IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Caractérisation de la composition chimique des aérosols issus de la découpe laser de simulants du corium

Faire avancer la sûreté nucléaire

C. Dazon^{*1}, E. Porcheron¹, Y. Leblois¹, C. Chagnot², I. Doyen², C. Journeau³, E. Excoffier⁴ et D. Roulet⁵

*claire.dazon@irsn.fr

¹Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, LPMA

- ² Commissariat à l'Energie Atomique (CEA), DEN/SEMT
- ³ Commissariat à l'Energie Atomique, DEN/DTN/SMTA/LEAG
- ⁴ Commissariat à l'Energie Atomique, DEN/DMRC/SA21/LMAC

⁵ ONET Technologies

Congrès Français sur les Aérosols 28-29 Janvier 2020

Contexte du projet: Fukushima Daiichi (1/3)

- > Dommages causés aux réacteurs 1, 2 et $3 \rightarrow$ fusion (partielle ou totale) du cœur
- Entre 200 et 400 tonnes de corium estimés dans chacune des unités
- Deux situations considérées :
 - 1. Une quantité inconnue de corium a percé la cuve et s'est en partie répandue dans le bâtiment \rightarrow corium en cuve
 - 2. Le corium a complètement détruit la cuve et est tombé sur le béton dans le fond du bâtiment \rightarrow corium hors cuve

Reactor containment vessel

Credits: Nuclear Damage Compensation and Decommissioning Facilitation Corp.

Contexte du projet: Fukushima Daiichi (1/3)

- Démantèlement complet des installations au Japon: technologies manquantes
- Lancement de programmes de R&D
- Constitution d'un consortium piloté par ONET Technologies avec le CEA et l'IRSN pour démontrer la faisabilité de l'utilisation de la découpe laser sur simulant de corium (non actif)

Contexte du projet: Fukushima Daiichi (1/3)

Les simulants de corium (CEA Cadarache)

Corium: Nom « générique » du matériau résultant de la fonte du combustible, mélange d'oxydes métalliques et de métaux, aspect de « lave » ou « magma ».

UO₂-ZrO_{2±x}-X

HORS CUVE

X = dépend du type de corium

EN CUVE

Installation DELIA du CEA Saclay (1/2)

PRINCIPE = DECOUPE LASER

- Télé-opération à distance (fibre optique)
- Pas d'interaction mécanique (usure réduite)
- Opération en milieu fortement ionisant et contaminant
- Fonctionnement en air et sous eau
- Limitation de la production de scories par rapport à d'autres procédés thermiques ou mécaniques

Installation DELIA du CEA Saclay (2/2)

Pegasor PPS-M (P1)

Evolution temporelle de la concentration en nombre et en masse

- Impacteur basse pression DLPI® (P2) Distribution granulométrique et concentration massique
- Prélèvement sur filtre (P3)

Concentration massique totale

Débimètre (P4)

Débit dans la cheminée $\approx 120 \text{ m}^3/\text{h}$

IRSE

Caractérisation de la chimie et de la distribution en taille

DLPI[®], Filtre et ICP-MS-AES (CEA Marcoule)

Distribution des éléments chimiques

Distribution de l'activité des radioéléments

- > Simulant Hors cuve et En cuve: contribution importante du Ba, Ce (Pu) et Cs
- Simulant Hors cuve: 50% de l'activité pour des tailles de particules < 90 nm</p>
- Simulant En cuve: 50% de l'activité pour des tailles de particules entre 100 et 300 nm
- Influence de la découpe sous eau dans le cas du simulant Hors cuve: 1 du D₅₀ (agglomération, formation de nouvelles espèces chimiques (oxydation, etc...)

Conclusion...et suite des actions

- Les aérosols issus de la découpe laser de simulants du corium (scenarii hors cuve/en cuve)
 - Composition chimique riche en éléments de l'acier & particules fines (tailles entre 90 et 300 nm)
 - Radioactivité équivalente dominée par les éléments Barium, Cérium (Pu), Césium et Strontium
 - Multiples réactions chimiques supposées (oxydation, nitruration, carburation, hydrolyse)
- Actions programmées et envisagées:
 - Étude d'outils de découpe mécanique de type disqueuse (installation CAPIMIF, IRSN) et carotteuse
 - Découpe laser sous azote (DELIA, CEA)
 - Couplage découpe laser et aspersion (spray scrubbing)
 - Composition chimique des prélèvements impacteurs: ICP + XPS (structure-environnement chimique)
 - Accentuer les analyses en microscopie

... Merci jusqu'au bout d'avoir suivi 🕲

