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Introduction
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Context

@ Accidents leading to unplanned exposure of humans to ionizing radiation
(IR) have occurred many times
o overexposure in radiotherapy services or occupational settings
o large-scale nuclear accidents

@ Unclear radiation exposure scenarios and/or inconsistent findings

o workers at risk of exposure may not wear their obligatory personal dosimeter
o workers at risk of exposure may not store it correctly after use.

@ Estimation of the absorbed radiation dose received by an exposed or
suspected exposed individual may be crucial to:
o Optimize patient-centered care
o Predict the derived health consequences for both early and late effects
o Perform rapid triage of exposed versus non-exposed persons
o Clarify unclear radiation exposure scenarios
o Appease the "worried well” persons

Dose assessment = Proof of exposure by court and professional associations

IRSN
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Introduction
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Biological retrospective dosimetry

o It offers the only possibility to estimate the individual absorbed dose

o even weeks or months after a potential exposure (Kulka et al. (2018)).
o when a direct measurement of IR exposure is not or no longer possible

Main goal

Estimation of the individual absorbed radiation dose from microscope counting
of radiation-related chromosomal anomalies

@ Radiation exposure causes chromosomal DeoxyriboNucleic Acid (DNA)
lesions like double-stand breaks

@ The broken fragments may repair incorrectly = Chromosome aberrations

Atteinte z? :%7{?
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Introduction

The dicentric chromosome assay (DCA)

@ Dicentrics have a low naturally occurring background frequency

@ Frequencies of dicentrics increase with the absorbed dose
= Well-established and highly specific biological marker of radiation
exposure

@ Scoring dicentrics in peripheral human blood lymphocytes : "gold
standard” biological method for retrospective dose estimation (IAEAb
(2011)).

a IRSN
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Introduction

Main questions

Given the number of dicentrics per cell observed in blood lymphocytes:

Question Q1

Can it be stated that a strictly positive radiation dose has been received by :

O all of the analyzed cells (whole-body irradiation)?
@ only a fraction of the analyzed cells (partial irradiation)?

@ none of the analyzed cells ? (Relevant for unclear exposure scenarios)
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Introduction
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Main questions

Given the number of dicentrics per cell observed in blood lymphocytes:

Can it be stated that a strictly positive radiation dose has been received by :

O all of the analyzed cells (whole-body irradiation)?
@ only a fraction of the analyzed cells (partial irradiation)?

@ none of the analyzed cells ? (Relevant for unclear exposure scenarios)

What is the estimated absorbed dose and the uncertainty associated to this
estimation?

IRSN
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4 real radiation accident victims (2006-2013)

In-vivo data provided by IRSN/LRAcc

. . Physical Conventional
Id Circumstances of accident Clinical signs dosimetry cvtogenetics
Vomiting (4h30), nausea, T GREETEE
06-11 Exposure to y-rays hair loss, No °‘ﬂ Batsilood
Lymphocytes: 0.8 x 103 - m?ggw
11-08 Medical context; 10 minutes located next Hematopoetic syndrom 7 No analysed,
to a y-source (Co 60) days after exposure
Put the y-source (Ir) in his hand then in ‘
08-03  his pocket (10 minutes to 1 hour) lymphocytes: 1.05 x 10 0.25 sv Ro: Number
-> Hand burn of dicentric

Exposure head and chest : 15-30 seconds chromosomes
05-03 Shoulders 5cms away from the X source Eryth:ma (cc{llzaer;):i)o_J 0.0455v observed in
Neck 20cms away from the X source SHPIEEEE each cell

o1 1108 o803 os03

1 . -




8 suspected exposed mdnvnduals (2006 2013)

In-vivo data provided by IRSN/LRAcc

Justifier le texte

G 4 real suspected individuals (2006-2013)
W From IRSN/LRAcc

Conventional

cytogenetics
Circumstances of Clinical Physical cytogenetics,

Id accident signs  dosimetry no: Number of
ripheral blood
Exposure to y-rays » ms ™
06:63 e No No ML
(10-15 minutes) analysed
Spent the night 25 »
06-70 centimeters away No No
from a y-source H Ro: Number
of dicentric

06-13 Colleague of 06-11 No No chromosomes.
ohsepyediin
06-15 Colleague of 06-11 No No each cell

For some of them, no dicentric was observed...




Calibration data (Cobalt 60) - In-vitro data provided by IRSN/LRAcc

In-vitro irradiation of blood samples - various healthy donors - different doses

Number Dose Number

of analyzed  (Gray) of
cells dicentrics
19194 0 21 g
1676  0.05 3 :
1552 0.10 6 R
481 0.15 3 8
3 24
1057 0.24 11 g
1768 0.30 38 3 ,
1187 0.33 18 ;g Jﬂ 1
2919 0.50 83 ER
— T
1538 0.80 100 05 25 45
869 1 90 Dose (in Gray)
1525 1.6 269
Dose =0 Gy Dose = 0.5 Gy
1844 2 545 L | H E%.
. D‘D U‘Z D‘A D‘G 08 1.0 a 00 D‘S 1‘0 1‘5 2‘0
352 2.31 122 - Numbor ofdortic obsrved
784 3 482
Dose=2Gy Dose = 5.77 Gy
534 4 s 2
L T IRSN
g - g - oE SApioMGTECTION
341 4.70 381 o 1 2 3 4 0123456 €1 DF SORETE NUCIEAIRE
Numberof Wb of st oseed

94 577 143 1047
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Standard approachm

Dose response model MA for in-vivo data

Exposed and suspected exposed individuals

Let's consider a given individual with ng analyzed cells:
@ Dy : Unknown absorbed dose (in Gray) received by each cell

o Ry Number of dicentrics observed in each cell k (k=1,...,ng)

In case of LOW-LET radiation and homogeneous irradiation

(Ma) Ri ~"? Poisson(o)
Xo=A+ aDy + 8D:

e 0 = (A, «,3): unknown parameters with A > 0, 3> 0, a > —2/ApB
@ A: background expected number of dicentrics per cell at dose Dy = 0
o Yo =312, Rk ~ Poisson(noAs)

Non-identifiable model = External data required to estimate 8 = (A, o, ) .RS“
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approaches
e ~O0

Dose-response model M ¢ for calibration data

Let's consider a given experimental (in-vitro) irradiation i € {1,...,/}
o D;: Fixed absorbed dose (in Gray) received by each cell

o Z ;- Number of dicentrics observed in each cell | € {1,...,n;} at dose D;

In case of LOW-LET radiation and homogeneous irradiation

At a given dose D;:
(Mc) L el Poisson(\;)
A = A+ aD; + gD?

= Y; =311, Z;is ~ Poisson(n;\;)

where Y; is the total number of dicentrics observed at dose D; and n; the total
number of analyzed cells
IRSN

13/47



approaches

Answering @, - Estimation of the dose

@ Fit M to calibration data using maximum likelihood estimation
o Plug § = (A, &, p) into M

@ Derive point estimate DAo of the absorbed dose Dy (inverse regression)

. W . =G4 a2+ 4B — A)
Do =g(A&,8) = 23

Yo

no

where Ao =

14/47



Id Circumstances of accident
06-11 Exposure to y-rays
11-08 Medical context; 10 minutes located

next to a y-source (Co 60)

Put the y-source (lr) in his hand then
08-03 in his pocket (10 minutes to 1 hour)
-> Hand burn
Exposure head and chest : 15-30
seconds Shoulders 5cms away from the
X source Neck 20cms away from the X
source

05-03

06-63 Exposure to y-rays (10-15 minutes)

Spent the night 25 centimeters away

Uegl from a y-source

Potential drawbacks:

MLE for the
dose Dy

4.40

1.88

0.23

0.15

0.25

06-13

06-14

06-15

06-16

04-14

13-09

Circumstances
of accident

Colleague of 06-11

Colleague of 06-11

Colleague of 06-11

Colleague of 06-11

Positive dosimeter

Positive dosimeter

MLE for the
dose Do

0.02

0.02

-0.03

0.02

-0.03

-0.03

o If Xo = nL:)) =0 then Dy < 0 (Context: Small signal in the data)

@ Prior information on the dose not accounted for

@ Modular approach : Disjoint estimation of 6 and Do

15 /47



@ Approach 1: Multivariate delta-method

og\’ og\’
L 2 [ =5 ;
h=oi(50) .t (5).L 3 (55),
+2 ( ) ( ) cov(A, &) + 2 g—i) (g—;) Acov(&,
=& a=& B=8

+2(§f\> (g;) “cov(A, B)

= Asymptotical 95% confidence interval on dose estimate: Do + 1.966p,

@ Approach 2: Bootstrap

Potential drawbacks:
@ |s the asymptotic assumption correct?
@ Bootstrap = Strong data redundancy if small signal in data I
@ Uncertainty on the dose estimation may depend on the statistical method.. RSN
used to compute the confidence interval
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Standard approaches

Answering Q1 - Strictly positive absorbed dose received?

Hypothesis testing: Hy : Do = 0 vs Hy : Dy = di (with di > 0)
o Test statistic: Yo =3} Rk
o Under Hy, Yo ~ Poisson(ngA)
o Critical region: [y, 4+00] with y¢ = 0.95 quantile of Poisson(ngA)
o yi is called " Decision threshold”
o If ¥ > yi, Ho is rejected with error (of the first kind) = 0.05
o Statistical power: 1 — Frdy, (y5 ) where Frdy, cumulative distribution
function of a Poisson distribution with intensity = no(A + &di + ﬁdf)

o Detection Limit: The smallest value of dose di from which the statistical
power of the test is greater or equal to 0.95




Standard approaches £

Answering Q1 - Strictly positive absorbed dose received?

2
- =m 500 cells
S m 1000 cells
B
g o |
o o
®
8
2 o«
5 S
7]
o
o 4
=]
2 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Dose (in Gray)
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Standard approaches
(]

Answering Q1 - Strictly positive absorbed dose received?

Id no Yo ¥ bL Id ny Yo Y oL
1 051
0611 139 155 0613 602 1 2 0.19
1os  4st 12 G 0614 500 1 2 0.23
3 0.14
08:03 1024 13 0615 505 0 2 0.22
z 0.23
0503 500 3 0616 508 1 2 0.22
06-63 500 4 2 0.23 04-14 503 0 2 0.23
0670 356 5 b 0.30 13-09 507 [ 2 0.22

DL = Detection Limit

Potential drawbacks:
@ Binary answer to Q1: Rejection of Hy or not
@ Dy is unknown ! : Statistical power?
@ The statistical power may be very small for small doses Dy ...
°

Uncertainty on the estimation of the background expected number of
dicentrics per cell A not accounted for

Does not allow to test if only a fraction of the analyzed cells have
received a strictly positive radiation dose

IRSN
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Standard approaches

Aim of the work

o Can Bayesian statistical methods offer relevant alternative answers to
questions @1 and Q7 in biological retrospective dosimetry ? ‘

@ To account for expert knowledge when assigning a prior distribution on
the unknown absorbed dose Dy

o To propose a unique, flexible and coherent framework allowing to
simultaneously answer to questions @1 and @2

RSN
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Bayesian contributions

Which model?

Approach 1: the one previously described....
Directed Acyclic Graph of the full model (M4 + M)

In-vivo data Calibration data
1 individual

e 0= (A, «,p): shared parameters
@ Possibility for the in-vivo data to be accounted for when fitting A, o, 8 |RSHN
@ The Bayesian framework allows fitting this model in one step o

2247




The prior distributions

A ~ Unif[0, +o0]

o~ Unif[=2/AB, 40|

B ~ Unif[0, +o0[

Prior probability distribution on Dy

e Dy ~ Unif(0,10) = Vague prior
o Dy ~ Gamma(a, b) = Informative prior




Using expert knowledge to define an informative Gamma prior Dy

@ Hyperparameters a and b of the Gamma prior may be fixed by expert
knowledge given the accident scenario

. N - - Physical Prior distribution on D

Id Circumstances of accident Clinical signs dosimetry
Vomiting (4h30), nausea,

06-11  Exposure to y-rays hair loss, No
Lymphocytes: 0.8 x 103

Do.median=2.5 Dgmax = 10 (q99-10)
Do~-Gamma(a=1.98 , b=0.66)

Medical context;
11-08 10 minutes located next to a y-
source (Co 60)

Hematopoetic syndrom 7 No Do.median=2.5 Dgmax = 10 (q99-10)
days after exposure Do~-Gamma(a=1.98 , b=0.66)

Put the y-source (lr) in his hand
08-03 then in his pocket (10 minutes lymphocytes: 1.05x 103 0.25 Sv
to 1 hour) -> Hand burn

Do.median=0.25 Dymax =5 (q99-5)
Do~Gamma(a=0.4, b=0.6)

Exposure head and chest : 15-

30 seconds Shoulders 5cms Erythema (collarbone)
away from the X source Neck Lymphocytes: 2.39x 103
20cms away from the X source

Do.median=0.045 Dymax = 5 (q99-5)

05-03 0.045 Sv Do~Gamma(a=0.2, b=0.44)

For individuals for which no clinical sign was observed: Dy ~ Unif (0, 2)
= Not enough informative ! To improve!




Bayesian contributions

Using expert knowledge to define an informative Gamma prior on Dy

[Te]
T | — 6-11 & 11-08
— 05-03
—— No clinical sign
|
24 |
ey |||
T ||
[ |I
=l ||I
w 1
2
g -
T T T T T 1
0 2 4 6 8 10
Dose (in Gy)
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ian contributions
0

Answering (), - Bayesian estimation of the dose

MCMC algorithm - Package R "rjags”

06-11 1108 08-03
= s — 30 _ 05
g . i 1 t i S 25 G 4]
i s Ik 13 L] ¥ 5 0sq
H £ 15 E sl
3 § b £ o
L E S 2 oo
T T T T T T T T T T T T
cum Bootsira Bayesian_vague  Bayesian_info Gum Bootstra Bayesian_vague  Bayasian_info cUM Bootsira Bayesian_vague  Bayesian
P yesian_vag yesian i o yesian_vag. yesian | » yesian_vagy yesian
05-03 06-63 0670
~ 05 ~ 05 _ 05
@ 04 2 04 9 04
E 03+ % 08 § 03
. ol - vl £ ]
g 01 g 01 é; 0.1
2 o0 2 oo 2 oo
T T T T T T T T T T T T
cum Boolsap  Bayesian_vagus  Bayesian_info cuM Bootstap  Bayesian_vague  Bayesian_info GUM Boolstsp  Bayesian_vague  Bayesian

GUM= Multivariate Delta-Method IRS“
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Bayesian contributions
000008 \

Answering (), - Bayesian estimation of the dose

06-13 06-14 06-15

025 _ 025 ]
& 020 | & 520 o
£ 015 £ 015
% 010 & 0.10 o
£ oss & 005
T R e S 20001 e s T L I
2.005 | groﬂﬁ R
=010 0.10

T T T T T T T T T T T
cum Bootswap  Bayesian vague  Bayesian_info Gum Bootsrap  Bayesian vague  Bayesian_info Gum Bootstrap  Bayesian vague  Bayesian |
0616 0414 1309
_ 025 025
& 020 | & 020 o
£o15 ] o015
% 010 2 0.10 -
';E 0.5 5 005 o
goootf------- P -d-- B T T S
k]
2005 2005
=0 .10
T T T T T T T T T T T
cum Bootswap  Bayesian vague  Bayesian_info Gum Bootsrap  Bayesian vague  Bayesian_info GuM Bootstap  Bayesian vague  Bayesian |

E SORETE NUCIEAIRE
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Given the prior distribution assigned to Dy, we are assuming that Dy > 0

= Is this assumption relevant for all the considered individuals?

IRSN
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Bayesian contributions

Answering ¢; and @, under the Bayesian framework

Question @

Can it be stated that a strictly positive radiation dose has been received by :

O all of the analyzed cells (whole-body irradiation)?
@ only a fraction of the analyzed cells (partial irradiation)?

@ none of the analyzed cells ? (Relevant for unclear exposure scenarios)

The above sub-questions 1 and 3 can be formalized as :

A Bayesian model selection problem

Mo : R~ Poisson(A) Vs My R~ Poisson(A + aDg —l—ﬁDg)

given in-vivo data and calibration data following model M¢ (Do > 0)

IRSN
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Answering Q1 and @, under the Bayesian framework

D1=0.01 D2=0.05 D3=0.1
D4=0.15 D5=0.2 D6=0.5

Densty
48
L
—_—
Densty
048
[N
—
Densty
4
[
—

D7=1 D8=2 D9-4

Densty
00 04 08
[

Post.mean Credible
interval at 95%

[ | Poisson(A) A 0.001 [0,0006; 0.0015]
W Poisson(A+aD,+ fD]) with Dy >0 - LoD (0032008

0.048 [0.044; 0.052]

IRSN
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Answering ¢; and @, under the Bayesian framework

= A Bayes factor (Jeffreys, 1939) can be efficiently approximated (e.g.,
Monte-Carlo estimate)

But what about sub-question 2 about partial irradiation?

31/47



Idea: using a mixture model (Kamary et al. (2014) - arXiv)

Let's consider a given individual - potentially exposed - with ny analyzed cells:
@ po: unknown probability for each cell to have received a dose > 0
@ Dg : unknown absorbed dose (in Gray) received by each irradiated cell

A mixture model for in-vivo data

(LOW LET + homogeneous irradiation)
M i Rl (1 — po)Poisson(A) + poPoisson(A + aDy + BDE)

Dy > 0and py € [0,1]

0 = (A, o, B): unknown parameters with A > 0, 8> 0, a > —2,/AB
A: common parameter shared by both mixture components

po can also be interpreted as the proportion of irradiated cells

Dy and pp assumed to be identical for each irradiated cell

Mo and M4 are very special cases of the mixture model

;% RSN
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Bayesian contributions

Directed Acyclic Graph of the full model (M, + M¢)

In-vivo data Calibration data
1 individual

o 0 = (A, q,pB): shared parameters

@ The Bayesian framework allows fitting this model in one step

st
0 1 crion
Eroe e
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Bayesian contributions

Answering to @; and @, with M i (1/2)

o If pp =0, model My is selected given the available count data

e = Response to Q; is NO= "There is no evidence that a strictly positive
radiation dose has been received”.

o If pop =1, model Ma is selected given the available count data

o = Response to Q; is YES= " A strictly positive radiation dose has been
received by all the analyzed cells”.

o If pg €]0, 1], neither model Mgy nor model My is selected given the
available count data

o = Response to Q1 is YES= " A strictly positive radiation dose has been
received BUT only by a fraction of the analyzed cells” (partial body
exposure).

o The fraction of the body irradiated is defined as (IAEA report 2001):

£ = Po % &xp(Do/D) D ~ Unif(2.7,3.5)

(1= po)+ po x exp(Do/D)




ntributions

Answering to Q; and Q, with M, (2/2)

@ Posterior distribution on py = Probabilistic answer to Q1

o = Decision criterion to define the range of acceptance, rejection and
indecision conclusions

e 2
b 5T e g W5 W i 1
o

@ Let's ci, ¢, U be fixed decision thresholds (to calibrate by simulation)
o Compute w1 = P(po > c1|Y:, R«) and m2 = P(po < 2| Y7, Rk)
o If 11 > U = YES= "There is strong evidence that a strictly positive
radiation dose has been received by all of the analyzed cells”.
o If mo > U = NO= "There is no evidence that a strictly positive radiation
dose has been received”.
o Else YES= "A strictly positive radiation dose has been received BUT only
by a fraction of the analyzed cells” (partial body exposure).




The prior distributions

A ~ Unif[0, 400

a ~ Unif[-2+/AB, +oo]

B ~ Unif[0, +oo[

Do ~ Gamma(a, b) or Dy ~ Unif(0,10)
po ~ Beta(c, d)

Hyperparameters a,b,c,d may be fixed by expert knowledge given the
accident scenario

Default choice (Rousseau and Mengersen (2011)): ¢=0.5,d=0.5
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Bayesian inference

Adaptive Metropolis-Hastings algorithm

@ Block updating for (A, o, ) using a Gaussian random walk (20%
acceptation rate)

@ Gaussian random walk for Dy (40% acceptation rate)

@ For the mixture weight po:

o lteration t: Independent proposal = pg"'"d ~ Beta(0.5,0.5)

o lteration t+1: Random walk = pg"'"d ~ Beta(1+ p},2 — pf)
e 40% acceptation rate

o Implemented in Python (2.7.10) (100000 iterations = 30 seconds)

Asymptotic consistency of the proposed mixture testing procedure

@ Proved by Kamary et al. (2014) in the specific case of embedded mixture
components

o "If one model is indeed correct, the posterior medians of the corresponding

weight in the mixture settles very quickly near the boundary values of 1 as
the sample size increases”
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Remark

@ Equivalent formulation of M ;i pointing out the latent allocation variables

M R~ Poisson(Ax) with Ak = A+ aDoe + BDE,
Dox = vk X Dy with ~k ~ Bern(po)

@ Easy implementation in WinBUGS or JAGS but inefficient Gibbs sampler!!!

IRSN
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Baypﬂan contrlhutlom

Convergence dlagnostlcs on the weight py

Gibbs sampler (Left) vs Adaptive Metropolis-Hastings (Right)

100
" T

= = EOETTE -

Y % ki
n o 090

[¥] : 1
BUGS e e Fri ot -
iteration

0500 100015007060 25003908 ° "0 500 10001500 200075003000
PO

iteration

pO[3] chains 12
10
o | N RN
0.0
05
10
0 20 40

00
0 500 100015002000 25003000 b
PO




ta pproach Bayesian contributions

Posterior statistics, Bayes factor and posterior probability of M/

Bayesian Mixture approach P(M; [y)

Informative prior on D,
Non-informative prior on p,

Dy posterior Ppp posterior Fy posterior P(py>0.8) P(py=<0.2)
i e =
95%Cl 95%C1 95%CI

o 4.61 0.91 0.97 0.93 0.0 i 1

[4.14; 5.19] [0.76,1.00] [0.90; 1.00] (P [1.0; 1.0]
ros 2.09 0.84 0.90 0.60 0.0 1.75°+185 1

[1.76; 2.69] [0.56; 1.00] [0.69; 1.00] {very strong) [1.0; 1.0]
e 0.32 0.67 0.69 0.39 0.11 >10°7 1

[0.15; 1.25] [0.10; 1.00] [0.11; 1.00] {very strong) [1.0; 1.0]
R 0.13 0.54 0;55 0.31 0.25 4 0.67

[0.0002; 1.29]  [0.011; 1.0] [0.01; 1.0] (Positive) [0-63; 0.70]

0663 0.47 0.23 0.26 0.16 0.46 8.3 0.86

[0.08; 1.84] [0.02; 0.99] [0.02; 0.99] (Positive) [0.83; 0.88]
e 0.55 0.36 0.40 0.21 0.33 303.03 1.00

[0.16; 1.84] [0.04; 1.00] [0.06; 1.00] (Very Strong) [1.0; 1.01

L] I{S“

€1 bE SORETE NVCLEAIRE

20/47



tal pproach Bayesian contributions

Comparison of dose estimations

0611 1108
6.0 40
g 55 g 3.5
2 8
2 3
S 50 S 30
5 5
& 45 7{ { } i g 25
8 40 8 20+ 1 b 3
2 45 £ 154
30 10 -
T T T T T T T T
MxBayes 1502014 Merkle MxBayes 1502014 Merkle
05-03 0663
2.0 20
2 @
2 15 2 15
a a
z 3
8 1.0 & 1o
2 Fy
2 g
£ os £ os
3
0.0 - : § ‘ 0.0 | 1 ?
T T T T T T T T
MixBayes 1S02014 Merkle MixBayes 1502014 Merkle

Posterior medians 4+ 95% credible intervals
ISO2014 = Multivariate Delta Method

Whole-Body Dose

Vhole-Body Dose

08-03

3 $ £

MixBayes ISO2014 Merkie

06-70

05 o

0.0

P S

MixBayes IS02014 Merkie

SORETE NUCIEAIRE
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Comparing prior and posterior probability distributions on pg

Prior probability distribution on pg : Beta(0.5,0.5)

w w0 =

From left to right : Victims 06-11 (Estimated dose: 4.61 Gy), 08-03
(Estimated dose: 0.32Gy), 05-03 (Estimated dose: 0.13Gy)

o Weak influence of the prior choice on Dy (results not shown)

@ Lack of information in the data to infer py especially when dose is small
= More data needed to infer p; (and then answer Q)?

IRSN
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Bayesian contributions

Sensitivity to the prior choice on py

Informative Beta priors defined from expert knowledge
o Jeffrey's prior Beta(0.5,0.5)

16 7 6 35

14 i 6 n s ‘30 M

12 st M a /'25

10 4t 3 |20

o8 3t s

06 2 2 Lo

04 i

02 1 1 5 .

oo o 0 - 0 — -

12345 000204060810000204060810000204 060810

35 35 - 2.0 = L6 -

30k 30 / 18{ T4

25 25 [\ A ha

20 20 \ 12| hofl .

15 15 \ Lo i s/

10 10 o8 sl

05 05 4 4

0.0 Q 0 00 02 2
b@i02836%a0 06 05 10 15 2000 05 10 15 20 000204 0608 10 0.0 0204 06 03 1.0 0.0 0.2 0.3 0.6 0.8 10

0503 0663 0670 0503 0663
Posterior distribution on the dose Do Posterior distribution on the weight pg

= Sensitivity is clearly present but should naturally vanish as the numberl RS“
of analyzed blood lymphocytes increases e

£ SORETE NUCKEAIRE
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Conclusion & Perspectives

[ lele}

Conclusions

o First fully Bayesian approach proposed to simultaneously answer to two
main questions of interest in biological retrospective dosimetry

o = New insights to the European Radiation Dosimetry (EURADOS)
Working Group 10, task 10.6

o Using the proposed mixture model M i allows to get rich probabilistic
answers to questions @; and @

o = Relevant input data for decision-making in the contexts of clinical
management of patients, rapid triage after large-scale radiation incident,
reassuring the 'worried-well’...

@ In case of low suspected dose, the number of analyzed blood lymphocytes
should be higher to obtain more precise answers to question Q1




Conclusion & Perspectives
(o] 1o}

Perspectives

@ Simulation studies to validate the whole methodology and calibrate the
decision thresholds (c1,c2,U)

@ Validate the whole methodology from new experimental data for which Dy
and pg are known

@ Bayesian optimal design to define the number of analyzed cells ng required
to optimally answer to question @1 and Q2 under budget constraint

o Extend the proposed approach to other chromosome aberrations

@ Provide operational tools to dosimetrists
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