A Bayesian hierarchical approach to account for shared exposure measurement error in an occupational cohort

Sabine Hoffmann^{1,2}, Chantal Guihenneuc³, Sophie Ancelet¹

¹Institut de Radioprotection et de Sûreté Nucléaire, Paris ²Ludwig-Maximilians University, Munich ³Université Paris Descartes, Paris

ISCB 2019, Leuven

ISCB 2019, Leuven

1 / 19

- Radon is a radioactive gas which presents the primary source of background radiation
- It is known to be the second leading cause of lung cancer [Samet and Eradze, 2000] responsible for about 2% of cancer deaths in Europe [Darby et al., 2005]

Cohorts of uranium miners present an important source of information on the association between radon and lung cancer

ISCB 2019, Leuven

2 / 19

• Exposure measurement error may cause bias in risk estimates, a distortion in the exposure-risk relationship and a loss in power

- Exposure measurement error may cause bias in risk estimates, a distortion in the exposure-risk relationship and a loss in power
- Classical methods to account for measurement error may lack the flexibility to account for complex measurement error characteristics

- Exposure measurement error may cause bias in risk estimates, a distortion in the exposure-risk relationship and a loss in power
- Classical methods to account for measurement error may lack the flexibility to account for complex measurement error characteristics
- The hierarchical Bayesian approach provides a flexible and coherent way to model
 - Measurement error in time-varying exposures
 - Heteroscedastic measurement error
 - Measurement error that is shared between or within subjects

Account for exposure measurement error in the association between radon exposure and lung cancer mortality

The French Uranium Miners' Cohort

イロト イボト イヨト イヨト

ISCB 2019, Leuven

4 / 19

Radon exposure in the French cohort of uranium miners

S. Hoffmann, C. Guihenneuc, S. Ancelet

< A

Radon exposure in the French cohort of uranium miners

4 MP > 4 = > 4

Dan

Radon exposure in the French cohort of uranium miners

Material and Methods

Period 3 - Individual dosimetry

Unshared classical measurement error

▲ □ ▶ ▲ □ ▶ ▲

E

< A

Dan

DQC

DQC

S. Hoffmann, C. Guihenneuc, S. Ancelet

Summary of measurement error characteristics in the cohort

Summary of measurement error characteristics in the cohort

Modelling classical measurement error

In a hierarchical Bayesian approach, we can account for classical measurement error using the following conditional independence models ([Richardson and Gilks, 1993]):

- disease model: $[Y_i | X_i, \beta]$
- measurement model:
 - $[Z_i|X_i,\sigma]$ for classical error
- exposure model: $[X_i | V_i, \pi]$ for classical error

Modelling Berkson measurement error

In a hierarchical Bayesian approach, we can account for Berkson measurement error using the following conditional independence models ([Richardson and Gilks, 1993]):

- disease model: $[Y_i | X_i, \beta]$
- measurement model:
 [X_i|Z_i, σ] for Berkson error

The disease model: Modelling failure times

•
$$Y_i = \min(T_i, C_i)$$
, $\delta_i = \mathbbm{1}_{[T_i < C_i]}$
 $h_i(t) = h_0(t) \left(1 + \beta \sum_{q=1}^Q X_{iq}(t)^{t_j - 5} \right)$

• Describe $h_0(t)$ by a piecewise constant hazard model

The disease model

\$

Measurement and exposure models

First period 1946 - 1955:

 Classical measurement error shared both within and between miners:

•
$$Z_j^1 = \xi_j \cdot U_j^1$$

• $U_j^1 \sim \mathcal{LN}\left(-\frac{\sigma_{U^*}^2}{2}, \sigma_{U^*}^2\right)$

• Berkson error shared within miners:

•
$$X_{ij}^{1}(t) = \xi_j \cdot T_{ij}(t) \cdot U_i^{1}$$

• $U_i^{1} \sim \mathcal{LN}\left(\frac{-\sigma_{U_1}^2}{2}, \sigma_{U_1}^2\right)$

- The exposure model:
 - $\xi_j \sim \mathcal{LN}(\mu_{\xi}, \sigma_{\xi})$

Measurement and exposure models

First period 1946 - 1955:

 Classical measurement error shared both within and between miners:

•
$$Z_j^1 = \xi_j \cdot U_j^1$$

• $U_j^1 \sim \mathcal{LN}\left(-\frac{\sigma_{U^*}^2}{2}, \sigma_{U^*}^2\right)$

• Berkson error shared within miners:

•
$$X_{ij}^{1}(t) = \xi_j \cdot T_{ij}(t) \cdot U_i^{1}$$

• $U_i^{1} \sim \mathcal{LN}\left(\frac{-\sigma_{U_1}^2}{2}, \sigma_{U_1}^2\right)$

- The exposure model:
 - $\xi_j \sim \mathcal{LN}(\mu_{\xi}, \sigma_{\xi})$

Second period 1946 - 1955:

• Berkson error shared within miners:

•
$$X_{ij}^{2}(t) = Z_{j}^{2}(t) \cdot U_{i}^{2}$$

• $U_{i}^{2} \sim \mathcal{LN}\left(\frac{-\sigma_{U_{2}}^{2}}{2}, \sigma_{U_{2}}^{2}\right)$

Accounting for shared classical and Berkson error

Bayesian inference

Target: Joint posterior distribution of $\boldsymbol{\theta} = (\beta, \boldsymbol{X}, \boldsymbol{\lambda}, \boldsymbol{\sigma}_{\epsilon}, \boldsymbol{\mu}_{x}, \boldsymbol{\sigma}_{x})$

$$\begin{split} [\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{Z}] &\propto [\boldsymbol{\beta}][\boldsymbol{\lambda}] \prod_{i=1}^{n} \left[y_{i}|\sum_{q=1}^{Q_{i}} X_{iq},\boldsymbol{\beta},\boldsymbol{\lambda} \right] \\ &\cdot \prod_{i=1}^{n} \prod_{q=1}^{Q_{2}} \left[X_{iq}^{2}|Z_{iq}^{2},\sigma_{U2}^{2} \right] \\ &\cdot \prod_{i=1}^{n} \prod_{q=1}^{Q_{1}} \left[X_{iq}^{1}|\xi_{j},T_{ij}(t),\sigma_{U1}^{2} \right] \\ &\left[\mu_{\boldsymbol{\xi}} \right] [\sigma_{\boldsymbol{\xi}}] \prod_{i=1}^{J} \left[Z_{j}|\xi_{j},\sigma_{U^{*}}^{2} \right] [\xi_{j}|\mu_{\boldsymbol{\xi}},\sigma_{\boldsymbol{\xi}}] \end{split}$$

A 3 b

Bayesian inference

Target: Joint posterior distribution of $\boldsymbol{\theta} = (\beta, \boldsymbol{X}, \boldsymbol{\lambda}, \boldsymbol{\sigma}_{\epsilon}, \boldsymbol{\mu}_{x}, \boldsymbol{\sigma}_{x})$

$$\begin{split} [\boldsymbol{\theta}|\boldsymbol{y},\boldsymbol{Z}] &\propto [\boldsymbol{\beta}][\boldsymbol{\lambda}] \prod_{i=1}^{n} \left[y_{i}|\sum_{q=1}^{Q_{i}} X_{iq},\boldsymbol{\beta},\boldsymbol{\lambda} \right] \\ &\cdot \prod_{i=1}^{n} \prod_{q=1}^{Q_{2}} \left[X_{iq}^{2}|Z_{iq}^{2},\sigma_{U2}^{2} \right] \\ &\cdot \prod_{i=1}^{n} \prod_{q=1}^{Q_{1}} \left[X_{iq}^{1}|\xi_{j},T_{ij}(t),\sigma_{U1}^{2} \right] \\ &\left[\mu_{\boldsymbol{\xi}} \right] [\sigma_{\boldsymbol{\xi}}] \prod_{i=1}^{J} \left[Z_{j}|\xi_{j},\sigma_{U^{*}}^{2} \right] [\xi_{j}|\mu_{\boldsymbol{\xi}},\sigma_{\boldsymbol{\xi}}] \end{split}$$

⇒ Adaptive Metropolis-Within-Gibbs algorithm developed and tested in Python to sample from the joint posterior distribution

Prior distributions

• [β]: $\beta \sim \mathcal{N}(0, 10^4)$

• [λ]: $\lambda_j \sim \mathcal{G}(\alpha_{0j}, \lambda_{0j})$ for each component j, $j = 1, \dots, 4$

< A

Prior distributions

• [
$$\beta$$
]: $\beta \sim \mathcal{N}(0, 10^4)$

- $[\lambda]$: $\lambda_j \sim \mathcal{G}(\alpha_{0j}, \lambda_{0j})$ for each component j, $j = 1, \dots, 4$
- $[\mu_{\xi}]$: $\mu_{\xi} \sim \mathcal{N}(-0.8, 5.76)$

- $[\sigma_{\xi}^2]$: $\sigma_{\xi}^2 \sim \mathcal{IG}(0.01, 0.01)$
- [σ_U]: No validation sample available, fix values at estimates based on previous work [Allodji et al., 2012]

< □ > < □ > < □ > < □ > < □ > < □ >

Results

Model	Uncorrected EHR	EHR corrected for unshared ME	EHR corrected for shared Berkson error	EHR corrected for shared Berkson and classical ME
Risk estimate (per 100 WLM)	0.87	0.90	0.99	1.44
95% Credible interval	[0.49;1.36]	[0.51;1.41]	[0.48;1.73]	[0.66;2.69]

E DQC

4回》 4個》 4回》 4回》

Results

Posterior distribution for eta

1QC

Discussion

• When assuming a measurement model that realistically describes the exposure uncertainty in the cohort, we find a substantial increase in the risk estimate for radon

Discussion

- When assuming a measurement model that realistically describes the exposure uncertainty in the cohort, we find a substantial increase in the risk estimate for radon
- Outlook:
 - Assess the influence of model misspecification
 - Compare the proposed methodology with classical methods for measurement error correction
 - · Account for additional sources of dose uncertainty

Thank you for your attention

S. Hoffmann, C. Guihenneuc, S. Ancelet

ISCB 2019, Leuven 19 / 19

< A

Allodji, R. S., Leuraud, K., Bernhard, S., Henry, S., Bénichou, J., and Laurier, D. (2012).

Assessment of uncertainty associated with measuring exposure to radon and decay products in the french uranium miners cohort. *Journal of Radiological Protection*, 32(1):85–100.

Darby, S., Hill, D., Auvinen, A., Barros-Dios, J., Baysson, H., Bochicchio, F., Deo, H., Falk, R., Forastiere, F., Hakama, M., et al. (2005).

Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 european case-control studies. *Bmj*, 330(7485):223.

Hendry, D. J. (2014).

Data generation for the cox proportional hazards model with time-dependent covariates: a method for medical researchers. *Statistics in Medicine*, 33:436–454.

A bayesian approach to measurement error problems in epidemiology using conditional independence models.

American Journal of Epidemiology, 138(6):430-442.

Samet, J. M. and Eradze, G. R. (2000). Radon and lung cancer risk: taking stock at the millenium. *Environmental health perspectives*, 108(Suppl 4):635–641.

Convergence diagnostics: Trace plots

Convergence diagnostics: Autocorrelations for beta

S. Hoffmann, C. Guihenneuc, S. Ancelet

ISCB 2019, Leuven 19

19 / 19

Effects of shared and unshared measurement error

Model	Type of sharing	Type of error	Error variance	β	CI95%	Relative bias	Coverage rate
\mathcal{M}_1	unshared	Berkson	0.1	1.81	[1.64; 1.99]	-0.10	0.10
			0.8	1.25	[0.97; 1.49]	-0.38	0.00
\mathcal{M}_2		classical	0.1	1.75	[1.55; 1.93]	-0.13	0.02
			0.8	0.83	[0.45;1.21]	-0.59	0.00
\mathcal{M}_3	between	Berkson	0.1	1.82	[1.62; 2.01]	-0.09	0.22
			0.8	1.25	[1.03; 1.47]	-0.38	0.00
\mathcal{M}_4		classical	0.1	1.75	[1.53; 1.94]	-0.13	0.05
			0.8	0.80	[0.44; 1.16]	-0.60	0.00
\mathcal{M}_{s}	within	Berkson	0.1	1.45	[1.12, 1.69]	-0.28	0.00
			0.8	0.76	[0.54; 0.97]	-0.62	0.00
\mathcal{M}_6		classical	0.1	1.33	[1.04; 1.58]	-0.34	0.00
			0.8	0.39	[0.17; 0.62]	-0.81	0.00
\mathcal{M}_7	both	Berkson	0.1	1.46	[1.11; 1.78]	-0.27	0.00
			0.8	0.77	[0.54; 1.00]	-0.62	0.00
\mathcal{M}_{8}		classical	0.1	1.42	[1.04; 1.72]	-0.29	0.00
			0.8	0.49	[0.13; 0.86]	-0.76	0.00
\mathcal{M}_{0}	none	none	0	1.96	[1.80; 2.13]	-0.02	0.95

Table 1. Average posterior median $(\hat{\beta})$, overall 95% credible intervals (CI_{95%}), relative bias and coverage rate for 100 data sets generated according to the Cox model $\mathcal{D}_{y,a}$ a measurement model among \mathcal{M}_{u} to \mathcal{M}_{x} and a true risk coefficient of $\beta = 2$ per 100 WLM.

https://doi.org/10.1371/journal.pone.0190792.t001

3

Effects of shared and unshared measurement error

S. Hoffmann, C. Guihenneuc, S. Ancelet

ISCB 2019, Leuven 19 / 19

э

Sar

Validation of the algorithm: Simulation study

- n = 1000 miners
- Adapt a method based on piecewise exponential variables proposed by [Hendry, 2014] to generate survival times depending on a continuous time-varying exposure

ISCB 2019, Leuven

19 / 19

- $\beta = 1$
- $\sigma_{\epsilon 1}^2 = 0.8$ and $\sigma_{\epsilon 2}^2 = 0.5$
- Random censoring (exponential distribution)
- Flat prior distributions

•
$$\sigma_{\epsilon p} \sim \mathcal{N}(\hat{\sigma}_{\epsilon p}, 0.02)$$
 for $p \in \{1, 2\}$

Classical error: $\beta = 1$

Uncorrected risk estimate:

 $\beta_{median} = 0.42 \ [0.17, \ 0.76]$ with cover probability 0.20

Corrected risk estimate: $\beta_{median} = 0.995 \ [0.415, \ 1.921]$ with cover probability 0.95

S. Hoffmann, C. Guihenneuc, S. Ancelet

Berkson error: $\beta = 1$

Uncorrected risk estimate:

 $\beta_{median} = 0.83 \ [0.42, \ 1.40]$ with cover probability 0.90

Corrected risk estimate: $\beta_{median} = 1.066$ [0.499, 1.966] with cover probability 0.94

