

Review of the A1 and A2 values: impact of all radiations on QA and QB

Samuel Thomas, Jeremy Bez, Baptiste Louis

► To cite this version:

Samuel Thomas, Jeremy Bez, Baptiste Louis. Review of the A1 and A2 values: impact of all radiations on QA and QB. 19th international symposium on the packaging and transport of radioactive materials, PATRAM, Aug 2019, NEW ORLEANS, United States. 2019, proceedings of the 19th international symposium on the packaging and transport of radioactive materials. hal-02635761

HAL Id: hal-02635761 https://hal.science/hal-02635761v1

Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Review of the A₁ and A₂ values: impact of all radiations on Q_A and Q_B

S. Thomas¹, J. Bez¹, B. Louis¹ ¹ Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, 92260, France

Introduction

The A₁ and A₂ values of the Q System, described in the advisory material SSG-26, have been developed to provide maximum allowable contents in packages not designed to withstand accidents. Current values were determined in 1996 according to specific scenarios for five exposure pathways. Since then, the ICRP has published revised radiological data. In September 2013, an international group was created to discuss the improvement of calculation methods described in the Q system.

Within this framework, it has been decided to change the current deterministic and empiric method to a more accurate one, based on Monte-Carlo calculations. This evolution allows the working group to be more flexible and to get more accurate results, for instance by taking into account all particles created.

Hereafter are presented the changes in Q_A and Q_B assessments, and the impact on Q_A , Q_B and A_1 values.

Q _A									
Method			Results fo	r some radionucli	des				
	Current approach	New approach		Q _A (IRSN's proposal) (TBq)	Q _A (current) (TBq)	Relative deviation	Contribution of each source of emission : β, γ, neutrons, positrons, discrete electronic radiations		
Radiations	γ only	All radiations (β , γ , neutrons, positron, discrete	Co-60	0.44	0.45	-2%	99 % of the total dose is due to gamma rays		
Type of source	Point source	Point source	Cs-134	0.69	0.69	0%	Consistency between current and new values		
Distance from the source	1 meter	1 meter	Eu-154	0.88	0.90	-2%	R^+ emissions properly taken into account with MC method \cdot		
		Shielding: 0.5 mm of stainless	lr-192	1.37	1.30	5%	 99.6 % of the total dose comes from gamma rays resulting from 		
Shielding	No shielding	steel (316L) (by consistency with Q _B)	F-18	1.09	1.00	9 %	 Interactions between matter and positrons 0.4 % of the total dose comes directly from electronics radiations 		
Target	Whole body	Whole body	Kr-85	333	480	-31%	(electrons/positrons).		
Calculation	Air attenuation	Air and shielding attenuation	Kr-85 source rays:						
method	Exponential formula, with build-up	Monte-Carlo calculations	• lo [•] • 10	 low gamma emission rate: 0.5% of ~500 keV gamma/nuclear transformation 100 % of beta emission/nuclear transformation (average energy: ~250 keV) 					
Dose coefficient	ICRP 51 : effective dose [1]	ICRP 116 : effective dose [2]	Contribution of each radiation for ⁸⁵ Kr case : • SourceP_P: photon dose due to photon emission, i.e. primary photon • SouceBM_P: photon dose due to beta minus emission (interaction ray- matter)						

Q_B

Method

	Current approach	New approach	
Radiations	β only	All radiations (β, γ, neutrons, positron, discrete electronic radiation)	
Type of source	Point source	Point source	
Distance from the source	1 meter	1 meter	
Shielding	Remnant shielding (150 mg/cm²)	Remnant shielding: 0.5 mm of stainless steel (316L)	
Target	Skin	Skin Lens of the eye	
Calculation	Shielding: cf. fig. 1 below	Air and shielding attenuation	
method	Empirical formula	Monte-Carlo calculations (fig. 2)	
Dose coefficient	Cross & al. skin dose coefficients [3] [4]	ICRP 116 skin dose coefficients IRSN skin dose coefficients for photons and neutrons [5]	
HEIDING Fig. 1 : Shieldi	ng factor as a Fig. 2 : More	nte Carlo simulation of a photon	

Results for some radionuclides

Nuclide	Q _{B,skin} (IRSN's proposal) (TBq)	Q _{B,eye} (IRSN's proposal) (TBq)	Q _B (Current) (TBq)
Co-60	2.6	1.1	730
Cs-134	3	1.7	3.6
Eu-154	2.6	2.2	1.6

Contribution of each source of emission: β , γ , neutrons, positrons, discrete electronic radiations

F-18	4.5	2.6	28
lr-192	6	3.4	46

Except for ¹⁸F, over 80% of the dose comes from photon source (SourceP):

- almost half is due to photons (i.e. primary particles, SourceP_P)
- the other part to electrons (i.e. secondary particles, SourceP_E)

It is important to underline that the photon source contribution is not considered in the current Q_B values and tend to legitimate the new WG's philosophy.

Source contribution for the lens of the eye target

For the lens of the eye, almost all of the dose comes from the primary photons (SourceP_P)

MEMBER OF

ET

EUROPEAN TECHNICAL SAFET' ORGANISATIONS

Source contribution for the skin target

For the SSR-6 list of radionuclides, new calculations show that dose to the skin is always limiting

^[1] ICRP, Data for Use in Protection against External Radiation. ICRP Publication 51. Ann. ICRP 17 (2-3), 1987 ^[2] ICRP, Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116, Ann. ICRP 40(2-5), 2010 ^[3] CROSS, W.G., ING, H., FREEDMAN, N.O., WONG, P.J., Table of beta-ray dose distributions in an infinite water medium, Health Phys. 63, 1992 ^[4] CROSS, W.G., ING, H., FREEDMAN, N.O., MAINVILLE, J., Tables of Beta-Ray Dose Distributions in Water, Air, and Other Media, Rep. AECL-7617, Atomic Energy of Canada Ltd, Chalk River, ON, 1982. ^[5] J. Bez, S. Thomas, B. Louis: Review of the A₁ and A₂ values: an overview of the new calculation method, Paper No. 1403, Packaging and Transportation of Radioactive Materials Proceedings of the PATRAM 2019 symposium, New Orleans, LA, USA, 2019