

New determination of the 229Th half-life

Richard Essex, Jacqueline Mann, Ronald Colle, Lizbeth Laureano-Perez, Megan Bennett, Heather Dion, Ryan Fitzgerald, Amy Gaffney, Alkiviadis Gourgiotis, Amelie Hubert, et al.

► To cite this version:

Richard Essex, Jacqueline Mann, Ronald Colle, Lizbeth Laureano-Perez, Megan Bennett, et al.. New determination of the 229Th half-life. Journal of Radioanalytical and Nuclear Chemistry, 2019, 318 (1), pp.515-525. 10.1007/s10967-018-6032-9. hal-02635741

HAL Id: hal-02635741 https://hal.science/hal-02635741v1

Submitted on 27 May 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

1	Manuscript Title Page
2	Special Issue (SI): MARC XI
3	Log Number of Paper: 369
4	Names of authors: Richard M. Essex ¹ , Jacqueline L. Mann ¹ , Ronald Collé ¹ , Lizbeth Laureano-
5	Perez ¹ , Megan E. Bennett ² , Heather Dion ³ , Ryan Fitzgerald ¹ , Amy M. Gaffney ⁴ , Alkiviadis
6	Gourgiotis ⁵ , Amélie Hubert ⁶ , Kenneth G. W. Inn ⁷ , William S. Kinman ³ , Stephen P. Lamont ³ ,
7	Robert Steiner ³ , Ross W. Williams ⁴
8	<u>Title</u> : New determination of the ²²⁹ Th half-life
9	Affiliation and addresses of authors:
10 11	¹ National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8462, Gaithersburg, MD 20899, USA
12	² Shine Medical Technologies, 101 East Milwaukee Street, Janesville, WI 53545, USA
13	³ Los Alamos National Laboratory, Los Alamos, NM 87545, USA
14	⁴ Lawrence Livermore National Laboratory, P.O. Box 808, L-231, Livermore, CA 94551-0808,
15	USA
16 17	⁵ Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 31 avenue de la Division Leclerc, Fontenay-aux-Roses

- ⁶ CEA/DAM-Ile de France, Bruyères-le-Châtel, 91297 Arpajon Cedex, France
- ⁷ K&E Innovations, Ewa Beach, HI 96706, USA
- 20 <u>Corresponding Author</u>: <u>Richard.essex@NIST.gov</u>

21	New determination of the ²²⁹ Th half-life
22	Richard M. Essex ¹ , Jacqueline L. Mann ¹ , Ronald Collé ¹ , Lizbeth Laureano-Perez ¹ , Megan E.
23	Bennett ² , Heather Dion ³ , Ryan Fitzgerald ¹ , Amy M. Gaffney ⁴ , Alkiviadis Gourgiotis ⁵ , Amélie
24	Hubert ⁶ , William S. Kinman ³ , Stephen P. Lamont ³ , Robert Steiner ³ , Ross W. Williams ⁴
25	¹ National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8462,
26	Gaithersburg, MD 20899, USA
27	² Shine Medical Technologies, 101 East Milwaukee Street, Janesville, WI 53545, USA
28	³ Los Alamos National Laboratory, Los Alamos, NM 87545, USA
29	⁴ Lawrence Livermore National Laboratory, P.O. Box 808, L-231, Livermore, CA 94551-0808,
30	USA
31	⁵ Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 31 avenue
32	de la Division Leclerc, Fontenay-aux-Roses
33	⁶ CEA/DAM-Ile de France, Bruyères-le-Châtel, 91297 Arpajon Cedex, France
34	
35	Abstract
36	A new determination of the ²²⁹ Th half-life was made based on measurements of the ²²⁹ Th massic
37	activity of a high-purity solution for which the ²²⁹ Th molality had previously been measured.
38	The ^{229}Th massic activity was measured by direct comparison with SRM 4328C using $4\pi\alpha\beta$
39	liquid scintillation counting, NaI counting, and standard addition liquid scintillation counting.

40 The ²²⁹Th massic activity was confirmed by isotope dilution alpha spectrometry measurements.

41 The ²²⁹Th half-life calculated from the activity measurements is (7825 ± 87) years (k = 2).

42 Key Words

43 ²²⁹Th, half-life, liquid scintillation counting, NaI counting, isotope dilution alpha spectrometry

44 Introduction

The ²²⁹Th isotope is a relatively long-lived nuclide in the ²³⁷Np decay series and primarily occurs 45 as a decay product of 233 U [1]. The isotope decays by α emission to 225 Ra which, in turn, decays 46 to ²²⁵Ac followed by a series of short-lived nuclides to ²⁰⁹Bi (Fig. 1). The ²²⁹Th isotope does not 47 occur in nature making it useful to the environmental and geological sciences where it is used as 48 a yield tracer for thorium α spectrometry [2] and as an isotope dilution mass spectrometry 49 (IDMS) spike for thorium amount measurements [3]. In addition, ²²⁹Th is a source of high-purity 50 ²²⁵Ac for research in nuclear medicine [4] and is being evaluated for use as a high accuracy 51 nuclear clock [5]. The nuclide is particularly important for nuclear forensics where it is used as 52 an IDMS spike for ²³⁰Th "dating" of uranium materials associated with the nuclear fuel cycle. 53 e.g. [6,7]. Due to ongoing interest in the radionuclide, the National Institute of Standards and 54 Technology (NIST) has produced four issues of ²²⁹Th Standard Reference Material (SRM) 55 certified for massic activity (Bq g⁻¹). These standards are SRM 4328 issued in 1984, SRM 56 4328A issued in 1995, SRM 4328B issued in 1996, and SRM 4328C issued in 2008 [8-11]. 57

58

Fig 1. Simplified decay scheme for ²²⁹Th. The uncertainties for the half-lives are standard
uncertainties. Half-life and decay mode data for ²²⁹Th are from [12]. Half-life and decay mode
data for all other isotopes are from [13].

62

To date, four half-life measurements have been published for ²²⁹Th, but these values have been somewhat inconsistent. Hagemann *et al.* [1] published a ²²⁹Th half-life of $(7340 \pm 160)^1$ years as part of a study of the ²³³U decay chain. This value is significantly shorter than subsequent

¹ Uncertainties for values in text are combined standard uncertainties (u_c) unless otherwise indicated with a coverage factor value (k) of 2 or greater for the expanded uncertainties ($U = k u_c$).

measurements ($\approx 7\%$) with the discrepancy attributed to a combination of factors including a 66 biased ²³³U half-life value used to calculate the quantity of ²²⁹Th in the analysis samples, a 67 possible underestimate of ²²⁸Th contributions to ²²⁹Th activity measurements, or ²³³U 68 interference in ²²⁹Th activity measurements [14-15]. Goldstein et al. [14] performed a study to 69 refine the ²²⁹Th half-life value by measuring the molality of ²²⁹Th in a solution with a well-70 characterized massic activity, SRM 4328. The resulting measurement indicated a half-life of 71 (7880 ± 120) years (k = 2). More recently, Kikunaga *et al.* [15] calculated a half-life of (7932 ± 120) 72 55) years (k = 2) based on measured $A(^{233}U)/A(^{232}U)$ and $A(^{229}Th)/A(^{228}Th)$ activity ratios. 73 Finally, Varga et al. [16] measured the molality of the SRM 4328C massic activity standard by 74 IDMS using two different Th spikes. One spike was a commercially prepared natural Th solution 75 [Method A: (7889 ± 32) years] and the second spike was a high purity U material with a 76 calculated quantity of ingrown 230 Th [Method B: (7952 ± 36) years]. The half-lives calculated for 77 each set of IDMS measurements were combined for a reported half-life value of (7917 ± 48) 78 years (k = 2). 79

Fitzgerald et al. [17] describe a massic activity calibration for the ²²⁹Th Master (M) solution used 80 to prepare SRM 4328C. To produce the stock solution for the SRM, an aliquot of the M solution 81 was quantitively diluted by a factor (D_s) of 308.85 ± 0.09. The ²²⁹Th massic activity of the M 82 solution was then measured by live-timed $4\pi\alpha\beta\gamma$ anticoincidence counting. The massic activity 83 of the SRM solution was calculated using the measured massic activity of the M solution and the 84 gravimetrically determined dilution factor. Relative liquid scintillation (LS) counting of the M 85 and SRM 4328C solutions was used to verify the gravimetric dilution factor for the SRM, with 86 the relative difference between the activity ratio and the dilution factor of 0.04 % and a 87 combined standard uncertainty of about 0.4 % in the activity ratio. The calculated activity value 88

89	for the SRM was also confirmed by four additional radioactivity measurement methods,
90	including LS counting with ³ H CIEMAT/NIST efficiency tracing ² , triple-to-double coincidence
91	counting (LS TDCR), $2\pi\alpha$ proportional counting, and α spectrometry.
92	In a separate project, two ampoules of the M solution were combined and diluted by a factor (D_X)
93	of approximately 56.0^3 to produce a new reference material that was characterized for ²²⁹ Th
94	molality (229 Th mol g ⁻¹) and Th isotopic composition [18]. The 229 Th molality of the new
95	reference material was measured by IDMS on a total of 14 sample units in two measurement
96	campaigns. To minimize potential systematic bias, three separate ²³² Th IDMS spike solutions
97	were prepared for the measurements and mass spectrometric analyses were distributed between
98	three different laboratories. The resulting ²²⁹ Th molality value for the reference material solution,
99	(0.11498 ± 0.00008) nmol g ⁻¹ , was verified using the SRM 4342A ²³⁰ Th massic activity standard
100	as an independent IDMS spike.
101	
102	The following describes the determination of the massic activity of the new ²²⁹ Th molality

reference material (referred to here as ²²⁹Th RM) by direct comparison with the SRM 4328C
 massic activity standard and the confirmation of the measured value by isotope dilution alpha
 spectrometry (IDAS). A new value for the ²²⁹Th half-life is calculated from the measured ²²⁹Th
 massic activity and the previously measured ²²⁹Th molality.

² The acronym CIEMAT/NIST refers to the two laboratories that collaborated in developing the protocol for this LS tracing methodology; viz., the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and the National Institute of Standards and Technology (NIST).

³ The dilution factor for the ²²⁹Th RM (D_X) is only used for comparison purposes. During the dilution of the M solution to create the ²²⁹Th RM stock solution, the masses measured on a large-capacity Jupiter 3000 balance appear to be inconsistent with normal operation of the balance. Accordingly, the calculated dilution factor value is an approximation.

107

108 Direct Activity Comparison

A massic activity value for ²²⁹Th in the ²²⁹Th RM was determined by measuring the ratio of 109 relative activities (i.e. activity per gram solution) for the ²²⁹Th RM solution and the SRM 4328C 110 Three counting methods were used to make the relative activity activity standard. 111 measurements. The first method compared the relative LS counting rates for carefully prepared 112 sources of the two solutions. Then, the relative integral photon emission rates of the LS counting 113 sources were directly compared using a NaI(Tl) well counter. Finally, a standard addition LS 114 counting method was used to determine the activity ratio from a series of mixtures of the two 115 reference materials. 116

117 Relative LS Counting

The ²²⁹Th decay series consists of a seven-nuclide-long decay chain (Fig. 1) with an LS 118 efficiency of $> 6.9 \text{ s}^{-1} \text{ Bg}^{-1}$. To achieve accurate results for the comparative LS counting 119 measurements, it is imperative that the two ²²⁹Th solutions are in identical states of radioactive 120 equilibrium and that the solutions were counted with identical detection efficiency. Nearly 121 identical counting efficiency was achieved by gravimetrically determining all of the components 122 in the counting source cocktails to assure similar quenching. Identical radioactive equilibrium is 123 also a reasonable assumption when the history and handling of the solutions are considered. 124 Both ²²⁹Th solutions were prepared from quantitative dilutions of aliquots from the same M 125 solution; both solutions were diluted with 1 mol L⁻¹ HNO₃; and no additional separations or 126 processing were performed on either solution prior to sealing in glass ampoules. Ampoules of 127 both reference materials were opened specifically for the activity measurements performed in 128

April 2017, however, the SRM 4328C solution was prepared, dispensed into ampoules, and sealed in October 2007 while the ²²⁹Th RM was prepared and sealed in March 2012. Although it is not possible to categorically rule out chemical fractionation of the sealed M solution aliquots over the 4.5 year period between preparation of the ²²⁹Th solutions (e.g., preferential adsorption or precipitation of an element in the ²²⁹Th decay chain), there is no *a priori* reason to suspect a difference in the radioactive equilibrium of the two solutions.

Counting sources for high precision LS were prepared from the ²²⁹Th RM and SRM 4328C 135 solutions (Table 1). Two different scintillation fluids were used to create liquid scintillation 136 sources for both ²²⁹Th solutions, Ultima Gold AB⁴ (PerkinElmer, Waltham, MA) and Ecoscint 137 (National Diagnostics, Tampa, FL). Three sources were gravimetrically prepared in 20 mL glass 138 LS vials for each scintillant-²²⁹Th solution combination, resulting in a total of 12 sources. To 139 prepare the sources, aliquots from ampoules of the SRM and ²²⁹Th RM were dispensed using 140 polyethylene aspirating pycnometers with masses measured on an electronic microbalance 141 (AT20, Mettler Toledo, USA). Other cocktail components were weighed with a mechanical 142 analytical balance (Mettler B5, Mettler Toledo, USA). Close matching of the aqueous mass 143 fraction in the sets of cocktails was achieved by the addition of 1 mol L^{-1} HNO₃ to some of the 144 sources. In addition, each cocktail contained approximately 60 mg of di-(2-ethylhexyl) 145 phosphoric acid (DEHPA or HDEHP), (C₈H₁₇O)₂PO₂H, which is a complexing agent. Matched 146 blank sources of similar composition over the same quench range were also prepared for 147 background subtraction. 148

⁴ Certain commercial equipment, instruments, software, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Each source was counted in triplicate on a LS 6500 counter (Beckman Coulter, Fullerton, CA, 149 USA) and on an Accuflex LSC-8000 (Hitachi Aloka Medical Ltd., Tokyo, Japan). Two LS 150 counters were used for this set of experiments to demonstrate that results are independent of the 151 152 operating characteristics of a particular instrument (detection threshold, photomultiplier efficiency, deadtime, amplification, signal conversion, etc.). Individual LS measurements 153 consisted of integrating the entire LS spectrum, and were of sufficient duration to accumulate 154 over 10^6 counts, such that the relative Poisson counting statistics on each was < 0.1 %. In 155 addition to closely matching quenching conditions and cocktail compositions in counting 156 sources, both instruments use quench indicating parameters (QIP) to monitor quenching. The 157 Accuflex LSC-8000 (Counter H) uses the External Standard Channel Ratio (ESCR) quench 158 parameter, which relates quenching to the ratio of two counting windows in the Compton 159 spectrum of ¹³³Ba. The Beckman LS 6500 (Counter B) uses a Horrocks Number (H#) to monitor 160 the quench level, which is based on the downward spectrum shift of the Compton edge of an 161 external ¹³⁷Cs source with increasing quenching in the cocktail. 162

163

LS Source Series	Mass of Scintillant (g)	Mass of ²²⁹ Th Solution Aliquot (g)	Mass of Blank HNO ₃ (g)	Total Mass Cocktail (g)	f _{aq} (%)	Η#
²²⁹ Th RM UGAB	9.850 (3)	0.2039 (9)	0.798 (23)	10.912 (19)	9.18 (19)	89.0 (3)
4328C UGAB	9.852 (1)	0.9909 (10)		10.906 (11)	9.09 (8)	91.2 (5)
²²⁹ Th RM ECOS	8.916 (17)	0.1993 (40)	0.790 (26)	9.969 (42)	9.92 (2)	118.4 (3)
4328C ECOS	8.910 (7)	1.0103 (26)		9.987 (8)	10.12 (2)	121.1 (3)

Table 1 ²²⁹Th RM and SRM 4328C LS source preparation details and characteristics. Each LS Source Series consisted of 3 separately prepared counting sources. UGAB and ECOS refer to the Ultima Gold AB and Ecoscint scintillation solutions, respectively. The values for the masses (g) and aqueous mass fraction f_{aq} (in %) are averages for the three sources in the series with the

values in parentheses representing the standard deviation of the means. *H*# is the average quench
indicating parameter (as measured in Counter B) which is an additional indicator of the close
composition matching.

171

172 **Relative Photon Emission**

As an independent measurement of the ²²⁹Th RM and SRM 4328C activity ratio, relative photon 173 emission rates were measured on the LS sources described above. Six replicate measurements of 174 each source were made on a NaI (Tl) well-type counter (2480 WIZARD2, PerkinElmer, 175 Waltham, MA). The detector crystal is 75 mm in diameter with a height of 80 mm and is 176 shielded with a minimum of 50 mm of lead. A total of 6 trials for each source were measured 177 sequentially, alternating between SRM and ²²⁹Th RM vials and the spectrum for each 178 179 measurement was accumulated for an interval of 10800 s (live time). Stability between trials was monitored with a 1.97 kBg ¹²⁹I check source (Half-life = 1.6×10^7 years). The region from, 180 181 nominally, 20 keV to 2000 keV was integrated to obtain an integral counting rate that was corrected for background. The Poisson counting statistics on any single measurement was 182 approximately 0.13 %. 183

184 **Results for LS and Photon Emission Counting Rates**

The measurement results are provided in terms of grand-means and great-grand-means of the massic count ratios (Table 2). The measured count rates from the LS and NaI(Tl) experiments are proportional to the massic activity of the respective solutions. Therefore, if ²²⁹Th decay chain equilibrium is the same for both solutions, then the ratio of the massic count rates is equivalent to the ²²⁹Th relative activity ratio (A_X/A_S) which, in turn is equivalent of the inverse ratio of M

190	solution dilution factors (D_S / D_X) for the two reference materials. The uncertainty values for the
191	grand-mean massic count ratios in Table 2 are computed precision estimators, equivalent to a
192	standard deviation of the mean $(S_{\bar{x}})$, that consider both the within-source and between-source
193	components of variance. The within-source component is a "typical" (i.e., average) value for the
194	standard deviation of the replicate source measurements and the between-source component is
195	the standard deviation of the mean values for the three sources. The two variance components are
196	combined in quadrature to calculate the standard deviation of the mean for each counter-
197	scintillant combination. Separate great grand-means are calculated for the LS and Na(Tl)
198	measurements with a relative precision estimator calculated as described above.

199

	LS Counters				NaI(Tl) Counter	
Counter	Scintillant	Grand Mean Massic Count Ratio	$S_{ar{\mathrm{x}}}$	Scintillant	Grand Mean Massic Count Ratio	$S_{ar{\mathrm{x}}}$
В	UGAB	5.5186	0.0121		5 5140	0.0142
В	ECOS	5.5199	0.0155	UGAD	5.5148	0.0145
Н	UGAB	5.5216	0.0088	ECOS	5 5202	0.0166
Н	ECOS	5.5301	0.0166	ECUS	5.5303	0.0100
Great G	rand Mean	5.5226	0.0109		5.5226	0.0170

Table 2 Count Ratios of ²²⁹Th RM - SRM 4328C as measured by LS and NaI(Tl) counters.

201 Counters H and B are as described in the text. UGAB and ECOS are as previously defined. $S_{\bar{x}}$ is

a relative precision estimator equivalent to the standard deviation of the mean.

203

Activity Ratio by LS Standard Addition

A LS standard addition experiment was performed using a series of counting sources prepared as scintillation cocktails that contain mixtures of SRM 4328C and the ²²⁹Th RM in varying proportions (Table 3). A total of five standard addition LS sources were prepared using the Ecosint scintillation solution. Aliquots of both SRM 4328C and the ²²⁹Th RM were added to each source but source preparation was, otherwise, as previously described. The LS counting rate (R_c) for the mixtures of the SRM 4328C, with massic activity (A_s), and the ²²⁹Th RM, with massic activity (A_x), can be given by

211
$$R_c = \varepsilon \left(m_S A_S + m_X A_X \right) \tag{1}$$

where m_s and m_x are the respective aliquot masses of the two solutions in the cocktail and where ε is the overall ²²⁹Th decay chain detection efficiency for the mixture in matched cocktails. Simple rearrangement, by normalization of each term in Eq. (1) by m_s , yields a linear function

215
$$\frac{R_c}{m_S} = \varepsilon A_S + \varepsilon A_X (m_X/m_S)$$
(2)

with intercept εA_S and slope εA_X . From a series of matched counting sources with rates R_c for varying m_S and m_X , a linear fit of R_c / m_S as a function of m_X / m_S will determine slope and intercept parameters whose ratio gives A_X / A_S . Additionally, the linear equation, in two independent variables of Eq. (1), can be fit by multiple regression to yield εA_S and εA_X directly. The two calculational approaches give identical results, though extraction of the covariance between εA_S and εA_X from the covariance matrix is easier with multiple regression.

Ten (10) replicate measurements of the five sources were made in both Counter B and Counter H. The counting rates for the sources integrated over the entire LS spectrum ranged from about 520 s^{-1} to 950 s^{-1} . So, a duration of 3600 s was used for the measurements in order to accumulate approximately 1.9 10^6 to 3.4 10^6 integral counts in each spectrum (corresponding to relative Poisson counting statistics of about 0.07 % to 0.05 % for each of the 10 measurements).

Source ID	Mass of Scintillant (g)	Mass of ²²⁹ Th RM Aliquot (g)	Mass of SRM 4328C Aliquot (g)	Mass of Blank HNO ₃ (g)	Total Mass Cocktail (g)	f_{aq} (%)	<i>H</i> # ²
SA1	13.5365	0.076775	1.697757	0	15.3669	11.54	123.5 (5)
SA2	13.5657	0.201698	1.304430	0.2647	15.3962	11.50	123.2 (4)
SA3	13.5808	0.348458	0.995254	0.4289	15.416	11.50	123.6 (4)
SA4	13.5832	0.476746	0.600704	0.6948	15.4124	11.50	122.9 (4)
SA5	13.5711	0.632714	0.327851	0.8073	15.4002	11.48	123.1 (3)

227

Table 3 Standard Addition Source Preparation Details and Characteristics. Mass values have a standard uncertainty of < 0.01 %. *H*# is a quench indicating parameter (as measured in Counter B for *n* = 10 replications) which is an additional indicator of the close composition matching. The values in parentheses represent the numerical values of the standard deviation of the mean for the quoted H#.

233

234 Results for LS Standard Addition Measurement

The standard deviation of the mean for the average of the 10 replicate measurements of a source on Counter B ranged from 0.25 % to 0.37 %, and from 0.060 % to 0.083 % on Counter H. Multiple regressions of the Counter B and Counter H data sets for the R_c (m_X , m_S) twoindependent-variable function of Eq. (3) were performed with the LAB Fit code [19]. Table 4 summarizes the results of these regressions. The ratio A_X/A_S was obtained from the fitted parameters εA_X and εA_S and its relative standard deviation was computed from

241
$$S = \left[\left(\frac{S_X}{A_X} \right)^2 + \left(\frac{S_S}{A_S} \right)^2 - 2 \frac{S_{XS}}{A_X A_S} \right]^{1/2}$$
(3)

where S_X and S_S are the standard deviations on A_X and A_S , respectively, and where S_{XS} is the covariance between A_X and A_S (refer to Table 4). The reduced χ^2 values for the two regressions for v = 3 degrees of freedom were 3.1 and 0.61, with corresponding percentile points of p =

- 245 0.024 and p = 0.61 for Counters B and H data, respectively.
- 246

Quantities	Counter B	Counter H
$\mathcal{E}A_X$	1347.9	1369.4
$\mathcal{E}A_S$	245.57	249.98
S_{X}^{2}	0.08892	0.6583
S_S^{-2}	0.008953	0.03474
$S_{ m XS}$	-0.01646	-0.07668
A_X/A_S	5.4888	5.4780
S	0.0030	0.0067
Grand Mean	Massic Activity Ratio 5.4834	Standard Deviation 0.0087

Table 4 Standard Addition Activity Ratio Measurement Results. The fitted parameters εA_X and εA_S are for the ²²⁹Th RM and SRM 4328C solutions, respectively, with corresponding variances S_X^2 and S_S^2 and covariance S_{XS} . The estimator *S* is the propagated standard deviation of the A_X / A_S massic activity ratio.

251

252

253 Isotope Dilution Alpha Spectrometry

The massic activity of the ²²⁹Th RM was measured on five subsamples that were prepared for IDAS from a single unit of the reference material. This measurement method is independent of the three activity ratio methods and is not reliant upon comparison with SRM 4328C. The IDAS analysis is a nuclide-specific measurement of ²²⁹Th activity so any perturbation of the radioactive equilibrium of the decay chain for the isotope will not bias the measurement results.

Accordingly, the analyses represent a robust verification of massic activity calculated from thepreviously described relative activity measurements.

261	The IDAS analysis samples were prepared by transferring aliquots of the SRM 4342A ²³⁰ Th
262	activity standard to 5 separate beakers as an isotope dilution spike, followed by aliquots of the
263	229 Th RM (Table 5). The masses of the SRM 4342A and 229 Th RM aliquots were measured by
264	difference on XP 205 balance (Mettler, Toledo USA). Approximately 2 mL of 0.4 mol L^{-1}
265	NaHSO ₄ (Fisher Scientific, Hampton, NH) and 2 mL 2 mol L ⁻¹ HNO ₃ were also added to sample
266	beakers which were then refluxed on a hotplate for roughly 1 hour. Additional 2 mol L^{-1} HNO ₃
267	was added to each beaker, as necessary, to yield 10 mL of solution in preparation for ion
268	exchange separation using UTEVA resin (Eichrom Technologies, Chicago, USA). Prior to
269	loading, approximately 1 mg of Zr in a 4 mol L ⁻¹ nitrate solution (SPEX Industries, Metuchen,
270	NJ) was added to each sample to assist in the recovery of Th from the UTEVA columns. The Th
271	was eluted from the columns into a beaker using 20 mL of 6 mol L^{-1} HCl. Approximately 1 mL
272	concentrated H_2SO_4 was added to the samples to break down any organic compounds that may
273	have washed through the UTEVA column during elution and the solution was heated until the
274	sulfuric acid was completely fumed off. Once dry, the samples were cooled and then re-
275	dissolved in 10 mL of 2 mol L^{-1} HNO ₃ . Preparation of the samples for counting on the alpha
276	spectrometer entailed co-precipitation of the Th with $\approx 50 \ \mu g$ of NdF ₃ , (Lindsay Rare Earth
277	Chemicals, West Chicago, IL) in 1 mol L^{-1} HCL and collection of the sample on a 0.1 μ m
278	Metricel filter (Pall Corp. Baltimore, USA). The α -decays from ²³⁰ Th and ²²⁹ Th were counted
279	for approximately 10 ⁶ seconds on an Ortec Octete alpha spectrometer (Ortec, Oak Ridge, USA)
280	with silicon detectors. The measured α activities for ²³⁰ Th and ²²⁹ Th were corrected for peak
281	tailing, background, and decay probability. The ratio of the corrected activities in conjunction

- with the known aliquot weights were then used to calculate the ²²⁹Th massic activity using a
- standard isotope dilution algorithm.

Source ID	²²⁹ Th Aliquot (g)	4342A aliquot (g)	²²⁹ Th corrected counts	²³⁰ Th corrected counts	Massic activity (Bq g ⁻¹)
1A	0.04681	0.23224	201134	208015	195.7
2A	0.03359	0.23442	146521	214837	194.2
3A	0.04935	0.22853	193851	187416	195.5
4A	0.03323	0.21738	121015	160688	201.0
5A	0.03362	0.23496	138180	203920	193.2

Table 5²²⁹Th IDAS sample data. Mass values have a relative standard uncertainty of 0.3 %.

286 **Results from IDAS**

The combined IDAS measurement data indicate a ²²⁹Th massic activity of (195.9 ± 3.2) Bq g⁻¹ (k

= 2) for a measurement date of March 5, 2012. The uncertainty of the measured value is

dominated by the variability of the replicate massic activity measurements (Table 6) with the

uncertainty for solution masses, the SRM 4342A tracer, and peak tail corrections representing

291 minor contributions.

292

Component	Comment	Туре	$u_i \%$
Massic Activity	Standard uncertainty of replicate IDAS measurements of ²²⁹ Th massic activity	А	0.69
Weighing	Estimated relative uncertainty for potential bias in mass of IDAS solution aliquots	В	0.30
Peak Tail	Estimated uncertainty of 229 Th peak tail correction applied to the α count data	В	0.21
²³⁰ Th Spike	Combined standard uncertainty of the massic activity for SRM 4342A	В	0.20
Background	Estimated uncertainty of ²²⁹ Th and ²³⁰ Th background corrections	В	0.04

	Relative combined standard uncertainty (u_c)		0.81 %
	²²⁹ Th Massic Activity (Bq g ⁻¹)	Expanded Uncertainty	r (Bq g ⁻¹)
	195.9	3.2 (Relative: 1.6	%)
293	Table 6 Uncertainty Budget for ²²⁹ Th mas	sic activity by IDAS. The uncertaint	y estimate for the
294	half-life was calculated in accordance with	n Taylor and Kuyatt, [20] and GUM]	protocols [21]
295	using the GUM Workbench software [22].	u_i % represents the relative standard	uncertainty for
296	the listed components. The expanded unce	rtainty ($U = k \times u_c$) for the massic ac	tivity value is the
297	product of the combined standard uncertai	nty (u_c) and a coverage factor (k) , wi	th $k = 2$ to achieve
298	an approximately 95 % level of confidence	2 .	

299 **Discussion**

The physical and analytical linkages between the M solution, SRM 4328C, and the ²²⁹Th RM 300 allow for the measurement of the ²²⁹Th RM massic activity through a direct comparison to SRM 301 4328C (Fig. 2). The three counting methods used to measure the activity ratios of the ²²⁹Th RM 302 and SRM 4328C should yield the same values, within uncertainties. Results from the LS and 303 NaI(TI) relative counting methods are consistent among all three counters and both scintillation 304 cocktails used to prepare the sources (Table 2). The LS standard additions results are also 305 consistent for both LS counters (Table 4) but the relative difference between the standard 306 addition and the relative counting methods (δ) is 0.7 %, while the relative standard deviation for 307 the results of the two standard addition measurements are both approximately 0.16 %. No clear 308 explanation for the apparent discrepancy between the A_X / A_S ratio for the methods has been 309 identified. Firstly, the composition matching of the five standard addition sources dictated nearly 310 identical detection efficiencies across the series. Secondly, the quality of the fits, as reflected in 311 the adjusted R^2 , reduced χ^2 , and F-values (for ANOVA ratio of variances), suggests that there 312

should have been better agreement. The 95.4 % coverage factor on the standard deviation $S_{\rm X}$ and 313 S_S for A_X and A_S is k = 3.31, such that the expanded relative uncertainties kS on A_X / A_S of 0.18 % 314 and 0.40 % are roughly a factor of 2 to 3 smaller than the δ from the A_X / A_S ratio. In the absence 315 of identifiable analytical problems for the three activity ratio measurement methods, the overall 316 317 mean values for each method were averaged to yield a combined activity ratio $(A_X/A_S)_c$ of 5.510 with a standard uncertainty of 0.026. This standard uncertainty is calculated by adding, in 318 quadrature, two variance components. These components are the within-method variability, 319 represented by the typical standard deviation of the mean for the great-grand-means multiplied 320 321 by the Student's T distribution for 2 degrees of freedom (n = 3 measurement methods), and the between-method variability represented by the standard deviation of the 3 activity ratio values. 322

323

324

Fig. 2 Schematic of material and analytical linkages between the M solution, SRM 4328C, and the ²²⁹Th RM. Bold arrows indicate the activity measurement linkages. The lighter arrow indicates direct production of the ²²⁹Th RM from the M solution. Activity values shown in the figure are for the December 31, 2007 reference date of the massic activity value of the M solution. All uncertainties are combined standard uncertainties.

As previously described, the inverse ratio of dilution factors (D_S / D_X) for the two reference

materials should be identical to the 229 Th activity ratio, representing an independent confirmation

of the measured ratio. Although the dilution factor for the ²²⁹Th RM is an approximation, a

calculated D_S / D_X of 5.511 is essentially indistinguishable from the measured activity ratio value

indicating the measured ratio is consistent with the values expected based on preparation of the

reference material from the M solution.

The massic activity of the ²²⁹Th RM solution (A_X) can be calculated (Eq. 4) from the combined activity ratio (A_X / A_S)_c, as described above, and the measured activity of the M solution (A_m) and the dilution factor for production of SRM 4328C stock solution (D_S), as reported in [17].

$$A_X = \frac{A_m \left(A_X / A_S\right)_c}{D_S} \tag{4}$$

The resulting massic activity value for the ²²⁹Th RM is (194.4 ± 1.1) Bq g⁻¹. For comparison, the ²²⁹Th massic activity measured by IDAS can be corrected to the reference date for SRM 4328C (December 31, 2007). The resulting massic activity value is 196.0 Bq g⁻¹ with an expanded uncertainty of 3.2 Bq g⁻¹ (k = 2). The relative difference between the activity measurements is 0.8 % which is well within the 1.6 % relative uncertainty of the IDAS measurement.

The massic activity from Eq. 4 (A_X) and the ²²⁹Th molality (b_X) of (0.11498 ± 0.00008) nmol g⁻¹, as measured for the ²²⁹Th RM in [18], can then be used to calculate a decay constant (λ) for ²²⁹Th but a decay correction for the (4.7 ± 0.25) year interval between the reference dates for the massic activity and the molality measurements (*t*) must also be incorporated into the calculation (Eq. 5).

350

$$\lambda e^{\lambda t} = \frac{A_X}{b_X L} \tag{5}$$

Where *L* is the Avogadro's Constant. This function is solved for the decay constant by numerical iteration, which converges rapidly because of the small magnitude of the exponential term. A half-life (*T*) is then calculated from the decay constant (Eq. 6).

 $T = \frac{\ln(2)}{\lambda} \tag{6}$

The best-fit decay constant for the ²²⁹Th data is 8.858 10⁻⁵ a⁻¹ with a combined standard uncertainty of 0.049 10⁻⁵ a⁻¹ which corresponds to a half-life and expanded uncertainty of (7825 \pm 87) years (k = 2). The uncertainty for the half-life determination is dominated by components from the M solution activity measurement and the measured activity ratio for the ²²⁹Th RM (see Table 7). The uncertainties for the measured molality of the ²²⁹Th RM solution, the SRM 4328C dilution factor, and the decay interval between the SRM reference date and the ²²⁹Th molality measurements represent minor contributions to the overall uncertainty for the half-life.

362

Component	Comment		$u_i \%^2$
Activity Ratio	Standard uncertainty of combined activity ratio measurements from this study	А	0.48
LTAC ²²⁹ Th Activity	Standard Uncertainty of the M solution massic activity	В	0.28
²²⁹ Th Molality	Combined standard uncertainty of the measured ²²⁹ Th molality	В	0.07
Dilution Factor	Standard uncertainty of the dilution factor for production of SRM 4328C from the M solution	В	0.03
Decay Interval	Relative uncertainty associated with the interval between the M solution reference date and molality measurements	В	0.00

	Relative combin	ned standard uncertainty (u_c)	0.56 %
	²²⁹ Th Half-life (a)	Expanded Unc	certainty ³ (a)
	7825	87 (Relative	e: 1.1 %)
363	Table 7 Uncertainty budget for 2	²²⁹ Th half-life determination. The uncerta	unty estimate for the
364	half-life was calculated in accord	dance with Taylor and Kuyatt, [20] and C	SUM protocols [21]
365	using the GUM Workbench soft	ware [22]. u_i % represents the relative star	ndard uncertainty for
366	the listed components. The expan	nded uncertainty $(U = k \times u_c)$ for the half-	-life value is the product
367	of the combined standard uncerta	ainty (u_c) and a coverage factor (k) , with	k = 2 to achieve an
368	approximately 95 % level of con	ifidence.	
369	The ²²⁹ Th half-life measured in t	his study is largely consistent with previo	ous determinations (Fig.
370	3) with the exception of the first	published half-life for the isotope presen	ted in Hagemann et al.
371	[1]. As previously discussed, the	e value from Hagemann et al. is significan	ntly shorter than
372	subsequent half-life measuremen	nt and is probably erroneous. The presen	t half-life measurement
373	is consistent with the published l	half-life reported by Goldstein et al. [14]	but is only marginally
374	consistent with the values of Van	rga, <i>et al.</i> [16] and Kikunaga <i>et al.</i> [15] as	s indicated by
375	overlapping expanded uncertaint	ty envelopes. Pommé [23] noted that disc	repancies between half-
376	life measurements for the same r	nuclide are common and speculated that a	a major cause for the
377	apparent differences is underesti	mated measurement uncertainty. It is no	t possible to assess the
378	uncertainty cited by Hagemann a	et al. [1] and the uncertainty cited by Gol	dstein et al. [14]
379	appears to be reasonably conserv	vative. The uncertainty of the half-lives fi	rom Kikunaga <i>et al</i> .
380	[15] and Varga <i>et al.</i> [16], howe	ver, may be underestimated.	

381

Previously Published Half-lives

♦ Half-life From This Study

²²⁹Th Half-Life Values

382

7300

7100

6900

Fig. 3 Reported half-lives for ²²⁹Th. Error bars are expanded uncertainties (k = 2).

Kikunaga et al. measured the half-life by an indirect method based on known ingrowth periods 384 for Th in a high purity ²³³U material that also contains a small proportion of ²³²U. In their study, 385 the measured α count ratios of $A(^{233}\text{U})/A(^{232}\text{U})$ and $A(^{229}\text{Th})/A(^{228}\text{Th})$ and the half-lives of ^{232}U 386 and ²²⁸Th were used to calculate a ²²⁹Th half-life without the necessity of measuring the absolute 387 amount or activity for the nuclide. Accordingly, their calculations are highly sensitive to the 388 ²²⁸Th half-life and the measured ²²⁹Th to ²²⁸Th count ratio, for which they indicate an average 389 uncertainty of 0.2 %. The ²²⁸Th half-life appears to be well constrained [21], and Kikunaga, et 390 al. addressed potential sources for significant bias in their data such as corrections for 391 background and interferences in the α spectra. However, the combined alpha spectra for ²²⁹Th 392 and ²²⁸Th are complex and there is potential that their choice of region-of-interest for the 393

nuclides, the magnitude of applied corrections, and/or uncertainties in decay data for the nuclides
could result in a bias that is not covered by the 0.15 % relative "systematic" uncertainty cited for
their measurements.

Varga et al. [13] provided detailed uncertainty budgets for each of the measurement methods 397 used for their half-life determination (Methods A and B). The uncertainties for each method is 398 399 dominated by the Type B uncertainties for SRM 4328C massic activity. Three replicates of the ²²⁹Th molality measurement were performed for each method but no variability component 400 associated with the replicate IDMS measurements was specified. Varga et al. then combined the 401 402 two measured half-lives to obtain a weighted mean value of 7917 years with an expanded 403 uncertainty of only 48 years (k = 2), despite a 63 year difference in the half-lives for the two methods. It appears that the combined measurement uncertainty did not incorporate a 404 405 component for the variability evident between measurement methods and it is unclear whether the type B uncertainty components shared by the methods were appropriately propagated. 406

407 **Conclusion**

A new measured half-life of (7825 ± 87) years (k = 2) is reported for ²²⁹Th. This value is based 408 on the previously determined ²²⁹Th molality of a new thorium IDMS reference material and the 409 detailed characterization of the massic activity value for the reference material, presented here. 410 The measured massic activity is tied directly to the SRM 4328C activity standard through 411 multiple replicate activity ratio measurements using three independent methods and was also 412 independently confirmed by IDAS measurements. This new ²²⁹Th half-life measurement is 413 between 0.7 % and 1.4 % shorter than other modern half-life determinations but is otherwise 414 consistent with these values (overlapping uncertainties at the 95 % level of confidence). 415

416 Acknowledgements

417 Project activities at NIST were supported by the United States Department of Homeland418 Security.

419 **References**

- 1. Hagemann F, Katzin L I, Studier M H, Seaborg G T, Ghiorso A (1950) The 4n + 1
- 421 radioactive series: The decay products of U^{233} *. Phys Rev. 79(3):435-443
- 422 2. de Lavison P, Husband L J, Jerome S M, Keightley J D, Woodman A P, Woods D H,
- 423 Woods S A (2000) The standardization of the 229 Th for an environmental yield tracer. Appl
- 424 Rad Iso. 53:243-249
- 425 3. Aggarwal S K (2016) A review on the mass spectrometric analysis of thorium. Radiochim
 426 Acta, 104 (7):445-456.
- 427 4. Apostolidis C, Molinet R, Rasmussen G, Morgenstern A (2005) Production of Ac-225 from
- 428 Th-229 for targeted alpha therapy. Anal Chem. 77:6288-6291
- 429 5. Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V, Derevianko A
- 430 (2012) A Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place. Phys Rev
 431 Lett. 108 (120802):1-5
- 432 6. Lamont S P, Hall G J (2005) Uranium age determination by measuring the ²³⁰Th/²³⁴U ratio.
 433 Radioanal Nuc Chem. 264:423-427
- 434 7. Williams R W, Gaffney A M (2011)²³⁰Th-²³⁴U model ages of some uranium standard
- 435 reference materials. Proc Radiochim Acta, 1:31-35

436	8.	NBS (1984) Standard Reference Material 4328 Radioactivity Standard, National Bureau of
437		Standards, Gaithersburg, MD, certificates available at https://www.nist.gov/srm
438	9.	NIST (1995) Standard Reference Material 4328A Thorium-229 Radioactivity Standard,
439		National Institute of Standards and Technology, Gaithersburg, MD, certificate available at
440		https://www.nist.gov/srm
441	10.	NIST, (1996) Standard Reference Material 4328B Thorium-229 Radioactivity Standard,
442		National Institute of Standards and Technology, Gaithersburg, MD, certificate available at
443		https://www.nist.gov/srm
444	11.	NIST (2008) Standard Reference Material 4328C Thorium-229 Radioactivity Standard,
445		National Institute of Standards and Technology, Gaithersburg, MD, certificate available at
446		https://www.nist.gov/srm
447	12.	Tuli J K (2011) Nuclear Wallet Cards, Nation Nuclear Data Center,
448		https://www.nndc.bnl.gov. Accessed 1 Jan 2018
449	13.	BIPM (2013) Monograph 5: Table of Radionuclides, 7-A:14-245.
450	14.	Goldstein S J, Murrell M T, Williams R W (1989) Half-life of ²²⁹ Th. Phys Rev C. 40(6):
451		2793-2795.
452	15.	Kikunaga H, Suzuki T, Nomura M, Mitsugashira T, Shinohara A (2011) Determination of
453		the half-life of the ground state of ²²⁹ Th by using ²³² U and ²³³ U decay series. Phys Rev C.
454		84 (014316): 1-6
455	16.	Varga Z, Nicholl A, Mayer K, (2014) Determination of the ²²⁹ Th half-life. Phys Rev C. 89
456		(064310): 1-6

457	17.	Fitzgerald R, Collé R, Laureano-Pérez L, Pibida L, Hammond M M, Nour S, Zimmerman
458		B E (2010) A new primary standardization of ²²⁹ Th. Appl Radiat Iso. 68:1303-1308
459	18.	Essex R M, Mann J L, Williams R W, Kinman W S, Hubert A, Bennett M E, Alkiviadias G
460		(2018) A new thorium-229 reference material. Appl Rad Iso. 134:23-31
461	19.	da Silva W, da Silva C P (2011) Lab Fit Curve Fitting Software. Universidade Federal de
462		Campina Grande, Campina Grande, Brazil, zeus.df.ufcg.edu.br/labfit/.
463	20.	Taylor B N, Kuyatt C E (1994) Guidelines for Evaluating and Expressing the Uncertainty
464		of NIST Measurement Results: NIST Technical Note 1297. National Institute of Standards
465		and Technology, Gaithersburg, MD
466	21.	JCGM (2008) Evaluation of measurement data — Guide to the expression of uncertainty in
467		measurement. JCGM 100, (E/F).

- 468 22. Metrodata GmbH, (2009) GUM Workbench. Weil am Rhein, Germany.
- 469 23. Pomme S (2015) The uncertainty of the half-life. Metrologia, 52:S51-S65.