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Thulium spiked gel for internal standardisation in LA-ICP-MS bio-imaging:

quantitative elemental distribution of uranium in kidney tissue

Nagore GRIJALBA, Alexandre LEGRAND, Yann GUEGUEN, Valérie HOLLER, Céline BOUVIER-CAPELY

Institut de Radioprotection et de Slreté Nucléaire, PSE-SANTE/SESANE/LRSI, 31 Av de la Division Leclerc BP 17, 92262 Fontenay-aux-Roses Cedex, France

The quantitative analysis of trace metals in different organs or cellular structures is a topic of emerging interest for the assessment of toxicological risk. The kidney is recognized as
T e = a major site for uranium accumulation able to induce renal toxicity':2. Several studies have shown its heterogeneous distribution within the tissue finding areas (S3 segments in
the proximal tubule) of high uranium concentration (100-fold above mean renal concentration)3>. These studies were carried out employing high-energy synchrotron radiation X-
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limits its daily use for routine analysis. In this work, mass spectrometry imaging (MSI) using laser ablation

inductively coupled plasma mass spectrometry (LA-ICP-MS) has been employed for mapping and quantifying uranium in histological tissue sections of mouse kidney. To the
author’s knowledge just a single work has been published recently for the semi-quantitative analysis of uranium in mice kidneys due to the lack of an appropriate internal
standard®. The quantitative monitoring of uranium at tissue level in kidney would facilitate the understanding of its action mechanism in renal toxicity. Therefore, this works
presents the development of a correction methodology based on doped gelatine with internal standard as an alternative to current methods’. In order to correct matrix effects,
lack of tissue homogeneity and instrumental drift, a thulium (Tm) spiked gel was prepared and deposited on the top of glass microscope slides. For quantification purposes,
matrix-matched laboratory standards were prepared from a pool of rat kidneys by spiking each level with different concentrations of uranium. The proposed analytical bio-
imaging approach was successfully applied for quantification of uranium of rat kidney samples.
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Bio-distribution and quantification of uranium in kidney tissue. How to do it?

Preparation of uranium standard solution at a know concentration

A

Preparation of rat kidneys homogenate and divide it into aliquots
(blank + standards (minimum 3))

\

Homogenates are spiked with the U standard solution and homogenized by vortex.
After, homogenates are filled in plastic histology moulds and kept at -20°C.

Acid digestion HNO,:H,0, (2:1) of
= 50 mg of frozen homogenates

Homogenate cryo-cutting (-20°C, 16 pm)
and place onto the glass substrate
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Determination of exact uranium
concentration by isotope dilution ICPMS

Sections are used as external calibrators
LA-ICP-MS with re-calculated U conc.
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Verification of uranium real concentration:
microwave assisted acid digestion + quantification by isotope dilution
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The use of matrix-matched standards does not suppress the elemental fractionation
but it will happen similarly both in standards and samples.
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Homogenates are kept at Cryostat cutting at -20°C

Net U signa

60000

50000

s)

g
= 40000

30000

20000

10000

0 0O

0

2000 4000

6000

Std-5
15000
Qc-3 -
10000 - ) ]
e 5 replica per ICPMS analysis
5000 I
0 0 70000

8000
Conc (ppb)

y = 3,6535x - 602,99
R? =0,9715

I
o

10000 12000 14000

matrices. 3eneral scheme for t

For 100 g of gelati

Attention!!!

In addition, the external calibration method needs the use of an internal standard (IS)
to compensate matrix effects as well as variations in ablated and transported mass and
instrumental drifts during analysis. Ideal IS should behave in a similar manner to the
analyte during the ablation process and in the ICP. Additionally, it must be in similar
concentration and homogeneously distributed within the samples and standard
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Optimisation of gelatine %

Different gelatine % were tested, from 2.5%
to 30% m/v. 20% and 30% m/v gelatines
were directly discarded as they are too
viscous to handle comfortably and they dry

into films producing a high amount of
bubbles.

2.5%, 5% and 10% gelatines were ablated in
the central area (up, middle and down —
0.5x0.5 mm area) and Tm/Tl ratio was
calculated from net signals at different times
after gelatine preparation: 1 day, 2 days and
1.5 months after gelatine preparation.

t (80°C) agitation Slide coating with IS spiked gelatine

preparation of

Drying/setting procedure: 1h room temperature in flat surface (covered)

gelatine avoiding bubble formation Keep at 4°C until its use

10 areas of 0.5x0.5 mm were ablated,
obtaining similar response from all
Liquid ICPMS analysis after (net signal, background corrected)

Hypothesis: migration of elements liquid digestion of central

during drying process as gelatine net is part and borders of the

experiments in progress
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Sala et al. demonstrated that the gelatines (20 pL droplet) with the most homogeneous g Brannanalss=
element distribution was prepared from 10% m/v gelatine solution®. Therefore, based on
bibliographical references and LA-ICPMS homogeneity experiments, 10 % gelatine was
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Conclusions

In this work the feasibility of an internal standard doped gelatine was assessed for its use in quantitative bio-imaging of
U in kidney tissue by laser ablation coupled to ICPMS. Beyond the optimisation of the gelatine itself, a biological sample
preparation protocol and matrix-matched standards have been also developed. This new methodology (U spiked
matrix-matching standards, Tm spiked gelatine as IS) allowed the visualization of uranium’s heterogeneous distribution
and its quantification in the analysed kidney tissue. The future goal would be to enhance the image quality by
optimizing ablation parameters and the analysis of larger areas for a more accurate reconstruction of the renal

distribution of uranium in the whole organ to better understand uranium nephrotoxicity.
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