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We studied experimentally the discharge of a vertical silo filled by spherical glass beads and
assisted by injection of air from the top at a constant flow rate, a situation which has practical
interest for nuclear safety or air-assisted discharge of hoppers. The measured parameters are the
mass flow rate and the pressure along the silo, while the controlled parameters are the size of particles
and the flow rate of air. Increasing the air flow rate induces an increase in the granular media flow
rate. Using a two-phase continuum model with a frictional rheology to describe particle–particle
interactions, we reveal the role played by the air pressure gradient at the orifice. Based on this
observation we propose a simple analytical model which predicts the mass flow rate of a granular
media discharged from a silo with injection of gas. This model takes into account the coupling with
the gas flow as well as the silo geometry, position and size of the orifice.

I. INTRODUCTION

The flow of granular media cannot be simply described using standard fluid models, especially when coupled with
the flow of an interstitial fluid. Continuum models for granular media using a specific frictional rheology are still
under development. Among these models, let us consider the so-called µ(I) rheology, based on a local constitutive law
relating the local shear rate and the stress tensor [1]. Using this µ(I) rheology, several flow configurations have been
successfully described thanks to numerical simulation, including granular column collapse and discharge of large and
narrow silos [2–6]. These flows only considered dry granular media for which interactions between the particles and
the surrounding fluid can be neglected. In the present study, we consider the discharge flow of granular media from a
silo assisted by injection of air from the top and we focus on the role of the gas, flowing in a moving granular medium
with interactions between both phases, on the particles flow rate. We start from an experimental study in quasi-
steady conditions which reveals several flow regimes. We then show that this two-phase flow can be modeled using
two interpenetrating continuum media, the granular medium with a frictional rheology, and a Darcy-Forchheimer
flow for the gas phase, coupled through drag-related friction.

This study has been motivated by a specific case. Let us consider an hypothetical accidental scenario in nuclear
power plants: following a reactivity insertion in the core of the reactor, a fuel rod could break and its contents can be
ejected toward the surrounding water (at around 600 K and 15.5 MPa). Fuel rods are 4 m long cylindrical tubes of
1 cm diameter that, under some specific accidental conditions could contain high pressure gases (up to 100 MPa [7])
and small size (in the range of 10 to 1000 µm) fuel particles. The ejection of those high temperature particles (up to
around 2000 K) could have serious consequences for nuclear safety, in particular if the flow rate is high. The impact
of the discharge of internal gases on the particles flow rate has thus to be determined. More generally, similar flow
configurations also occur in processes such as air-assisted discharge of hoppers or pipe conveying.

Let us first briefly consider the discharge of a granular media out of a silo toward a larger vessel at constant
pressure in the absence of any grain-fluid interaction. The steady-state flow rate is mainly determined by the size of
the aperture, say D, and can be computed thanks to the Hagen-Beverloo law [8, 9]. When the aperture is on a lateral
side of a silo of width W , friction along the walls can impact the flow rate for relatively small aspect ratios W/D [6].
The size of the grain only acts as a second-order parameter: the flow rate depends on the ratio between the aperture
size and the particle diameter, D/d, only for small values of this number [10–12].

Even without net gas flow rate through the silo orifice, the interaction between gas and particles may have to be
considered, viscous friction acting as an additional drag [13]. The impact of counter-current air flow on the discharge
of silos has been studied both experimentally [14, 15] or numerically, using discrete models for particles [16] and is not
negligible for small particles (around 100 µm for glass beads). Air-assisted discharge of hoppers has motivated several
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Fig. 1 –. Sketch of set-up with (a) cylindrical silo with orifice at the bottom, (b) cylindrical silo with lateral orifice, (c)
rectangular silo with orifice at the bottom, (d) rectangular silo with lateral orifice. Distances are given in mm. Gravity is aligned
with but opposite to z-axis.

studies [17–19]. Analysing the flows in several geometrical configurations of rather large silos leads to the evidence
that the pertinent driving force for the granular flow rate through the orifice is the sum of the weight and of the fluid
pressure gradient along the normal to the aperture and in its vicinity. Therefore, models considering the impact of the
air flow on the steady-discharge rate have been proposed that extend the Hagen-Beverloo law to those configurations,
[14]. The fluid pressure gradient can be related to the fluid flow rate through the granular media thanks to classical
models for flow through porous media.

Our main objective is first to assess this behaviour for different silo configurations where wall friction and orifice
orientation with respect to gravity are varied. Then we address the ability of a continuum model to reproduce this
behaviour thanks to the comparison between numerical simulation and experimental results. The article is organised
as follows. We first present an experimental setup dedicated to the study of the flow of air and of a simple granular
media (glass beads of uniform size d) through a silo of simple geometry with an orifice of variable size and position,
see section II. A two-phase continuum model is presented in section III together with its numerical implementation
in a simplified configuration. Based on this model, the relation between gas and granular flow rates is analyzed in
section IV where an analytical model is proposed. In section V, the impact of the position of the orifice is analyzed
and the ability of the model to reproduce the influence of this parameter is studied.

II. EXPERIMENTAL OBSERVATIONS

A. Experimental set-up

Several silos, air-tight except at the aperture, have been built for this study by varying the shape of the tank
(cylindrical and rectangular) and the position of the orifice (bottom or lateral) as can be seen in Figure 1 and table I.

The cylindrical hoppers consist of a smooth perspex cylinder whereas the rectangular hoppers have a front wall
in perpex to allow visualisation and a back wall in metal. The orifice consists either of a circular hole of variable
diameter D or a rectangular hole of variable dimensions W ×D (where W is the silo thickness for rectangular silos or
the orifice arc length for cylindrical silos). The orifice can be located at the centre of the silo bottom or on the lateral
wall, 20 mm above the bottom. To avoid an effect of the walls thickness they have been bevelled along the aperture
with an angle of 30◦ to the vertical (see [6] for more details). The typical height H of the silos is always one order of
magnitude larger than its lateral extent L to prevent size effects. The top of the silo is connected to an air injection
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Tab. I –. Dimensions of the silos (see Figure 1) and fitting parameters of Eqs. 1, 2, 24 and 25.

Silo Orifice Position L (mm) H (mm) D (mm) W (mm) C0 β αD C0l αW γ2 λ ξφ

Cylindrical Disk Bottom 20; 40; 60 540 10; 20 - 0.69 0.08 0.81 - - - 1 0.83

Cylindrical Disk Lateral 40 540 10; 20; 30 - - 0.08 0.82 0.36 - - 0.27 -

Cylindrical Rectangular Lateral 20; 40; 60 540 10; 20 5; 10 - 0.07 0.45 0.49 0.59 1.13 0.27 0.96

Rectangular Rectangular Bottom 60 500 10 3.5 0.86 0.08 0.81 - - - 1 1

Rectangular Rectangular Lateral 60 500 10; 20 3.5 - 0.19 - 0.41 0.64 0.56 0.23 1
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Fig. 2 –. Cylindrical silo with a bottom orifice with L = 60 mm and D = 10 mm: (a) Temporal evolution of instantaneous mass
flow rate for d = 538µm and different volumetric flow rates of air Qair; (b) Mass flow rate Q versus the particle diameter d for
different volumetric flow rates of air Qair. The full line represents eq. 1 for an opened-top silo. The dashed lines represent the
analytical model (eq. 23) ; (c) Mass flow rate Q versus volumetric flow rate of air Qair for different sizes of particles. The solid
line represents the mass flow rate of opened-top silo Qo with d = 1129µm (Eq. 1) whereas the dashed line represents Eq. 3.

system ( density ρf = 1.2 kg/m3 and viscosity ηf = 1.8 ·10−5 Pa.s) which provides a constant volumetric flow rate of
air Qair, with a relative variation below 10%, through 3 holes of diameter 4 mm (see figure 1). The imposed air flow
rate was varied between 1 L/min (≈ 10−5 m3/s) and 50 L/min (≈ 10−3 m3/s) and was measured during each run
using a mass flow meter, Aalborg GFM171009 (range 0 − 5 L/min) or Aalborg GFM371033 (range 0 − 50 L/min),
with an accuracy of 1% and a response time of 1 s. In order to measure the interstitial air pressure pf inside the
silo, 3 mm holes are drilled at different locations along a median vertical axis, and other around the orifice as shown
in Figure 1. These holes are closed with a 40 µm mesh, preventing the particles from going through. Each hole is
connected by a tube to one end of a differential piezo electric pressure sensor, Honeywell DCAL405DN (range ±1245
Pa) or DCAL430DN (range ±7472 Pa), the second end being at the room pressure. The pressure signal was recorded
during each run with an accuracy of ±1% and a frequency of 100 Hz.

The granular materials consist of smooth spherical glass beads (density ρp = 2500 kg/m3, supplied by Potters-
Ballotini) with different sizes d = [124; 190; 375; 538; 762; 1129; 1347] µm (the uncertainty is evaluated to be
≈ ±10%).

The experimental procedure is the following: keeping the aperture closed, the glass beads with a total mass mt were
poured in the silo from the top, then the column height (hp) was measured, giving the initial bulk particle volume
fraction φb = mt/(ρphpSb) where Sb is the area of the silo cross section. The top of the silo was then closed. After the
preparation phase, the air was injected at a constant flow rate Qair and the orifice of the silo was suddenly opened
manually. The beads fall out of the orifice and are collected within a bucket, the temporal evolution of the mass m(t)
being recorded using an electronic balance (Mettler Toldeo 6002S) with an accuracy of 0.1 g and a frequency of 20 Hz.
One deduces the instantaneous mass flow rate as Qi = (m(t+ δt)−m(t))/δt, corresponding to the mass of particles
falling out of the silo during the time δt = 1 s.

B. Typical results

In this section we will first focus on the results obtained in cylindrical silos with a bottom orifice. A typical result
is shown in figure 2 for L = 60 mm, D = 10 mm. Figure 2a shows the temporal evolution of the instantaneous mass
flow rate for a given particle diameter d = 538µm in three conditions: the opened-top silo (without influence of air),
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Fig. 3 –. Cylindrical silo with a bottom orifice with L = 60 mm and D = 10 mm and Qair = 12 L/min (corresponding to the
purple curve in Fig. 2a): (a) Temporal evolution of the instantaneous pressure along the cylindrical silo. (b) Mean pressure in
the granular bed along the vertical axis. The black dashed (resp. red dashed dotted) line corresponds to the estimated pressure
gradient close to (resp. far from) the orifice. The corresponding equations are y = 58010x (resp. y = 3856x+ 541.6).

the closed-top silo without injection of air, and the silo connected to the air injection system with a constant air flow
rate Qair = 12 L/min. A steady-state discharge regime is observed in each case explored. The mean flow rate, Q, is
given by the mean value of the instantaneous mass flow rate Qi during this stationary regime. We can see that the
highest value of this flow rate is obtained in the case with a constant air flow rate, demonstrating the strong role of
air flow, and the lowest in the case with the closed-top silo, due to a counterflow of air, notably at the orifice, in this
configuration. In Figure 2b, the mass flow rate is plotted versus the particle diameter d for the opened-top silo and
different volumetric flow rate of air Qair. For the opened-top silo we recover that the mass flow rate decreases very
slightly when increasing the particle diameter. Following [10–12] the data are well fitted by

Q0 = C0φbρp[1− αDe−β
D
d ]S0

√
gD (1)

with S0 = πD2/4 the orifice area. The fitting parameters C0, αD and β are given in Table I (see the full line). The
dependence with the ratio between the aperture size and the particle diameter D/d can be interpreted as a dilation
at the aperture due to steric effects, where we can note

φo = ξφφb[1− αDe−β
D
d ] (2)

the mean volume fraction at the orifice. The fitting parameter ξφ is a constant expected to be . 1. It may account
for a dilatation due to other effects than steric effect, as for example the shear rate dependence of the volume fraction
observed for dense granular flows [20]. This parameter is included in C0 and cannot be deduced directly from the
measurement of the particle flow rate. With an imposed air flow, the granular flow rate Q becomes all the more
sensitive to the air flow rate than the particles size is small as revealed by the relative inclination of the curves of
the graph of Figure 2b. The value of Q is notably impacted by Qair for the case of smaller particles (d = 190µ m)
whereas for larger particles, Q tends to the asymptotic value Q0. The permeability is the main property depending
on the particle diameter which suggests that the coupling between the fluid and the grains is mainly due to the drag
force. In Figure 2c, the mass flow rate Q is plotted versus the volumetric flow rate of air Qair for different sizes of
particles. We observe that the mass flow rate increases with the air flow rate and that it is bounded by two asymptotic
behaviours: for small particles, with a very low permeability (dashed line in the figure), the air entering at the top of
the silo does not flow throughout the granular media but rather pushes it out of the silo leading to:

Q/(ρpφb) = Qair. (3)

For large particles with a very high permeability, and small air flow rate, the air flows easily throughout the granular
media and does not affect it, leading to Equation 1 (see the full line in Fig. 2c).

Figure 3a shows how the instantaneous pressure of the air along the silo varies with time during the discharge. The
room pressure has been subtracted to the signal, such that the reference pressure at the end of the discharge is zero.
There is a small overpressure before opening due to the injection of air. During the discharge a build-up of the pore
pressure is observed, corresponding to an air flow through the granular column toward the orifice. For each position
we can see that the pressure exhibits an initial plateau, followed by a quasi-linear evolution overlapping other signals.
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The plateau corresponds to the time during which the sensor is located inside the granular bed. The flow rates and
permeability of the granular material being constant, the pressure drop of air between the position of the pressure
sensor and the orifice is indeed expected to be constant. Moreover when the pressure taps are located above the top
of the granular bed, the pressure in this reservoir being uniform, the signals of the sensors are superimposed. The
pressure drop is then related to the bed height within the silo which decreases linearly with time for this stationary
discharge. From the plateau, we can deduce the mean air pressure during the discharge, pf , that we have plotted in
Figure 3b as a function of the position along the vertical axis. As expected we observe that the pressure gradient is
constant inside the granular material except close to the orifice where we observe a much stronger pressure gradient
(∂pf/∂z)|z≈0 ≈ 15(∂pf/∂z)|z�0 in the case considered. The orifice surface being smaller than the silo surface, the
air velocity and thus the pressure gradient are expected to be higher at the orifice, with a factor ≈ (L/D)2 ≈ 36 in
this case. We recover a lower coefficient than the section ratio for all the configurations studied (varying L and D as
summed up in table I), which seems to suggest that it is not due to the position of the sensor. We rather interpret
this observation as an effect of the dilation of the granular media near the orifice which tends to facilitate the air flow
by decreasing the permeability and therefore decreasing the local pressure gradient for a given flow rate.

III. TWO-PHASE CONTINUUM MODELLING

A. Governing equations and closures

To capture the coupling between the fluid and the granular materials during the discharge of silos, we consider a
two-phase continuum model. The mass and momentum conservation equations for the two phases are given by the
following expressions (see [21]):

∂(1− φ)

∂t
+
∂((1− φ)ufi )

∂xi
= 0, (4)

∂φ

∂t
+
∂(φupi )

∂xi
= 0, (5)

ρf (1− φ)

[
∂ufi
∂t

+ ufj
∂ufi
∂xj

]
= (1− φ)

∂σfij
∂xj

− fi + (1− φ)ρfgi, (6)

ρpφ

[
∂upi
∂t

+ upj
∂upi
∂xj

]
=
∂σpij
∂xj

+ φ
∂σfij
∂xj

+ fi + φρpgi. (7)

where φ is the volume fraction of the granular material, upi and ufi are respectively the local velocities of particles and

fluid and the tensors σpij and σfij are the particle and fluid stress tensors. The term fi includes the interaction forces

between the two phases, beside the buoyancy φ∂σfij/∂xj [21]. Given the range of the particulate Reynolds number,

Rep = ρf (uf − up)d/ηf . ρfQaird/(ηfD2) ∈ [10−1 − 103] we adopt the generalized form that is commonly known as
the Forchheimer resistance law (see [22, 23]). This law is established for a fixed porous media in which a gas flows
and we adapt it using the relative velocity between the two phases:

fi =
ηf
κv

(1− φ)2(ufi − upi ) +
ρfd

κi
(1− φ)3(ufi − upi )|ufi − upi | (8)

where for a granular medium composed of spherical beads, κv =
(1− φ)3d2

150φ2
and κi =

(1− φ)3d2

1.75φ
[24].

To close these equations, we first assume that the viscous stresses in the fluid phase are negligible compared to the
drag viscous term, valid as soon as D2 � κv. Under this assumption, the fluid stress tensor simply reduces to the

isotropic pressure part σfij = −pfδij . The stress tensor of the particle phase σpij = −ppδij + τpij comes only from direct

particle-particle interactions and can be described by a shear-dependent frictional rheology [1, 20, 25]:

τpij = ηp(|γ̇|,pp) ˙γij with ηp(|γ̇|,pp) =
µ(I)pp

|γ̇| , I =
|γ̇|d√
pp/ρp

, and µ(I) = µs +
∆µ

I0/I + 1
. (9)

where ˙γij = ∂upi /∂xj+∂u
p
j/∂xi is the strain-rate tensor with |γ̇| =

√
( ˙γij ˙γij/2) its second invariant, and I0, µs, and ∆µ

are constants which depend on the particles shape and material. We do not take into account the shear-rate dependence
of the volume fraction [20]. Finally, in the fluid phase the flow is taken as stationary and we suppose that the inertial
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√
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√
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term and the gravity term can be neglected with respect to the drag force [26]. These assumptions are valid as soon as
ρf � ρp, D � d and the Froude number defined on the particle length Frp = (uf − up)2/gd ≈ Q2

air/(gdD
2)� κid

−2.

For convenience let us introduce a volume-averaged velocity for the mixture as Ui = φupi + (1 − φ)ufi . Given the
assumptions above, the two-phase flow obeys:

∂(Ui)

∂xi
= 0, (10)

− ∂pf

∂xi
=
ηf
κv

(Ui − upi ) +
ρfd

κi
(Ui − upi )|Ui − upi |, (11)

∂φ

∂t
+
∂(φupi )

∂xi
= 0, (12)

ρpφ

[
∂upi
∂t

+ upj
∂upi
∂xj

]
=
∂σpij
∂xj

− ∂pf

∂xi
+ φρpgi. (13)

This system of equations describes the discharge flow of a granular medium interacting with a moving gas.

B. Numerical implementation in a simplified configuration

To study the effect of the air injection on the discharge flow of the silo, we solved numerically equations 10-13 in a
simplified configuration where we focus on the viscous regime for the interstitial flow of air (κi =∞). We consider a
two-dimensional silo of width L and height H = 4L with an orifice of dimension D at the center of the bottom of the
silo, initially filled with a height hp = 3.9L of the visco-plastic fluid. The mesh is such that the width of the silo L is
divided in 64 computation cells which is a good balance between precision and computational time. Following [6] to
take into account the lateral friction on the walls, supposed to be a Coulomb force −µwpp on each wall, we average
the momentum equation (Eq. 13) across the thickness of the silo:

ρ

[
∂upi
∂t

+ upj
∂upi
∂xj

]
=
∂σpij
∂xj

− ∂pf

∂xi
+ ρgi + fwi, with fwi = −2

µwp
p

W

upi
|upi |

. (14)

Where the effective density of the granular media ρ = φρp is taken constant = ρp for simplicity. Indeed we do not
consider the variation of the volume fraction with I given by [20], as we suppose the granular flow incompressible.

We solve equation 14 made dimensionless using L as a length scale, ρgL as a pressure scale,
√
L/g as a time scale

and following Staron et al. [27] we take for the rheological constants µs = 0.4, ∆µ = 0.28, I0 = 0.4 and µw = 0.1.
Moreover we use a regularisation technique to avoid the divergence of the viscosity when the shear becomes too small

by replacing ηp by min(ηp,ηmax) with ηmax = 100ρ
√
gL3 a constant large enough [2, 3, 6, 27]. Concerning the fluid
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(corresponding to black line in Fig. 4a): (a) Pressure pf/ρgL along the center of silo versus time t/
√
L/g for different positions;

(b) Mean pressure in the granular bed along the vertical axis. The black dashed line corresponds to a linear adjustment of the

pressure close to the orifice with y = ηβl
So

(Qair −Q/ρp)x = 1.23x. The red dashed dotted line corresponds to a linear adjustment

of the pressure far from the orifice with y = ηβl
Sb

(Qair − Q/ρp)x + 0.098 = 0.308x + 0.098 where the numerical parameter is

obtained using the least squares method.

phase, combining the momemtum conservation (Eq. 11) with the mass conservation (Eqs. 10 and 12), we obtain

∂

∂xi
(ζ
∂pf

∂xi
) = 0 (15)

where ζ = κvρ
√
g/L/ηf is the dimensionless permeability considered constant across the silo. The Navier–Stokes

simulations are performed with the free software Basilisk [28], which uses a finite-volume projection method. Two
phases are present, a surrounding passive gas for z > hp with a small density, a small viscosity and a very high
permeability ζ∞ = 100 � 1, and the granular media for z ≤ hp, where ζ = 1. At each time step, we first solve Eq.
15 corresponding to a Poisson–Helmholtz equation, using a specific solver [29, 30]. We consider a Dirichlet condition
at the orifice (pf = 0) and a Neumann condition at the solid boundaries ni∂p

f/∂xi = 0, where ni is the vector unity
normal to the surface. To simulate the air injection at the top of the silo, we suppose that far from the orifice the flows
are uniform Uz(hp) = Qair/L and upz(hp) = Qi/ρL, leading to the boundary condition at the top of the domain:

∂pf

∂z
|z=H = − (Qair −Qi/ρ)

ζ∞L
ρ
√
g/L. (16)

This condition couples the flows of the two phases. It depends on the instantaneous particle flow rate Qi which
is computed at each time step. The resolution of equation 15 gives the fluid pressure field, pf , and its gradients,
corresponding to the fluid-particle coupling in equation 14 which can then be solved with a no-slip condition at the
solid boundaries and a zero particle pressure at the orifice and at the top boundary of the domain. Finally the interface
between these two phases is tracked with a Volume-Of-Fluid method, see [2, 3, 6, 27] for more details.

We performed a set of simulations, for L = 90d, D = 0.25L and W = 0.25L, where we varied the air flow rate,

Qair. Figure 4a shows the temporal evolution of the dimensionless instantaneous mass flow rate Qi/(ρp
√
gL3) in

three conditions: no coupling with the fluid phase, equivalent to the opened-top silo, or coupling with the fluid phase,

equivalent to the closed-top silo, with Qair = 0 (no injection of air) and Qair = 0.5
√
gL3. Similarly to the experiment,

we observe a steady-state discharge regime in each case explored and we recover that the highest value of the mean
flow rate is obtained in the case with a constant air flow rate, and the lowest in the case with the closed-top silo

(Qair = 0). In Figure 4b, the dimensionless mass flow rate Q/(ρp
√
gL3) is found to increase with the dimensionless

volumetric flow rate of air Qair/
√
gL3, as in the experiments. Following the experimental measures, Figure 5a shows

the temporal variation of the instantaneous air pressure along the silo. We observe the same behaviour than in the
experiments, with a build-up of the pore pressure, and for each position a plateau followed by a linear evolution where
all the signals are finally superimposed. In Figure 5b we have plotted the mean air pressure, pf deduced from the
plateau, as a function of the position along the vertical axis. We observe a constant pressure gradient far from the
orifice and a stronger pressure gradient close to the orifice (∂pf/∂z)|z≈0 = (L/D)(∂pf/∂z)|z�0 exactly due to the
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<
∂
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z
>
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g
)

√
(x− xo)2 + (z − zo)2 ≤ D/2

y = 0.68x

z = zo, |x− xo| ≤ D/2

y = 1.0x

Fig. 6 –. Continuum simulation of discharge of a silo with an orifice at the bottom for L = 90d, D = 0.25L, W = 0.25L and
Qair/

√
gL3 = 0.5 (corresponding to black line in Fig. 4a): (a) Streamlines for the particle phase (red dashed lines) and for the

fluid phase (black full lines). (b) Air mean pressure gradient < ∂pf/∂z > averaged along the orifice (�) and in the accelerated
zone near the orifice (×) versus

ηf
κvSo

(Qair −Q/ρp). The dashed (resp. full) line corresponds to the best linear fit.

change in the air flow area, indeed in the simulation the volume fraction is kept constant. The transition between the
two zones then occurs for z ≈ 0.42D. Using the results of this simulation, in the next section we propose an analytical
model to predict the flow rate of the discharge of a granular media from silos with injection of air.

IV. AN ANALYTICAL MODEL

A. Hypothesis of the model and numerical validation

We have seen in sections II B and III B that the air flow strongly influences the discharge rate of the silo. As already
shown in other flow configurations [17–19] and suggested by the conservation of the momentum of the particle phase
(Eq. 13) the air pressure gradient acts as a driving force in addition to gravity. The silo discharge being controlled
by the flow at the orifice [8–10, 31], following the models proposed in [17–19], we consider that the variation of the
granular flow due to air flow can be modelled as a modification of the driving force. Therefore the particle mass flow
rate in presence of a fluid pressure gradient, issued from Eq. 1 with a correction of gravity reads

Q = Q0

(
1 +

1

φoρpg
ni
∂pf

∂xi
|o
)1/2

(17)

where Q0 is the open top silo case flow rate and ni
∂pf

∂xi
|o the air pressure gradient normal to the orifice (i.e. ∂pf/∂z|o

for a bottom orifice) and φo the volumetric fraction of particles, both near the orifice. The fluid pressure gradient
depends on the position in the silo and is given by the momentum balance for the fluid phase (Eq. 11).

The simulations result (see Figure 6a) support the assumption of quasi vertical streamlines close to the orifice. Given
the constant volumetric air flow rate imposed at the top of the silo Qair and the corresponding steady particle mass flow
rate at the orifice Q, the local relative velocity between the mixture and particles at the orifice, vrel = ni[Ui(0)−upi (0)],
can be deduced from a mass balance across the silo assuming incompressibility:

vrel =
Qair −Q/(φoρp)

S0
(18)

where S0 is the orifice cross section. The singular value Qair = Q/(φoρp) exactly compensates the volumetric granular
flux similarly to an open top case silo with vrel = 0 and Q = Q0. For lower air flow rates at the top of the silo,
there is a counter-flow of air at the orifice. It leads to the observed values of Q less than Q0 for the smallest particle
size and very low values of Qair. For the sake of clarity we introduce the non-dimensional flow rates relative to the
discharge rate in the absence of fluid interaction Q0, i.e. for the granular flow rate Q̄ = Q

Q0
and for the air flow rate
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Q̃ =
φ0ρpQair

Q0
as well as the notation:

± =
Q̃− 1∣∣∣Q̃− 1

∣∣∣
=

vrel
|vrel|

= −∓ (19)

whose values are +1 in the case of co-current flow and −1 in the case of counter-current flow. Let us assume that the
air pressure gradient is nearly uniform in the orifice region. This leads to (from Equation 11):

ni
∂pf

∂xi
|o ≈ ±

(
ηf

κv(φo,d)
|vrel|+

ρfd

κi(φo,d)
|vrel|2

)
. (20)

Figure 6b shows that for the continuum simulation in the Darcy flow case (κ−1i = 0) the mean air pressure gradient
averaged at the orifice (�) is well represented by Equation 20 (black dashed line). Combining equations (17), (18)

and (20) provides a direct relation between Q̄ and Q̃ and after rather simple calculations, we get

(1∓Ni) Q̄2 +
(
Nv ± 2NiQ̃

)
Q̄−

(
1 +NvQ̃±NiQ̃2

)
= 0 (21)

where we introduced

Nv =
ηfQ0

φ2oρ
2
pκv(φo,d)gS0

and Ni =
ρfdQ

2
0

φ3oρ
3
pκi(φo,d)gS2

0

. (22)

For a given air flow rate and system dimensions (say Q̃, Nv and Ni), equation (21) is a quadratic equation for Q̄.
Its single positive root is the solution of our problem (the discriminant ∆ is always strictly positive and therefore
there are always two roots and the second root, negative, that would correspond to particles entering the silo has no
physical meaning in our context) and reads

Q̄ =

(
∓2NiQ̃−Nv

)
+
√

∆

2 (1∓Ni)
with ∆ = N 2

v + 4
(

1 +NvQ̃
)
± 4Ni

(
Q̃2 − 1

)
. (23)

The trivial solution Q̄ = 1 when Q̃ = 1 is recovered for any value of Nv or Ni. The asymptotic limit at large values
of fluid-particle inertia dominated drag (Ni → +∞) corresponds to the solution Q̄ = Q̃: the air entering at the top of
the silo does not flow throughout the granular media but rather pushes it out of the silo. In Figure 4b, we compare the
numerical simulation results with Equation 23 (black dashed line) for the Darcy flow case Ni = 0. We observe that
Equation 23 over-predicts the flow rate. This suggest that the mean air pressure gradient near the orifice needs to be
evaluated on a larger zone (where it should necessarily be lower). In Figure 6b, we calculate the mean air pressure
gradient < ∂pf/∂z > averaged on a circular zone of size D/2 above the orifice (×), corresponding roughly to the zone
where the particles accelerate [8, 31]. We observe that < ∂pf/∂z > is still proportional to ηf |vr| /κv, as supposed in
Eq. 20, but with a coefficient A = 0.68, lower than 1 due to the 2D flow in this zone (red full line). This implies that
the model given in Equation 23 should still be valid if replacing Nv by ANv. This corresponds to the red full line of
figure 4b which gives a good prediction of the flow rate.

B. Comparison with experiments

In contrast with the numerical simulation, in the experiment the granular medium tends to dilate at the orifice. In
the presence of air flow, this dilation also impacts the permeability of the granular phase in the near orifice region,
which suggests that Eq. 20 represents the mean pressure gradient in the region where the particle are accelerated,
considering that φo represents the volume fraction in this region. To test this hypothesis, we deduce φo as an adjusted
parameter of the model (Eq. 23) to fit the data of the mass flow rate of particles versus the volume flow rate of air
(Figure 7a). In Figure 7b, we have plotted the obtained value of φo, normalised by φb as a function of the dimensionless
aperture size D/d, for different silo diameters, L, and aperture diameters, D. We observe that the data superimpose
in this representation and are well represented by Equation 2 (see the full line in the Figure) where for simplicity we
use the coefficients α and β obtained previously for the opened top silo (Equation 1) supposing that the steric effect
is scarcely influenced by the air flow. The fitting parameter ξφ, given in table I, will then also account for the zone of
evaluation of the pressure gradient, similarly to A in the numerical simulation.

Finally, once supplemented by a law for Q0 and φo given respectively by Equations 1 and 2 which rely on 4 fitting
parameters, C0, ξφ, α and β, the model (Equation 23) is found to be predictive, see the dashed lines in Figure 2b.
This model is also valid for a rectangular silo with a bottom orifice, as can been seen in Figure 7c where the agreement
with the experimental data is fairly good, with the fitting parameters given in table I.
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Fig. 7 –. Silo with orifice at the bottom: (a) mass flow rate of particles versus volume flow rate of air Qair for the cylindrical silo
with L = 60mm, D = 10mm for different sizes of particles. The dashed lines represent equation 23 with the adjusted parameter
φo by using the least squares method, (b) φo/φb versus D/d, with different sizes of L and D, the solid line represents equation
2 with the fitting parameters given in table I. (c) Mass flow rate versus different sizes of particles d for different volume flow
rates of air Qair for the rectangular silo with L = 60mm, D = 10mm and W = 3.5mm. The full line represents eq. 1 for an
opened-top silo. The dashed lines represent equation 23 with the fitting parameters given in table I.
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Fig. 8 –. Continuum numerical simulation for a silo with a lateral orifice with D = 0.40625L and W = 0.25L: (a) Streamlines

for the granular flow (red dashed line) and for the air flow (black lines). (b) Q/ρ
√
gL3 as a function of Qair/

√
gL3. The lines

represent equation 23 with A = 1 and λ = 1 (−−), A = 0.67 and λ = 1 (−−), A = 0.67 and λ = 0.36 (−).

V. VALIDATION OF THE ANALYTICAL MODEL FOR A LATERAL ORIFICE

We can generalise the analytical model to silos with a lateral orifice (see Figure 1b and d). In this configuration
Zhou et al. have shown that the flow rate of an opened-top silo is modified [6]. They proposed an empirical law to
predict the flow rate for a lateral orifice of thickness W and height D:

Q0l = C0lρφbGD

(
D

d

)
GW

(
W

d

)
F

(
D

W

)
W
√
gD3. (24)

The function F (D/W ) = [1 + γ2D/W ]−1/2 accounts for the effect of the friction on the lateral wall which tends to
align the velocity with gravity when the thickness decreases, and consequently to reduce the flow rate. The geometrical

functions GD(D/d) =
[
1− αDe−β

D
d

]
and GW (W/d) =

[
1− αW e−β

W
d

]
account for the dilation at the aperture due

to steric effects:

φol = ξφφbGD

(
D

d

)
GW

(
W

d

)
. (25)

The fitting parameters of equation 24 have been obtained in the opened-top silo (see the full line in Figure 9a and
9b) and are summed-up in Table I where we consider for the rectangular silo that GD(D/d) ≈ 1.
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Fig. 9 –. Mass flow rate versus size of particles d for different volume flow rates of air Qair, for lateral orifices: (a) Cylindrical
silo with L = 60 mm, D = 20 mm and W = 10 mm. (b) Rectangular silo with L = 60 mm, D = 10 mm and W = 3.5 mm. The
full lines represent Eq. 24 and the dashed lines represent the generalised model 23, with the adjusted parameters given in Table
I.

Figure 8a shows the streamline of the granular media (dashed red lines) and of the air (black lines) obtained
numerically in the laminar regime. Even though the orifice normal is orthogonal to the direction of gravity, the latter
still drives the discharge. The difference between the two configurations (orifice at the bottom or lateral) reduces to the
different values of the empirical constants, namely C0 for the bottom case and C0l for the lateral case. Therefore, for
the same shape of a large orifice (D/d >> 1) in the Hagen-Beverloo regime (D/W << 1) the ratio λ = (C0l/C0)2 < 1
can be related to a reduction of the driving force in the lateral case that then reads λg. Thus, the previous approach
and Equation 23 should still be valid in the lateral case if we keep the empirical constants from the bottom case but
replace g by λg.

Figure 8b shows the comparison between the continuum numerical simulations in the viscous regime and the
analytical model for several A and λ values. Both corrective coefficients A (which account for the zone of evaluation
of the pressure gradient) and λ are necessary to fit the data.

Finally Figure 9 compares the experimental results for a lateral orifice, for the cylindrical and the rectangular silos,
with the generalised model given by Equation 23 with the reduced gravity λg and the adjusted parameters given
in Table I. The coefficient ξφ has been adjusted to the data following the previous approach. We observe that the
agreement is fairly good both for the cylindrical and rectangular silos.

VI. CONCLUSION

Using experiments and continuum simulations we have studied the effect of injection of a constant flow rate of air in
the discharge of a silo with a bottom or a lateral orifice. Steady flow regimes are obtained. We observe that the particle
flow rate increases with the air flow rate and decreases with the particle size. Based on a continuum two-phase model
using a frictional rheology for the particulate phase, we propose an analytical model where the fluid pressure gradient
near the orifice acts as an additional driving force with respect to gravity, in accordance with previous authors [17–
19]. This model is validated by the continuum simulations, where we observe that the driving fluid pressure gradient
corresponds to a mean gradient on a circular zone of size D/2 above the orifice where the particles accelerate [8, 31].

The permeability variation at the orifice, associated with dilation of the granular medium that accelerates, is
accounted for thanks to a function of the dimensionless aperture size (D/d). The analytical model includes four
fitting parameters, which can be obtained with a first series of experiments with an opened-top silo, varying either
the orifice size or the particle size (giving C0, α and β), and a second series of experiments varying the air flow rate
for a large ratio between the aperture size and the particles diameter (giving ξφ). To take into account the position
of the orifice, the driving force for an opened-top silo needs to be modified (g needs to be replaced with λg), to take
into account the inclination of the granular medium streamlines. This new parameter is obtained with a series of
experiments with an opened-top silo with a lateral orifice varying either the orifice size or the particle size. We finally
obtain a fairly good agreement between the analytical model and the experiments. It would be good in the future to
test configurations where the particles shape or polydispersity in size are varied or where the particle and air flows
are non stationary, as can be seen in industrial situations.
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