∀ 𝑖 ∈

ℰ∖{1}, is generated according to 𝐷~𝑈 (0,10). We assume that each disassembly operation time 

𝐺(𝑖) and setup time 𝑆𝑇(𝑖)  are 𝐷~𝑈(1,4) and 𝐷~𝑈(10,20), respectively for all 𝑖 ∈ 𝒜𝐶 . The 

total disassembly capacity, 𝑈(𝑡) and disassembly capacity on overtime, 𝐹(𝑡) are generated 

according to 𝐷~𝑈 (240,480), 𝐷~𝑈 (60,120), respectively. 

According to the real-life case, we assume that the costs of purchase new items are greater in 

front the unit cost of disassembling (setup and holding costs) and disposal of items issued from 

the disassembly process. Two parameters γ, β ∈ ℝ+ are introduced to fix the units sale and 

purchase costs, where 𝛾 and β represent the profit margin and margin compared to cost generated 

by the disassembly process, respectively. It has been assumed in this example that 𝛾 to 1.5 and β 

to 1.8. 

 

Table 2: Values costs generation 

Parameters Value 

𝐻(𝑖) 𝐷~𝑈 (12,20) 

𝑆(𝑖) 𝐷~𝑈 (0,1500) 

𝐴(𝑖) 2 × 𝐻(𝑖) 

𝐸(𝑖) 𝐷~𝑈 (15,30) 

𝑂(𝑡) 𝐷~𝑈 (20,25) 

𝑆𝐶(𝑖) γ × (𝐻(𝑖) + 𝑆(𝑖) + 𝐸(𝑖)) 

𝐶(𝑖) 𝛽 × (𝐻(𝑖) + 𝑆(𝑖) + 𝐸(𝑖))  
 

 

 

 Impact of capacity time   

The total costs composition in table 3 shows that larger capacity leads to larger total cost. In 

fact, larger capacity is preferred in terms of operational costs (larger sales and smaller external 

procurement as shown in Fig 3). A few capacities limit the productivity within a minimum 

disassembly quantity, larger overload and external procurement costs. 

 

Table 3: Impact of capacity time on the total cost and cost items 

𝑼 Total cost Sale 

cost 

Procurement 

cost 

Holding 

cost 

Backlogging 

cost 

Setup 

cost 

Overload 

cost 

240 151361.203 185759 6075 2757 3690 2900 18975 

320 166022.906 186417 5285 3831 3778 2700 4800 

400 175416.703 189577 1495 4273 5392 3000 0 

480 176027.297 190135 825 4664 5618 3000 0 

 

However, when capacity is relatively small, managers have no alternative but to satisfy a part of 

the requirements by external procurements. Extremely, excessively small capacity and small 



extra capacity causes infeasibility. However, managers should also balance the trade-off between 

higher capacity investment, lower operational costs and larger of sales.  

 

  

Fig 3: Disassembly quantity under different capacity value  

 

 Impact of procurement cost  

To know until which cost of purchase it is profitable to satisfy the demands of components by 

disassembling the end-of-life products, we fix the profit margin 𝛾 to 1.5 and we vary the ratio 

𝛾 𝛽⁄  between 10−3 and 103. Then, the quantities resulting from the disassembly and the external 

purchases to satisfy the external demands as function of the ratio 𝛾 𝛽⁄  are obtained in Fig 4. 

 

Table 4: Impact of procurement cost on the total cost and cost items 

𝛾 𝛽⁄  Total cost Sale 

cost 

Procurement 

cost 

Holding 

cost 

Backlogging 

cost 

Setup 

cost 

Overload 

cost 

10−3 560320.563 1217587 586498 11583 12584 22000 24600 

10−2 1082298.000 1217555 61800 14088 12670 21999 23680 

10−1 1119148.000 1215053 31200 10943 8638 23000 22125 

1 1157070.000 1211201 6971 3448 5612 24000 14100 

10 1164231.375 1197201 2095 4951 6498 18000 1425 

10 2 1169190.125 1197934 201 6256 6586 10000 700 

10 3 1164578.875 1198088 17 8636 5904 17000 700 

 

Economically speaking, to satisfy the external demand, the quantity from disassembly operation 

decreases as function of the ratio 𝛾 𝛽⁄ . Further, the external demand should be satisfied by the 

disassembly operation if the value of γ compared to the value of β is sufficiently high to cover 
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all disassembly costs. Indeed, low disassembly quantities favor the purchase decision because it 

generates only small profits. 

In other words, the choice between buying and disassembling depends on economic 

considerations, i.e. the quantity resulting from disassembly depends on the purchasing cost (see 

table 4)  

 

 

Fig 4: Disassembly quantity under different procurement cost  

 

 Impact of sale cost  

To compute to identify the right business model, we fix 𝛽 to 1.8 and we vary the profit margin  

𝛾 . As shown in Table 5, total and sale costs sharply increase when the profit margin becomes 

larger. 

 

Table 5: Impact of sale cost on the total cost and cost items 

𝛾 Total cost Sale cost Procurement 

cost 

Holding 

cost 

Backlogging 

cost 

Setup 

cost 

Overload 

cost 

0.5 528530.875 589823 23339 6346 7532 20500 3575 

1 1127389.000 1187951 8395 5496 6994 24500 15175 

1.5 1718149.375 1782815 7327 2566 7296 31000 16475 

 

Fig 5 describes the distribution of the quantities resulting from the disassembly and external 

purchase to satisfy the external demands over the planning horizon under different profit margin. 

When profit margin is relatively large, the optimal solution tends to disassemble so that it can 

increase the sale cost. This implies that the proposed model finds the optimal solution while 

considering the trade-offs between the relevant costs.  
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Fig 5: Disassembly quantity under different sale cost  

5.2 Performance tests 

To show the performance of the proposed mixed integer linear programming model more 

generally, a number of randomly generated test problems are solved and the test results are 

reported in this section. The performance measures used are: 

 The numbers of optimal solutions obtained by CPLEX, 

 The percentage deviations from optimal solution (Note that the percentage deviations can 

be obtained directly from CPLEX), 

 The computation times in seconds required to obtain optimal solutions, CPU(s)  

The computational tests were done on 750 randomly generated instances consist of 50 problems 

for each combination of five levels of the number of items (10, 20, 30, 40 and 50) and three levels 

of the number of the periods (10, 20, and 30). For each level of the number of items, 10 

disassembly product structures (and hence totally 50 structures) were randomly generated. In the 

disassembly structures, the number of child items for each parent and its yield were generated 

from 𝐷~𝑈 (3, 6) and 𝐷~𝑈 (1, 3), respectively. Here, 𝐷~𝑈 (𝑎, 𝑏) is the discrete uniform 

distribution with [a, b]. Disassembly lead times were set to 0 and 1 with probabilities 0.3 and 0.7 

respectively.  The different instances of parameters are generated in the same manner as Section 

5.1.  

Table 7 summarizes the numbers of optimal solutions (obtained from CPLEX) and the percentage 

deviations from optimal solutions (or lower bound). As can be seen from the table 7, all the 
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problems are solved optimally. The percentage deviations from the optimal solutions were within 

0 per cent on average, which means that the CPLEX gives the optimal solution for all the product 

structure. 

Table 7: Performance of the Mixed Integer linear Programming model 

(a) Problem with 10 items 

Number of periods 

Structure 

 

10 20 30 

Nopt
*  Gap+ Nopt

*  Gap+ Nopt
*  Gap+ 

1 50 0.00 50 0.00 50 0.00 

2 50 0.00 50 0.00 50 0.00 

3 50 0.00 50 0.00 50 0.00 

4 50 0.00 50 0.00 50 0.00 

5 50 0.00 50 0.00 50 0.00 

6 50 0.00 50 0.00 50 0.00 

7 50 0.00 50 0.00 50 0.00 

8 50 0.00 50 0.00 50 0.00 

9 50 0.00 50 0.00 50 0.00 

10 50 0.00 50 0.00 50 0.00 

Mean 50 0.00 50 0.00 50 0.00 

(b) Problem with 20 items 

Number of periods 

Structure 

 

10 20 30 

Nopt
*  Gap+ Nopt

*  Gap+ Nopt
*  Gap+ 

1 50 0.00 50 0.00 50 0.00 

2 50 0.00 50 0.00 50 0.00 

3 50 0.00 50 0.00 50 0.00 

4 50 0.00 50 0.00 50 0.00 

5 50 0.00 50 0.00 50 0.00 

6 50 0.00 50 0.00 50 0.00 

7 50 0.00 50 0.00 50 0.00 

8 50 0.00 50 0.00 50 0.00 

9 50 0.00 50 0.00 50 0.00 

10 50 0.00 50 0.00 50 0.00 

Mean 50 0.00 50 0.00 50 0.00 

(c) Problem with 30 items 

Number of periods 

Structure 

 

10 20 30 

Nopt
*  Gap+ Nopt

*  Gap+ Nopt
*  Gap+ 

1 50 0.00 50 0.00 50 0.00 

2 50 0.00 50 0.00 50 0.00 

3 50 0.00 50 0.00 50 0.00 

4 50 0.00 50 0.00 50 0.00 

5 50 0.00 50 0.00 50 0.00 

6 50 0.00 50 0.00 50 0.00 

7 50 0.00 50 0.00 50 0.00 

8 50 0.00 50 0.00 50 0.00 

9 50 0.00 50 0.00 50 0.00 



10 50 0.00 50 0.00 50 0.00 

Mean 50 0.00 50 0.00 50 0.00 

(d) Problem with 40 items 

Number of periods 

Structure 

 

10 20 30 

Nopt
*  Gap+ Nopt

*  Gap+ Nopt
*  Gap+ 

1 50 0.00 50 0.00 50 0.00 

2 50 0.00 50 0.00 50 0.00 

3 50 0.00 50 0.00 50 0.00 

4 50 0.00 50 0.00 50 0.00 

5 50 0.00 50 0.00 50 0.00 

6 50 0.00 50 0.00 50 0.00 

7 50 0.00 50 0.00 50 0.00 

8 50 0.00 50 0.00 50 0.00 

9 50 0.00 50 0.00 50 0.00 

10 50 0.00 50 0.00 50 0.00 

Mean 50 0.00 50 0.00 50 0.00 

(e) Problem with 50 items 

Number of periods 

Structure 

 

10 20 30 

Nopt
*  Gap+ Nopt

*  Gap+ Nopt
*  Gap+ 

1 50 0.00 50 0.00 50 0.00 

2 50 0.00 50 0.00 50 0.00 

3 50 0.00 50 0.00 50 0.00 

4 50 0.00 50 0.00 50 0.00 

5 50 0.00 50 0.00 50 0.00 

6 50 0.00 50 0.00 50 0.00 

7 50 0.00 50 0.00 50 0.00 

8 50 0.00 50 0.00 50 0.00 

9 50 0.00 50 0.01 50 0.00 

10 50 0.00 50 0.00 50 0.00 

Mean 50 0.00 50 0.00 50 0.00 
 

Nopt
*: Number of problems (out of 50 problems) that solved optimally. 

Gap+: Percentage deviation from the optimal solution (averaged over 50 problems for each product structure). 

 

The test results summarized in Tables 8 represents the minimal, average and maximal values of 

the CPU(s) required by CPLEX. It can be seen from this table that the new mixed-integer linear 

programming model can gives the optimal solution for all the test problems within a reasonable 

amount of computation time. In fact, its CPU(s) do not exceed 42.16 in average. In summary, it 

can be concluded that the new MILP suggested in this paper can give the optimal solutions of 

the practical-sized problems within very short computation times. However, CPU time mainly 

depend on the problem data, such as disassembly structure, capacity time, cost values, etc. 

 

 



 

 

Table 8: CPU seconds of the new mixed integer linear programming model  

(a) Problem with 10 items 

  Number of periods  

Structure 

 

10 20 30 

Min (Mean, Max) Min (Mean, Max) Min (Mean, Max) 

1 0,125(0.324,0.547) 0.15(0.18,0.22) 0,24(0.47,1.15) 

2 0,092(0.134,0.617) 0.09(0.15,0.51) 0,46(0.57,1.95) 

3 0,152(0.724,0.923) 0.09(0.15,0.51) 0,11(0.47,0.55) 

4 0,112(1.934,1.297) 0.19(0.20,0.43) 0,34(0.47,1.25) 

5 0,089(0.564,0.946) 0,12(0.35,0.51) 0,13(1.07,2.12) 

6 0,142(0.974,1.226) 0,29(0.31,0.40) 1,34(1.47,3.25) 

7 0,092(0.589,0.932) 0,09(0.25,0.31) 0,29(0.77,3.59) 

8 0,252(0.886,1.023) 0,19(0.88,0.92) 0,34(0.47,1.25) 

9 0,122(0.798,0.973) 1,29(1.31,1.51) 1.04(1.07,2.95) 

10 0,152(0.724,1.563) 0,09(0.24,0.50) 3,23(3.97,5.25) 

(b) Problem with 20 items 

  Number of periods  

Structure 

 

10 20 30 

Min (Mean, Max) Min (Mean, Max) Min (Mean, Max) 

1 0,35 (0.53, 1.15) 0,42 (0.61, 1.21) 9.68 (10.87, 16.15) 

2 1,05 (1.93, 4.95) 3,02 (4.51, 8.91) 11.16 (13.18, 19.25) 

3 1,56. (2.03, 3.95) 1.22 (2.90, 3.81) 10.86 (11.68, 15.25) 

4 0,95 (1.63, 2.05) 1,92 (3.11, 6.91) 12.08 (15.75, 18.95) 

5 0,22 (0.23, 0.45) 3.02 (3.51, 5.91) 9.16 (11.18, 19.25) 

6 0,93 (1.53, 5.15) 2,92 (2.91, 6.16) 15. 76 (19.86, 29.56) 

7 2,15 (2,93, 3.95) 0,92 (1.80, 5.98) 16.68 (18.28, 19.25) 

8 0,85 (1,13, 2.05) 1,92 (2.01, 9.92) 10.38 (11.67, 16.37) 

9 0,77 (0,93, 3.15) 0,42 (0.61, 1.21) 9.16 (11.98, 12.35) 

10 1,05 (1,56, 3.92) 4.46 (5.01, 6.22) 9.06 (10.87, 14.56) 

(c) Problem with 30 items 

  Number of periods  

Structure 

 

10 20 30 

Min (Mean, Max) Min (Mean, Max) Min (Mean, Max) 

1 3.43 (3.718, 6,98) 9.63(10.38, 11.71) 16.69 (16.84, 23.51) 

2 6.03 (6.62, 8,62) 9.23(9.87, 15.89) 12.03 (15.64, 20.61) 

3 5.03 (6.82, 8,42) 9.23(11.18, 13.51) 8.03 (11.14, 15.01) 

4 9.03 (9.82, 12,42) 7.13(9.35, 19.70) 9.19 (14.04, 23.51) 

5 2.62 (2.93, 9.35) 9.15(10.08, 15.11) 15.23 (16.84, 29.85) 

6 3.13 (3.18, 6,08) 8.60(9.25, 15.21) 15.58 (16.14, 19.61) 

7 5.93 (6.74, 8,25) 6.31(10.74, 14.02) 10.05 (10.64, 19.11) 

8 5.83 (5.78, 11,68) 9.63(11.38, 15.71) 15.74 (19.64, 20.61) 

9 3.13 (4.02, 8,42) 10.30(11.28, 15.71) 13.03 (17.62, 19.60) 

10 4.33 (4.78, 5,45) 9.74(10.28, 12.25) 22.74 (25.14, 28.51) 

 



 

 

(d) Problem with 40 items 

  Number of periods  

Structure 

 

10 20 30 

Min (Mean, Max) Min (Mean, Max) Min (Mean, Max) 

1 9.65 (6.83, 9.92) 19.09 (19.88, 23.46) 21.06 (23.88, 25.34) 

2 10.82 (11.33, 16.42) 12.65 (15.83, 19.92) 20.52 (25.52, 26.02) 

3 8.02 (10.23, 15.22) 11.12 (12.88, 13.46) 27.89 (28.89, 29.04) 

4 7.79 (9.19, 12.04) 15.01 (16.30,20.02) 12.60 (13.83, 25.92) 

5 7.22 (8.48, 10.42) 10.52 (15.52, 16.02) 25.08 (25.68, 29.73) 

6 10.01 (11.30, 15.02) 13.9 (16.35, 19.42) 19.01 (26.30,30.02) 

7 8.03 (16.58, 19.20) 15. 95(18.85, 21.40) 24.05 (20.60, 26.74) 

8 9.02 (9.33, 10.40) 19.9 (26.35, 29.42) 28.93 (30.58, 39.21) 

9 13.9 (16.35, 19.42) 17.89 (19.09, 22.24) 29.73 (30.58, 39.21) 

10 11.82 (12.33, 15.10) 18.45 (19.87, 20.40) 23.056 (23.608, 18. 34) 

(e) Problem with 50 items 

  Number of periods  

Structure 

 

10 20 30 

Min (Mean, Max) Min (Mean, Max) Min (Mean, Max) 

1 12,703 (12,99, 23,96) 15,84 (16,50, 18,40) 30,10 (32,53, 38,90) 

2 10,89 (11,71, 22,21) 17,96 (18,87, 20,62) 27,24 (30, 36, 33,25) 

3 15,18 (16,99, 18,96) 19,64 (19,90, 20,09) 31,12 (31,93, 32,25) 

4 10,45 (13,45, 15,82) 18,36 (21,42, 24,68) 29,98 (31, 56, 32,35) 

5 11,92 (12,72, 18,32) 16,41 (18,12, 20,35) 25,87 (29, 55, 35,12) 

6 13,76 (20,33, 22,66) 25,94 (26,59, 28,25) 40,87 (42, 16, 59,25) 

7 10,36 (11,65, 12,16) 23,15 (26,51, 28,56) 27,32 (28,63, 29,16) 

8 15,19 (16,85, 18,34) 19,12 (20,48, 21,96) 36,28 (39, 26, 42,15) 

9 20,37 (21,19, 22,68) 14,84 (16,50, 18,40) 30,93 (33,74, 36,36) 

10 10,72 (13,96, 15,43) 23,74 (25,95, 28,46) 23,45 (30,68, 34,38) 

 

6 Conclusion 

In this research, we considered the capacitated disassembly planning problem in which we 

determine the timing and the optimal quantity of ordering the end-of-life products to fulfill the 

external demands of individual disassembled items over a given planning horizon. The objective 

is to maximize the profit while minimizing the sum of cost functions which one might encounter 

in practice, such as a setup cost for each non-leaf item, the sum of inventory holding, external 

procurement, disposal, backlogging costs for each non-root items and penalty cost for 

overloading disassembly capacity along time horizon. A new mathematical formulation of R-

MRP model was suggested. It is formulated as a mixed-integer linear programming (MIP) to 

represent and solve optimally the basic case of the problem, i.e. multi-period planning problem, 



single product type and multi-level product structure. Sensitivity analyses on disassembly 

capacity, sale and procurement costs are also conducted, leading to the following useful insights: 

• Expanding the capacity maximize total cost. However, managers should carefully treat the 

trade-off between larger capacity investment, smaller costs and maximum of sales. 

• The choice between buying and disassembling depends on economic considerations 

(procurement and sale costs). 

The test results on a number of randomly generated problems showed that the new MIP model 

can give the optimal solution for all test problems within very short computation times. This 

research can be extended in several ways. First, it is interesting to consider the problem with 

parts commonality and multiple product types. Also, as in other disassembly problems, stochastic 

demands, disassembly lead times and yields are important subjects in disassembly planning 

problems.  
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