IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Review of A₁ and A₂ values: Overview of the new calculation method

PATRAM 04 - 09 August 2019

> <u>Authors:</u> Jérémy BEZ Samuel THOMAS Baptiste LOUIS

RSN/FRM-414 ind 3

Summary

Reminder on A₁/A₂ and its current limits

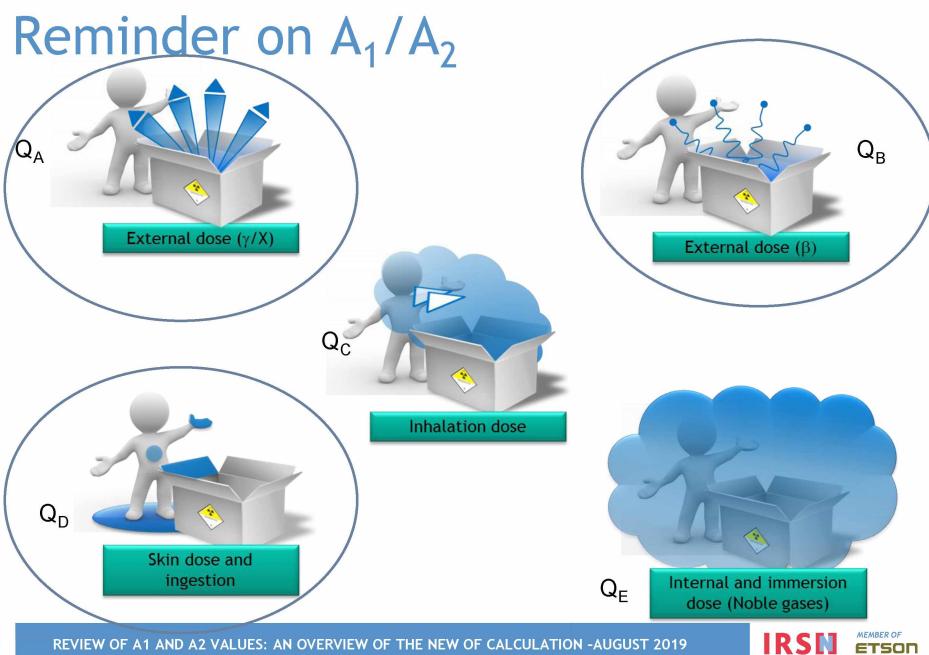
Presentation of the new proposed method

- MC calculations
- By fluences
- Quick talk on Q_A
- Focus on Q_B and its new DCF
- Focus on Q_D and its new DCF
- Conclusion

2

Reminder on A_1/A_2

Definition of A₁ and A₂


IAEA transport regulations SSR-6 :

- For each radionuclide: two values: A₁ and A₂
- Limits the contents of packages so that *«radiological consequences ... are acceptable »*
- Derived from Q-system

Q-system

- Comes from SSG-26
- Based on 5 different exposure scenarios

Current method

7 How?

Using:

- Empirical and/or analytical formula
- Outdated scientific paper or ICRP publications for some data
- Lack of traceability of some coefficients

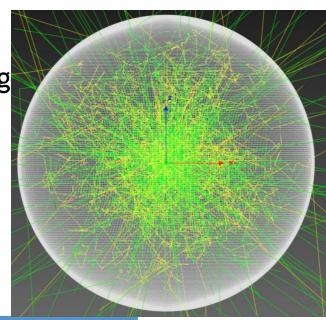
New method being proposed

7 Why?

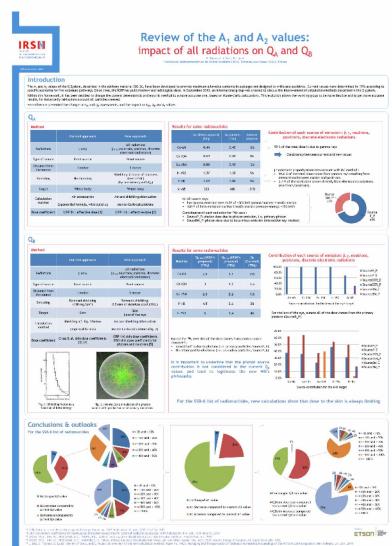
- Several evolutions from the last Q system on:
 - Nuclear data (emissions): ICRP 107
 - Dose coefficients: ICRP 74 & 116
 -

Need of Q values for new radionuclides

 \rightarrow Decision of the WG to (re-)create Q values for all radionuclides, by taking into account the latest data



New method being proposed for Q_A Q_B


7 How?

- Use of Monte-Carlo codes to record @ 1m, fluences of all particles
 - Primary particles (from the source: γ , β , neutron...)
 - Secondary particles (due to ray-matter interactions)
 - Tertiary particles
 - ...
- Use of the latest data by post-processing
 - Nuclear data: ICRP107
 - Dose Coefficient Factors (DCF):
 - ICRP116
 - Our own DCF

New method being proposed for Q_A Q_B

- Dealing with exposure to whole body
- What if we consider every radiation ?
- Please see poster #1402 (Review of the A₁ and A₂ values: impact of all radiations on Q_A and Q_B) to see influence (or not) of every radiation

ETSON

New method being proposed for $Q_A Q_B$

 $\neg Q_B$

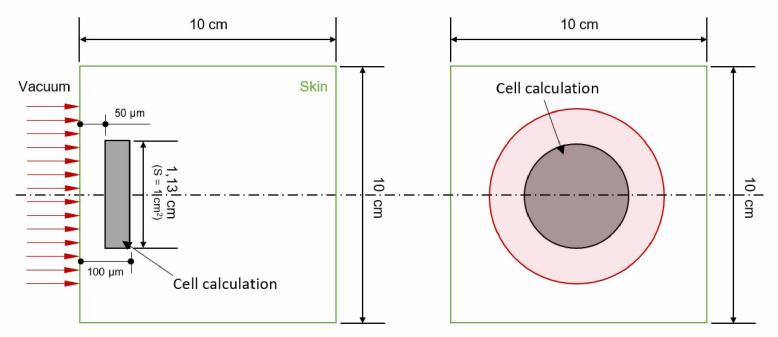
9

- Q_A deals with whole body exposure
- $\mathbf{Q}_{\mathbf{B}}$ initially designed for the skin exposure
- Proposal: consider every radiation, in the same way as for Q_A
- Due to the recent decrease of dose limitation: lens of the eye is no more negligible compared to extremities
 - EURATOM statement (from ICRP recommendation): lowering eye dose limit (*i.e.* 20 mSv instead of 150 mSv for planned exposure)

$$ightarrow Q_{B,skin}$$
 and $Q_{B,eye}$

7 Q_{B,skin}

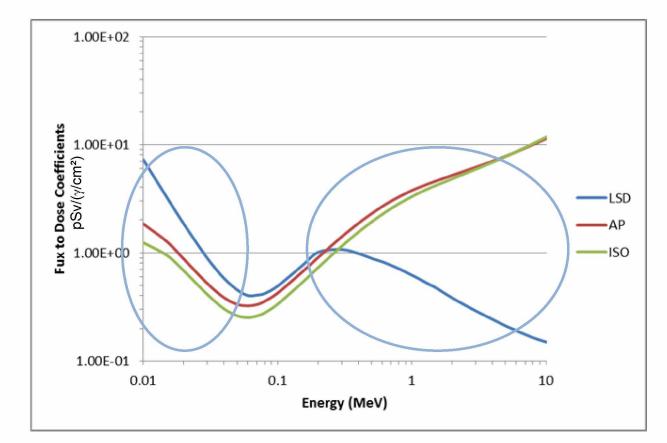
10


- Represents exposure to the skin
- More precisely: to the most exposed square centimeter
- Existence of Dose Conversion Factors (DCF)?
- Yes and no !
- DCF for the whole skin organ tissue for gamma and neutron
 - Anthropomorphic voxelized phantom with 2mm skin thickness
 - Not realist
- Development of our own DCF

7 Q_{B,skin}

11

Development of *local skin dose* DCF for gamma and neutron by IRSN


Based on ICRP116

7 Q_{B,skin}

Real impact ? Let's see for γ

7 Q_{B,skin}

Final impact

Nuclide	$Q_{ m B,skin}$ (use of "whole skin	$Q_{ m B,skin}$ (use of "local skin	
	organ")	dose")	
	(TBq)	(TBq)	
Co-60	1.8	2.6	
Cs-134	2.24	2.98	
Eu-154	2.11	2.56	
F-18	3.57	4.50	
Ir-192	5.25	6.03	

IRSI

ETSON

Same order of magnitude

REVIEW OF A1 AND A2 VALUES: AN OVERVIEW OF THE NEW OF CALCULATION -AUGUST 2019

7 Q_{B,eye}

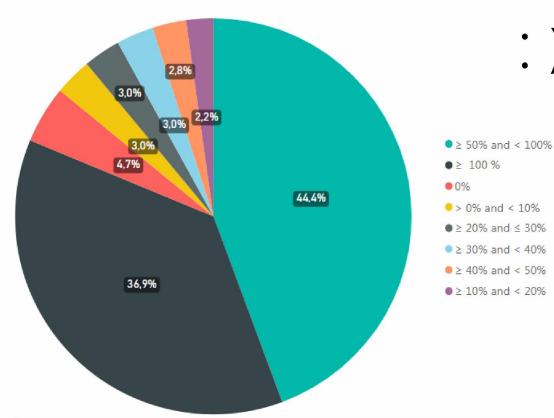
- Due to the recent decrease of dose limitation: lens of the eye is no more negligible compared to extremities
- Use of fluences/primary particles, previously created and recorded
 - No additional MC calculation
- Postprocessed with DCF issued from ICRP 116
 - For photons, neutrons & electrons
 - IRSN proposed to assess DCF for positrons

Overall comparison of some values

Nuclide	Q _{B,skin} Q _{B,eye} (dose limit of 150 mSv)		Current Q _B
	(TBq)		
Co-60	1.8	1.1	730
Cs-134	2.2	1.7	3.6
Eu-154	2.1	2.2	1.6
F-18	3.6	2.6	28
lr-192	5.3	3.4	46

Same order of magnitude

except for high-energy gamma emitters


Please see poster #1402 (Review of the A₁ and A₂ values: impact of all radiations on Q_A and Q_B) for further explanations

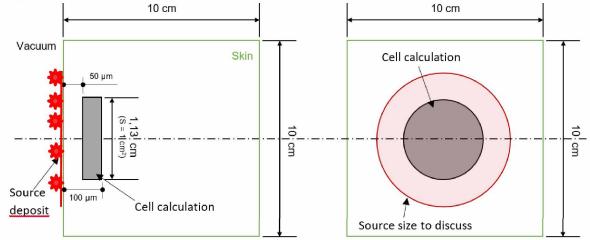
Focus on Q_{R}

7 Overall impact

<u>Absolute</u> impact of the new method for SSR-6's 275 radionuclides

- Yes, but only for Q_B
- A_1 is mainly (87%) led by Q_{Δ}

16 REVIEW OF A1 AND A2 VALUES: AN OVERVIEW OF THE NEW OF CALCULATION -AUGUST 2019



17

Ingestion and skin contamination

- Ingestion: use of coefficients from future ICRP publications
- Skin contamination: ???
- By consistency : every radiation is considered

7 Impact of the new method

Nuclide	Q _D (IRSN's proposal)	Q _D (Current)	Relative
	(TBq)	deviation	
Co-60	1.12	0.97	+ 15%
Cs-134	1.00	0.92	+ 9%
Eu-154	0.64	0.55	+ 16%
F-18	0.67	0.58	+ 16%
lr-192	0.68	0.61	+ 11%

Impact of the new method, not so important.

Conclusion

- New method, generally, more accurate than before
- Generally, minor change in numerical values for Q_D
- When major change for Q_B , not necessarily reflected on A_1
- Keep in mind: still some discussion about the choice of the model (source size, medium composition...)
- \rightarrow Change of numerical values still to be validated/accepted by TRANSCC
- \rightarrow Implementation of all these values in an user-friendly software

Thank you for your attention

Questions ?

20 REVIEW OF A1 AND A2 VALUES: AN OVERVIEW OF THE NEW OF CALCULATION -AUGUST 2019

