
HAL Id: hal-02635713
https://hal.science/hal-02635713

Submitted on 27 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Critical length and dimension elevation
Carolina Vittoria Beccari, Giulio Casciola, Marie-Laurence Mazure

To cite this version:
Carolina Vittoria Beccari, Giulio Casciola, Marie-Laurence Mazure. Critical length and dimension
elevation. [Research Report] UMR 5224. 2020. �hal-02635713�

https://hal.science/hal-02635713
https://hal.archives-ouvertes.fr


Critical length and dimension elevation

Carolina Vittoria Beccari1, Giulio Casciola1, Marie-Laurence Mazure2

1Dipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Piazza di Porta San Donato
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1 Introduction

The present report is a useful complement to the short note [4] entitled “Dimension elevation is not
always corner-cutting” recently submitted for publication.

We work with kernels of linear differential operators with constant real coefficients. Let Ln =
pn(D) be such an operator of order (n+1), where D stands for the ordinary differentiation and where
the associated characteristic polynomial pn has unit leading coefficient. The (n + 1)-dimensional
space En := kerLn is a W-space on IR, in the sense that, on the whole of IR, no non-zero element
of En can have a zero of multiplicity (n+ 1), or as well, the Wronskian W (U0, . . . , Un) of any basis
(U0, . . . , Un) of En does not vanish on IR. The space En is closed under translation, and therefore
under differentiation. The critical length of En is the number `n ∈]0,+∞] such that En is an
Extended Chebyshev space on [0,h] (for short, EC-space on [0, h]) if and only if h < `n. That En is
an EC-space on [0, h] means that any non-zero element of En has at most n zeros in [0, h], counting
the multiplicities up to (n + 1). Recall that `n = +∞ if and only pn has only real roots. If this
is not true, the explicit calculation of the critical length `n < +∞ is in general not trivial, unless
for specific examples, or very low value of the integer n. Fortunately, it can now be determined
numerically through the procedure developed in [3]. This numerical test will be essential here.

The space En contains the constants if and only if pn(0) = 0. If so, the n-dimensional space
DEn is in turn the kernel of a linear differential operator with constant coefficients. Its critical
length ˜̀n 6 `n is called the critical length for design of the space En. Choose any h < ˜̀

n. Then
En is an EC-space good for design on [0, h], i.e., not only it is an EC-space on [0, h], but it even
possesses a Bernstein basis relative to (0, h), that is, a normalised basis (B0, . . . , Bn) such that, for
i = 0, . . . , n, first Bi vanishes i times at 0 and (n− i) times at h, second it is positive on ]0, h[, see
e.g., [10, 11, 8, 13]. The normalisation property means that

∑n
i=0Bi = 1I, where 1I stands for the

constant function 1I(x) = 1, for all x in any working interval. Any given points P0, . . . , Pn ∈ IRd are
called the Bézier points relative to (0, h) of the function F ∈ End defined by

F (x) =

n∑
i=0

Bi(x)Pi, x ∈ IR . (1)



The polygon [P0, . . . , Pn] is called the control polygon of F on [0, h].

The situation we examine subsequently is the following one:

1I ∈ En ⊂ E?n+2, where E?n+2 = kerL?n+2, with L?n+2 = p?n+2(D). (2)

The previous relations mean that

pn(0) = 0, p?n+2 = pnq2, where q2 is a real polynomial of degree 2. (3)

If q2 has two real roots, say a1, a2 ∈ IR, we can insert an (n + 2)-dimensional space E]n+1 between
En and E?n+2, e.g.,

E]n+1 := kerL]n+1, where L]n+1 = p]n+1(D), with p]n+1(x) = (x− a1)pn(x).

One can then show that the corresponding critical length for design satisfy˜̀
n 6 ˜̀]n+1 6 ˜̀?n+2.

Moreover, on [0, h], with 0 < h < ˜̀
n, the control polygon [P0, . . . , Pn] on [0, h] of a function

F ∈ End is classically transformed into the control polygons on the same interval of the same
function F considered successively as an element of E]n+1

d, E?n+2
d, say respectively [P ]0 , . . . , P

]
n+1],

and [P ?0 , . . . , P
?
n+2]. Each of these transformations is corner-cutting as is well known [16, 15]. More

precisely, there exist real numbers α1, . . . , αn, β1, . . . , . . . , βn+1 ∈]0, 1[, independent of F , such that

P ]i = (1− αi)Pi−1 + αiPi for i = 1, . . . , n, P ?i = (1− βi)P ]i−1 + βiP
]
i for i = 1, . . . , n+ 1,

in addition to the equalities P ?0 = P ]0 = P0, P ?n+2 = P ]n+1 = Pn. Being corner-cutting, this process
is shape preserving: if the initial planar control polygon [P0, . . . , Pn] is convex (resp. monotone in

one direction), so are successively [P ]0 , . . . , P
]
n+1] and [P ?0 , . . . , P

?
n+2].

Consider again the situation (2), but now under the assumption that the roots of q2 are complex

numbers a ± ib, with b > 0. Except in the trivial case where ˜̀n = +∞, no general rule can be
stated for the comparison of the critical lengths for design ˜̀n, ˜̀?n+2. We can encounter any of the

three situations ˜̀n = ˜̀?
n+2, ˜̀n < ˜̀?

n+2, ˜̀n > ˜̀?
n+2, as will be observed in next section. Select-

ing a positive h < min
(˜̀
n, ˜̀?n+2

)
, we investigate the associated dimension elevation procedure

transforming the initial control polygon [P0, . . . , Pn] of any given function F ∈ End into the control
polygon [P ?0 , . . . , P

?
n+2] of the same function F considered as an element of E?n+2

d. There are still

infinitely many ways to insert an (n + 2)-dimensional space E]n+1 between En and E?n+2, but none
is the kernel of a linear differential operator of order (n+ 2) with constant real coefficients. We can
split the investigation into two cases [12]:

1) Suppose that h < min
(
π
b ,
˜̀
n, ˜̀?n+2

)
. In that case, it is possible to select such a space E]n+1 so

that E]n+1 is a W-space, not on the whole of IR, but on [0, h]. The inclusion (2) automatically
guarantees that it is an EC-space good for design on [0, h]. Accordingly, we can again split the
dimension elevation procedure from En to E?n+2 on [0, h], into two elementary dimension elevation

steps on [0, h]: first, from En to E]n+1, then from E]n+1 to E?n+2. As in the previous case, the
procedure is thus shape preserving.

2) Suppose that π
b 6 h < min

(˜̀
n, ˜̀?n+2

)
. Then, among all possible (n + 2)-dimensional spaces

E]n+1 which can be inserted between En and E?n+2, none is a W-space on the interval [0, h]. It
is therefore impossible to split the dimension elevation procedure from En to E?n+2 on [0, h] into
two elementary dimension elevation steps on [0, h].
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Apart from one illustration of the splitting described in case 1), our attention will be entirely
focussed on case 2). The examples presented in next section are some among those which we
have investigated in an attempt to try and conjecture when dimension elevation remains shape
preserving. So far we are not able to state any such conjecture. We considered it useful to give
access to more examples than the very few included in [4] to convince readers that, most of the

time, when h→ min
(˜̀
n, ˜̀?n+2

)−
, the dimension elevation process is no longer shape preserving, and

it may even “explode” far from the initial control polygon.

2 Illustrations

In this section we complement some illustrations shown in [4] concerning the dimension elevation
process (2). As announced in Section 1, we work under the assumption that the roots of the degree
two polynomial q2 involved in (3) are the complex numbers a± ib, where b > 0, on any given interval

[0, h], with of course 0 < h < min
(˜̀
n, ˜̀?n+2

)
. Obviously, this requires the knowledge of the critical

lengths for design ˜̀n, ˜̀?n+2 of the two spaces En,E?n+2, respectively. In most examples, a necessary
preliminary work therefore consisted in determining them, which was done through the numerical
procedure built in [3].

The illustrations were initially planned to help us conjecture when the dimension elevation process
remained shape preserving on the whole of ]0,min

(˜̀
n, ˜̀?n+2

)
[. However the rather many subsequent

examples are also intended to illustrate possible “shape effects” due to the loss of shape preservation.

2.1 Basic example: from polynomial to cycloidal spaces

Our first concern was to get a visual confirmation of our intuition that dimension elevation was
not always shape preserving, and therefore not always corner-cutting. With this in mind, we first
considered the most natural example, that is,

pn(x) = xn+1, p?n+2(x) = (x2 + 1)pn(x).

The initial space En is thus the degree n polynomial space Pn, while the final one E?n+2 is the
(n + 3)-dimension cycloidal space (also sometimes named trigonometric space) spanned by Pn and
the two functions cosx, sinx. This is the most natural example first because it concerns the simplest
possible initial space and the simplest possible polynomial q2, but also because we know the critical
lengths of all cycloidal spaces. These critical lengths have been investigated in several articles [5, 6]
and they were definitively determined in relation with the first positive zeroes of Bessel functions in
[7], see also [1, 3]. In particular, we thus have, in addition to ˜̀2 = π,

˜̀?
3 = ˜̀?

4 = 2π, ˜̀?
5 = ˜̀?

6 ≈ 8.9868, ˜̀?
7 = ˜̀?

8 ≈ 11.5269, . . . (4)

According to case 1) in Section 1, we know that, for any h < π, we can split the dimension
elevation from En to E?n+2 on [0, h] into two elementary dimension elevation steps corresponding to

the insertion of an (n+ 2)-dimensional space E]n+1 between En and E?n+2, chosen so that it will be a

W-space on [0, h]. In order to ensure the symmetry of the intermediate space E]n+1, we define it as

E]n+1 := span(En, U),

where the function U is defined on [0, h] as follows:

U(x) := sinx+ sin(h− x) if n is odd, U(x) := cosx− cos(h− x) if n is even. (5)
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Figure 1: Two-step corner cutting dimension elevation algorithm on [0, h], with h < π, obtained by inserting
E]
n+1 := span(Pn, U) between Pn and E∗

n+2 = span(Pn, cos, sin), with U defined in (5). Here h = 2.

This is illustrated in Fig. 1, with h = 2, and successively n = 2; 3; 4; 5.

In Figure 2, we illustrate Case 2) successively for n = 2; 3; 4; 5; 6. For each value of n, dimension
elevation from the polynomial space En to the cycloidal space E?n+2 is shown on [0, h], with increasing

values of h from π+ to `?−n+1 = ˜̀?−
n+2. As is logical we observe that for h close to π+, we have visual

shape preservation. Oppositely, when approaching ˜̀?n+2, we clearly lose shape preservation, with

similar behaviour depending on the parity of n. Close to ˜̀?n+2, the central (two) point(s) are even
located very far outside the convex hull of the initial control polygon.

2.2 Example 2: ˜̀n < ˜̀?n+2 versus ˜̀n > ˜̀?n+2?

As mentioned in Section 1, any sequence of elementary dimension elevation steps automatically
increases the critical lengths for design. Now, in the previous series of examples we were always
in the situation ˜̀n = +∞ > ˜̀?

n+2. It was therefore necessary to check whether the loss of shape
preservation was attached to the decrease of the critical lengths for design as the dimension increases.
With this in mind, we fixed n = 4 and considered the dimension elevation E4 ⊂ E?6, corresponding
to the characteristic polynomials

p4(x) := x(x2 + 1)2, p6(x) := p4(x)(x2 + b2) for some b > 0.

The space E4 is spanned by the functions 1, cosx, sinx, x cosx, x sinx, and E?6 by E4 and the two
functions cos(bx), sin(bx) if b 6= 1 (resp., x2 cosx, x2 sinx for b = 1). Through the numerical proce-
dure in [3] we obtain: ˜̀

4 ≈ 4.4934.

Since we want to provide illustrations only when

π/b < h < min
(˜̀

4, ˜̀?6), (6)

we will investigate dimension elevation from E4 to E?6 only for values of b > π/˜̀4, that is, in practice
b > 0.7. We first selected a sequence of values of b > 0.7, and for each of them, we applied
the numerical procedure to calculate the critical length for design ˜̀?6, and then investigated the
dimension elevation procedure. The selected values were successively b = 0.7; 0.9; 1.1; 1.5; 2; 3; 6. We
could observe two different behaviours. For b = 0.7; 0.9; 1.1; 1.5, the central final control point P ?3
is immediately attracted towards the central initial control point P2 as h increases, and the process

seems visually shape preserving until min
(˜̀

4, ˜̀?6)−. On the contrary, for b = 2; 3; 6, P ?3 is repulsed
from P2 and we lose shape preservation when approaching the limit for h. Moreover in the latter
case, the “non-shape preservation” effects are quite similar to those shown in Figure 2, line 3. This
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(a) h = 3.15 (b) h = 3.8 (c) h = 4.5

(d) h = 5.6

(e) h = 3.5 (f) h = 5.44 (g) h = 6.7 (h) h = 7.2

(i) h = 4 (j) h = 5.9 (k) h = 7.8 (l) h = 8.9

(m) h = 5 (n) h = 8.9 (o) h = 9.8 (p) h = 10.5

(q) h = 6 (r) h = 8.2 (s) h = 10.8 (t) h = 11.5

Figure 2: For increasing values of n, dimension elevation En ⊂ En+2, where En is the degree n polynomial
space Pn and En+2 is the cycloidal space spanned by Pn and the two functions cos, sin, on [0, h], with

π < h < ˜̀?
n+2. For the values of ˜̀?

n+2, see (4).
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(a) b = 1.5, h = 2.2 (b) b = 1.5, h = 3.5 (c) b = 1.5, h = 4.4 (d) b = 1.5, h = 4.49

(e) b = 2, h = 1.58 (f) b = 2, h = 3.5 (g) b = 2, h = 4.38 (h) b = 2, h = 4.38

(i) b = 3, h = 1.1 (j) b = 3, h = 2.15 (k) b = 3, h = 2.9 (l) b = 3, h = 3.1

(m) b = 6, h = 0.55 (n) b = 6, h = 1 (o) b = 6, h = 1.3 (p) b = 6, h = 1.5

Figure 3: Dimension elevation E4 ⊂ E?
6, with p4 = x(x2 + 1)2, p6(x) = p4(x)(x2 + b2), b>1. We have ˜̀

4 ≈
4.4934 and, from top to bottom, (b, ˜̀?6, π/b) = (1.5, 5.0331, 2.0944); (2, 4.3965, 1.5708); (3, 3.1415, 1.0472);
(6, 1.5247, 0.5236).
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(a) b = 1.92, h = 1.64 (b) b = 1.92, h = 4.2 (c) b = 1.92, h = 4.48 (d) b = 1.92, h = 4.49

(e) b = 1.93, h = 1.63 (f) b = 1.93, h = 4.2 (g) b = 1.93, h = 4.49 (h) b = 1.93, h = 4.492

(i) b = 1.94, h = 1.7 (j) b = 1.94, h = 3.5 (k) b = 1.94, h = 4.45 (l) b = 1.94, h = 4.47

Figure 4: Same as Figure 3, but with, (b, ˜̀?6, π/b) = (1.92, 4.5066, 1.6362); (1.93, 4.4928, 1.6278);
(1.94, 4.4790, 1.6194);

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1

3

5

7

9

11

13

Figure 5: The region π/b < h < min(˜̀4, ˜̀?6) within which we experiment in Figs. 3 and 4.
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Figure 6: The region π/b < h < min(˜̀n, ˜̀?n+2) corresponding to (7). Left: n = 4. Right: n = 5.

can be observed in Figure 3, in which we do not show the values b = 0.7; 0.9; 1.1 which do not provide
any novelty by comparison to the limit final polygon obtained with b = 1.5.

In the caption of Figure 3, for each value of b we indicate the value of π/b and ˜̀?6. It can be

observed that, for b = 1.5, ˜̀?6 > ˜̀4 (this is also true for the smaller values of b) whereas, for b > 2, we

have ˜̀?6 < ˜̀4. This is why in a second step, we refined the experimentation in the interval [1.5, 2], and
more precisely around the value b ≈ 1.93−, numerically determined through the numerical procedure
in [3], for which the equality ˜̀?6 = ˜̀

4 is satisfied. We can see in Figure 4 that the change between
the attraction / repulsion phenomenon is located in between 1.92 and 1.93, and even closer to 1.93:

indeed, in order to observe the loss of shape preservation we had to work with h very close to ˜̀?6.

This experimentation naturally led us to state the following conjecture:

Conjecture: the dimension elevation procedure remains shape preserving for all admissible values of

h if and only ˜̀?6 > ˜̀4.

It can be useful to the reader to see the graph of the critical length for design ˜̀?6 as a function of
the positive parameter b. It is shown in Figure 5, along with the region (6) of the plane (b, h) that
we investigated.

2.3 Example 3: contradict the conjecture

To try and confirm / contradict the previous conjecture we investigated in particular the case:

pn(x) := xn−1(x2 + 1), p?n+2(x) := pn(x)(x2 + b2), with b > 0. (7)

In other words, En is the (n + 1)-dimensional cycloidal space, and E?n+2 is spanned by En and the
two functions cos(bx), sin(bx) if b 6= 1, and x cosx, x sinx if b = 1.

The few examples we considered with n = 3 seemed to visually confirm the conjecture. We then
tried succesively n = 4 and n = 5. In Figure 6 we present the graph of the critical length ˜̀?n+2 as a

function of the positive parameter b and the region π/b < h < min
(˜̀
n, ˜̀?n+2

)
for n = 4; 5. The case

n = 4 is illustrated in Figures 7 and 8. Note that the equality 2π = ˜̀
4 = ˜̀?

6 is obtained for b ≈ 1.545.

For all values of b considered in Figure 7, we have ˜̀4 < ˜̀?
6. Still, visually speaking, we already

lose shape preservation as h increases in the third line of Figure 7, that is, for b = 1.2, thus clearly
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(a) b = 0.75, h = 3.16 (b) b = 0.75, h = 5 (c) b = 0.75, h = 6 (d) b = 0.75, h = 6.28

(e) b = 0.9, h = 3.16 (f) b = 0.9, h = 5 (g) b = 0.9, h = 6 (h) b = 0.9, h = 6.28

(i) b = 1.2, h = 2.7 (j) b = 1.2, h = 5.5 (k) b = 1.2, h = 6 (l) b = 1.2, h = 6.28

(m) b = 1.53, h = 2.3 (n) b = 1.53, h = 5.5 (o) b = 1.53, h = 6 (p) b = 1.53, h = 6.28

Figure 7: Dimension elevation on [0, h] from E4 to E?
6, with p4(x) = x3(x2 + 1) (˜̀4 = 2π), and

p6(x) = p4(x)(x2 + b2). From top to bottom, (b, ˜̀?6, π/b) = (0.75, 9.1503); (0.9, 8.4715); (1.2, 7.3016, 2.6180);
(1.53, 6.3229, 2.0533).
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(a) b = 1.8, h = 1.8 (b) b = 1.8, h = 5 (c) b = 1.8, h = 5 (d) b = 1.8, h = 5.6

(e) b = 1.95, h = 1.62 (f) b = 1.95, h = 4 (g) b = 1.95, h = 5 (h) b = 1.95, h = 5.76

(i) b = 2, h = 1.62 (j) b = 2, h = 4 (k) b = 2, h = 5 (l) b = 2, h = 6.28

(m) b = 2.15, h = 1.48 (n) b = 2.15, h = 3 (o) b = 2.15, h = 4 (p) b = 2.15, h = 4.83

(q) b = 4, h = 0.65 (r) b = 4, h = 0.9 (s) b = 4, h = 2 (t) b = 4, h = 2.25

Figure 8: Same as Figure 7, with, from top to bottom, (b, ˜̀?6, π/b) = (1.8, 5.8156, 1.7453);
(1.95, 5.7633, 1.6111); (2, 6.2827, 1.5708); (2.15, 4.8334, 1.4612); (4, 2.3005, 0.7853).
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(a) b = 0.75, h = 7 (b) b = 0.75, h = 8 (c) b = 0.75, h = 8.7 (d) b = 0.75, h = 8.98

(e) b = 0.95, h = 7 (f) b = 0.95, h = 8 (g) b = 0.95, h = 8.7 (h) b = 0.95, h = 8.98

(i) b = 1.2, h = 6 (j) b = 1.2, h = 7 (k) b = 1.2, h = 7.5 (l) b = 1.2, h = 8

(m) b = 1.5, h = 6 (n) b = 1.5, h = 6.5 (o) b = 1.5, h = 7 (p) b = 1.5, h = 7.4

(q) b = 1.7, h = 5 (r) b = 1.7, h = 6 (s) b = 1.7, h = 7 (t) b = 1.7, h = 7.5

Figure 9: Dimension elevation on [0, h] from E5 to E?
7, with p5(x) = x3(x2 + 1) (˜̀5 = 8.9868), and

p7(x) = p5(x)(x2 + b2). From top to bottom, (b, ˜̀?7, π/b) = (0.75, 10.6131, 4.1888); (0.95, 9.3339, 3.3069);
(1.2, 8.3302, 2.6180); (1.5, 7.6659, 2.0944); (1.7, 8.0270, 1.8480).
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Figure 10: The region π/b < h < min(˜̀4, ˜̀?6), with p6(x) := p4(x)(x2 + b2). Left: p4(x) = x(x2 + 1)(x2 + 9),

for which ˜̀
4 = π. Right: p4(x) = x(x2 + 1)(x2 + 16), for which ˜̀

4 ≈ 1.7108.

contradicting the conjecture. In Figure 8, we always have ˜̀4 > ˜̀?6. In these two figures, we illustrate
what happens for many values of b, for the loss of shape preservation results in many different ways
depending on b. For higher values (see b = 4) we recover shapes more similar to Figure 2, line 3.

In Figure 9 we similarly present several examples for n = 5, confirming again that the conjecture
was false. Indeed, for b = 0.95 we can see that we lose shape preservation in the limit, though˜̀?
7 >

˜̀
5.

2.4 A few additional examples

One of the first examples we investigated was the case E3 ⊂ E?5, with E3 spanned by the functions
1, x, cosx, sinx, and E?5 obtained by “adding” the two functions, x cosx, x sinx, that is p3(x) =

x2(x2 + 1) and p5(x) = x2(x2 + 1)2. In that case we have ˜̀3 = ˜̀?
5 = 2π and the dimension elevation

procedure visually seems shape preserving. However, the initial control polygon [P0, . . . , P3] being
given, it is well known that the corresponding curve in E3 “tends to” the segment [P0, P3] as h
approaches 2π−, and the same holds true with the final control polygon, which does not facilitate
visual appreciation of what happens. On the other hand, we have already encountered examples
for which the initial and final critical lengths for design were equal with no shape preservation close
to them. It was therefore worthwhile considering more examples with same initial and final critical
lengths for design.

Recall that the three spaces respectively spanned by the functions 1, cosx, sinx, cos(2x), sin(2x),
the functions 1, cosx, sinx, cos(3x), sin(3x), and the functions 1, cosx, sinx, cos(2x), sin(2x), cos(3x),
sin(3x), have the same critical lengths for design equal to π, see for instance [3]. This is why we
considered the whole class of dimension elevation procedures attaches to

E4 ⊂ E?6, with p4(x) := x(x2 + 1)(x2 + 9) and p?6 = p4(x)(x2 + b2), (8)

for some positive b. One specific advantage of this class is that, whatever the positive b, we are
always in the situation

π = ˜̀
4 > ˜̀?6. (9)
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Indeed, the non-zero function U ∈ DE?6 defined by U(x) = 3 sinx− sin(3x) vanishes 6 times on [0, π]
since

U(0) = U ′(0) = U ′′(0) = U(π) = U ′(π) = U ′′(π) = 0.

That (9) is true for any b > 0 is confirmed by the graph of the critical length for design ˜̀6 in function
of b shown in Figure 10, left. Some examples of dimension elevation are shown in Figure 11. For
b = 1.5 and h = π−, the curve cannot be distinguished from the segment [P0, P4] nor the points
P ?1 , P

?
2 from P0, and symmetrically for P ?4 , P

?
5 . The procedure seems to remain shape preserving

until the limit, which we could confirm by strongly zooming at P0. All along the horizontal red
segment in Figure 10, left, that it, for b ∈ [1, 2], (for b < 1 we are under the blue hyperbola) the limit
control polygon is similar to the one obtained with b = 1.5 and a convenient zoom at P0 convinced us
that we always have visual shape preservation. We could verify that, as soon as b > 1, this property
is no longer satisfied.

The graph of ˜̀?6 presents two cusps close to each other, the second one being at b = 5. Observe
the difference between the “shape effects” of the non shape preservation at b = 3.5; 4 on the one
hand, and at b = 6; 12 on the other. These values correspond to two different smooth parts of the
curve, see Section 3.

In Figure 10, right, we can see the graph of ˜̀?6 in function of b when replacing p4 in (8) by
p4(x) = x(x2 + 1)(x2 + 16). A few associated dimension elevation illustrations are shown in Figure
12. Here too we can observe different limit behaviours before (b = 7.5) and after the cusp (b = 8; 10).

3 A brief analysis

Subsequently, we provide a simple geometrical understanding of the critical length for design, in
relation with blossoms. It relies on the geometrical approach of EC-spaces, which naturally brings
forward EC-spaces good for design.

3.1 Critical length for design: a geometrical description

Consider an (n+ 1)-dimensional space En ⊂ Cn(I), where I is a given non-trivial real interval, and
we assume that En contains the constants. Select a mother-function Φ := (Φ1, . . . , . . . ,Φn), in the
sense that (1I,Φ1, . . . , . . . ,Φn) is a basis of En. Then, the osculating flat of any order i 6 n at a point
x ∈ I is the affine flat going through Φ(x) and the direction of which is the linear space spanned by
Φ′(x), . . . ,Φ(i)(x). We denote it by Osci Φ(x). The terminology En is an EC-space good for design
was adopted relatively recently. It means that En contains the constants and possesses blossoms,
defined in a geometrical way in terms of osculating flats. This situation, proved to be equivalent to
the fact that DEn is an EC-space on I, was deeply investigated after the initial paper by Pottmann
[16], see for instance [11].

We recall below a very strong result in the geometrical approach of EC-spaces: the proof of the
existence of blossoms can be reduced to the much easier proof of existence of Bézier points, according
to the result recalled in Theorem 3.1 below [9].

Theorem 3.1. Concerning the space En defined above, the following two properties are equivalent:

(1) En is an EC-space good for design on I;

(2) En is a W-space on I and, for any a, b ∈ I, a < b, and any integer i, 1 6 i 6 n − 1, the
osculating flats Osci Φ(a) and Oscn−i Φ(b) have a unique common point.

When (i) is satisfied, for any a, b ∈ I, a < b, the points

{Πi(a, b)} := Osci Φ(a)
⋂

Oscn−i Φ(b) , 0 6 i 6 n, (7)
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(a) b = 1.5, h = 2.5 (b) b = 1.5, h = 3 (c) b = 1.5, h = 3.1 (d) b = 1.5, h = 3.14

(e) b = 3.5, h = 0.9 (f) b = 3.5, h = 1.5 (g) b = 3.5, h = 2 (h) b = 3.5, h = 2.4

(i) b = 4, h = 0.8 (j) b = 4, h = 1.4 (k) b = 4, h = 1.9 (l) b = 4, h = 2.2

(m) b = 6, h = 0.6 (n) b = 6, h = 1 (o) b = 6, h = 1.1 (p) b = 6, h = 1.3

(q) b = 12, h = 0.4 (r) b = 12, h = 0.5 (s) b = 12, h = 0.6 (t) b = 12, h = 0.7

Figure 11: Dimension elevation from E4 to E?
6 on [0, h], with p4(x) = x(x2 + 1)(x2 + 9) (˜̀4 = π) and

p6(x) := p4(x)(x2 + b2), see Figure 10. From top to bottom, (b, ˜̀?6, π/b) = (1.5, π, 1); (3.5, 2.4887, 0.8975);
(4, 2.4188, 0.7853); (6, 1.7245, 0.5235); (12, 0.7678, 0.2617).
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(a) b = 7.5, h = 0.5 (b) b = 7.5, h = 0.8 (c) b = 7.5, h = 1.1 (d) b = 7.5, h = 1.3

(e) b = 8, h = 0.5 (f) b = 8, h = 0.8 (g) b = 8, h = 1.1 (h) b = 8, h = 1.2

(i) b = 10, h = 0.4 (j) b = 10, h = 0.6 (k) b = 10, h = 0.7 (l) b = 10, h = 0.9

Figure 12: Dimension elevation from E4 to E?
6 on [0, h], with p4(x) = x(x2 + 1)(x2 + 16) (˜̀4 ≈ 1.7108)

and p6(x) := p4(x)(x2 + b2), see Figure 10. From top to bottom (b, ˜̀?6, π/b) = (7.5, 1.6239, 0.4188);
(8, 1.3338, 0.3926); (10, 0.9704, 0.3141).
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are the Bézier points of Φ relative to (a, b), with therefore Π0(a, b) = Φ(a), Πn(a, b) = Φ(b), leading
to the expansion (1) of the function Φ in the Bernstein basis relative to (a, b). As is classical, the
Bézier points relative to (a, b) of any F ∈ End are then obtained from those of Φ via affine maps. If
(ii) is not satisfied, given a, b ∈ I, a < b, it may still be the case that the osculating flats Osci Φ(a)
and Oscn−i Φ(b) have a unique common point for some integer i, 1 6 i 6 n− 1. The corresponding
point Πi(a, b) will still be called the ith Bézier points of Φ relative to (a, b). The point Πi(a, b) is well
defined if and only if the n vectors Φ′(a), . . . ,Φ(i)(a),Φ′(b), . . . ,Φ(n−i)(b) are linearly independent
that is, if and only if

∆i(a, b) := det
(

Φ′(a), . . . ,Φ(i)(a),Φ′(b), . . . ,Φ(n−i)(b)
)
6= 0.

Let us now apply Theorem 3.1 to kernels of linear differential operators with constant real
coefficients. On account of the invariance under translation, we can state:

Theorem 3.2. Let pn be a polynomial of exact degree n, with leading coefficient one, with at least one
non-real root, and with pn(0) = 0. Then, the critical length for design ˜̀n of the space En = ker pn(D)
is the minimum positive h for which there exists an integer i, 1 6 i 6 n− 1, such that the ith Bézier
point of a Φ relative to (0, h) is not defined.

In other words, ˜̀n, is characterised by the following two properties:

1) for 0 < h < ˜̀
n, and for 1 6 i 6 n − 1, the Bézier point Πi(0, h) is well-defined; (that is,

∆i(0, h) 6= 0);

2) there exists an integer i, 1 6 i 6 n− 1, such that the Bézier point Πi(0, ˜̀n) does not exist (that

is, such that ∆i(0, ˜̀n) = 0).

The forcefulness of this geometrical description is that the results do not depend on the selected
mother-function Φ, which can therefore be chosen in an appropriate way depending on the expected
result. For instance, suppose that pn is odd or even, which corresponds to the space En being
symmetric, that is, closed under reflection. Then, subject to existence, for i = 1, . . . , n − 1, the
ith Bézier point of Φ relative to (0, h) is the (n − i)th Bézier point of Ψ relative to (0, h), where
Ψ(x) := Φ(h− x). Accordingly, instead of considering all integers 1 6 i 6 n in the above properties
1) and 2), we can limit ourselves to n

2 6 i 6 n− 1. This can be stated as follows.

Corollary 3.3. In the same situation as in Theorem 3.2, assume that pn is either odd or even.
Then, the critical length for design ˜̀n of the space En = ker pn(D) is the minimum positive h for
which there exists an integer i, n

2 6 i 6 n− 1, such that the ith Bézier point of a Φ relative to (0, h)
is not defined.

3.2 Resulting analysis of some illustrations

As already mentioned, our illustrations were initially intended to help us predict in which cases

shape preservation was maintained up to the allowed limit min
(˜̀
n, ˜̀?n+2

)−
. Therefore we have put

emphasis on pointing out the non-shape preservation rather that on the exact behaviour of the final
control polygon when reaching this limit. Through the existing illustrations, we will nevertheless
show what we can visually learn about the critical lengths for design.

With this in view, let us return to our basic example “polynomial spaces included in cycloidal
spaces”, illustrated in Figure 2. Given initial control points P0, . . . , Pn, all final control points
P ?1 , . . . , P

?
n−1 visually seem to behave in a reasonable way, except for

• the central one if n = 2k, that is, P ?k+1;
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Figure 13: Left: ˜̀
4(b) for p4(x) = x(x2 + 1)(x2 + b2) (green curve) and ˜̀?

6(b) for p?6(x) = p4(x)(x2 + 9) (red
curve), see (10).

• the central two ones if n = 2k + 1, that is, P ?k+1, P ?k+2,

these points visibly going to infinity as h reaches ˜̀?−n+2, this being obvious through additional pictures
closer to the limit which are not shown here. According to the various statements in the previous
subsection, we obtain visual evidence of the following result which provides a tangible geometric
interpretation of the results on critical lengths of cycloidal spaces in [5, 6], see Section 3.3 below.

Theorem 3.4. For n > 2, the critical length for design ˜̀?n+2 of the cycloidal space E?n+2 is the
smallest positive h at which the central (two) Bézier point(s) do(es) not exist – or is (are) at infinity
–, while all others do exist. Equivalently, it is the smallest positive value of h for which ∆?

i (0, h) = 0
for i = bn+1

2 c and only for this integer i > (n+ 1)/2.

In all other symmetric examples considered in Section 2, the space E?n+2 depends on a positive

parameter b in function of which we obtained the graph of ˜̀?n+2 = ˜̀?
n+2(b) as a function of b,

determined via the numerical procedure in [3]. In general this graph is composed of several smooth

parts joining by cusps. Given a situation En ⊂ E?n+2, on a given interval for which we have ˜̀n >˜̀?
n+2(b), we can approach ˜̀?n+2(b)− within the segment ]˜̀n, ˜̀?n+2(b)[, and we can therefore visually

conclude which Bézier point(s) do(es) not exist at ˜̀?n+2. From this point of view, the example in
Figure 10, left, will be our reference example. Since n = 4 we only have to read the possible non-
existence of the Bézier points Π?

i (0, h), i = 3, 4, 5, of a mother-function in E?n+2 on the corresponding
points P ?i (0, h), i = 3, 4, 5, of the final control polygon. However we can do that only in the intervals

where ˜̀4 > ˜̀?
6(b), that is, only for b ∈]2,+∞[\{5}. The rightmost pictures in Figure 11 do not

provide a convincing answer, as could be the case if we had gone closer to ˜̀?n+2(b)−.

We cannot derive similar conclusions for b ∈]0, 2] since, on that interval, we have ˜̀?6(b) > ˜̀4. This

is why, in order to know which among the points Π?
i (0, h), i = 3, 4, 5, do not exist for h = ˜̀?

6(b), we
change the initial space E4, now working with

p4(x) = x(x2 + 1)(x2 + b2), p?6(x) = p4(x)(x2 + 9). (10)
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(a) h = 2.2 (b) h = 2.4 (c) h = 3.07 (d) h = 3.14

Figure 14: Dimension elevation procedure corresponding to (10) for b = 1.5

Figure 15: Dimension elevation procedure corresponding to (10), with, b = 1.99 and h = 3.14.

Figure 13 represents again the graph of ˜̀?6(b) (red curve) along with the graph of ˜̀?4(b) (green curve).
In this new situation, we actually have˜̀?

4(b) > ˜̀?6(b) for b ∈]0, 3[\{2}.
In Figure 14, we illustrate the corresponding dimension elevation procedure for b = 1.5 and with

various values of h. We can see that when h approaches π−, the central point P ?3 goes to infinity.
We can therefore conjecture that, along the horizontal red segment b ∈]0, 2[, it is the point Π?

3(0, π)
which does not exist. This is clearly confirmed in Figure 15, with b = 1.99 and h = 3.14. What
happens along the red curve segment b ∈]2, b0[, where b0 < 5 is the first of the two cusps close to each

other, is illustrated in Figure 16. We can thus conjecture that on ]2, b0[, it is the point Π?
5(0, ˜̀?6(b))

which does not exist (or is at infinity). Afterwards, we can see the consistency with Figure 11, (h)
and (l).

We cannot conclude anything about the existence of the Bézier points Πi(0, ˜̀?6(b)) from the
situation (10) for b ∈]b0, 5[, or b > 5. However, concerning these segments we know that we can
conclude from the previous situation (7) addressed in Figure 10, left, and Figure 11. For instance,

for b = 6, given that ˜̀?6(6) ≈ 1.7245, we additionally considered dimension elevation with h = 1.72.

We could then clearly conjecture that, for b > 5, its is again the central point Π?
3(0, ˜̀6(b)) which is

located at infinity, which is consistent with Figure 11, (p) and (t).

3.3 From Bézier points to Wronskians

Theorem 3.2 has provided a silmple geometric understanding of the critical length for design, in
terms of the existence of the Bézier points of any given mother-function. In the same situation, we
will now apply it to a specific one. Let S ∈ En be characterised the conditions

S(0) = S′(0) = · · · = S(n−1)(0) = 0, S(n)(0) = 1.
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(a) b = 2.3, h = 2.9 (b) b = 2.3, h = 2.936 (c) b = 2.95, h = 2.6 (d) b = 2.95, h = 2.639

Figure 16: Dimension elevation procedure corresponding to (10), with, in (a) and (b): (˜̀?6(b), ˜̀?4(b)) =

(2.936+, 2.94+); in (c) and (d): (˜̀?6(b), ˜̀?4(b)) = (2.639+, 2.848+).

Apply the previous statements to the mother-function

Φ :=
(
S, S′, . . . , S(n−1)

)
.

Then, we clearly have:

∆i(0, h) = ± W
(
S′, S′′, . . . , S(n−i)

)
(h), h > 0, 1 6 i 6 n− 1,

The following characterisation readily follows:

Corollary 3.5. With the same data as in Theorem 3.2, the critical length for design ˜̀
n is the

minimum among the positive zeroes of all Wronskians W
(
S′, S′′, . . . , S(k)

)
, 1 6 k 6 n − 1, if any.

This can be reduced to all Wronskians W
(
S′, S′′, . . . , S(k)

)
, 1 6 k 6 n

2 , when pn is either odd or
even.

In particular, translated in terms of Wronskians, our visual Theorem 3.4 says that the critical
length for design ˜̀?n of the (n+ 1)-dimensional cycloidal space E?n (which is also the critical length
of the cycloidal space E?n−1) is the first positive zero of W

(
S′, . . . , S(k)

)
whether n = 2k or n =

2k + 1. Moreover none of the other Wronskians W
(
S′, . . . , S(i)

)
, 1 6 i 6 n

2 , vanishes on ]0, ˜̀?n].
This corresponds to the result proved in [6] for which Theorem 3.4 provides a clear geometric
understanding.

More generally, in each of our examples depending on a positive parameter b, our (not complete)
analysis in terms of Bézier points can be translated in terms of Wronskians to help conjecture which
ones are “active” on each part of the graph of the critical length for design ˜̀?n+2(b).

4 Conclusion

So far, on purpose to facilitate the presentation, we have considered only symmetric spaces, that is
with odd/even pn, and with purely imaginary roots for the degree 2 polynomial q2 such that p?n+2 =
pn q2. However, there is no problem performing the same with non-symetric spaces. We illustrate
this in Figure 17, with the double procedure E2 ⊂ E?4 ⊂ E??6 , where E2 is spanned by the three
functions 1, cosx, sinx, E??6 by E2 and the four functions ex cos(bx), ex sin(bx), e−x cos bx, e−x sin bx,
with b > 0. The intermediate space E?4 is the non-symmetric space spanned by E2 and the two
functions ex cos(bx), ex sin(bx). Sarting from a given symmetric control polygon [P0, P1, P2] we can
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(a) b = 1.6, h = 3 (b) b = 1.6, h = 3.02 (c) b = 2, h = 2.1 (d) b = 2, h = 2.59

Figure 17: Two dimension elevation steps E2 ⊂ E?4 ⊂ E??6 , with p2(x) = x(x2 + 1), p?4(x) =
p2(x)(x− 1− ib)(x− 1 + ib), p??6 (x) = p4(x)(x+ 1− ib)(x+ 1 + ib).

succesively see the blue non-symmetric control polygon [P ?0 , . . . , P
?
4 ] and finally the symmetric green

control polygon [P ??0 . . . , P ??6 ].
To permit a valuable analysis, both of the possible loss of shape preservation and of how it

manisfests, we have limited our illustrations to examples of spaces depending on at most one pa-
rameter. Of course, this is very limited since the more the dimensions increase, the greater number
of parameters can be involved. At the moment, we get the impression that the richness of the class
of all kernels of linear differential operators with constants coefficients implies that no rule is really

predictable beyond the clear fact that, in all situations such that ˜̀n > ˜̀?
n+2, we necessarily lose

shape preservation in the end.
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