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Abstract Standard approaches for variable selection in linear models are not
tailored to deal properly with high dimensional and incomplete data. Currently,
methods dedicated to high dimensional data handle missing values by ad-hoc
strategies, like complete case analysis or single imputation, while methods dedi-
cated to missing values, mainly based on multiple imputation, do not discuss the
imputation method to use with high dimensional data. Consequently, both ap-
proaches appear to be limited for many modern applications.

With inspiration from ensemble methods, a new variable selection method is
proposed. It extends classical variable selection methods such as stepwise, lasso or
knockoff in the case of high dimensional data with or without missing data. The-
oretical properties are studied and the practical interest is demonstrated through a
simulation study.

In the low dimensional case, the procedure improves the control of the error
risks, especially type I error, even without missing values. With missing values,
the method performs better than reference selection methods based on multiple
imputation. Similar performances are obtained in the high-dimensional case with
or without missing values.
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Missing Data; Variable Selection.

1 Introduction
Large scale data is challenging for data visualisation, data understanding, large
measurement and storage requirements, training and utilisation times, or predic-
tion. Variable selection, such as stepwise e.g., is one of the most common strate-
gies to tackle the issue. Many procedures of variable selection are still proposed
in the modern literature such as Lasso [1], Bolasso [2], knockoff [3, 4] among
others (see for example [5] for a review).

In this article we focus on a classical linear model framework in which a Gaus-
sian response Y is related to variables among a set of explanatory Gaussian vari-
ables Xj (j = 1, . . . , p). In this context, variable selection consists in identifying
explanatory variables which are significantly related to Y .

Issues commonly encountered in variable selection gather stability of the se-
lected subset of variables, high dimensionality, or missing data for instance. Many
methods have been developed to overcome each of them.

Ensemble learning methods provide a way to improve stability [6, 7]. Such
methods consist in perturbing the data several times, applying the selection pro-
cedure on the perturbed data, and then, aggregating over all obtained subsets. For
example, ensemble methods have been suggested for variable selection by random
forests [8] or lasso [7]. As regards the high dimensionality, it can be tackled by
techniques like shrinkage methods (e.g. ridge regression or lasso [1]), or by using
preliminary screening steps [9, 4]. As regards the missing data issue, multiple
imputation [10, 11, 12] appears the most intensively investigated. In particular,
many methods have been proposed to pool several subsets of variables obtained
from each imputed data set, independently to the way used to fill-in the data [13].

However, in practice, we potentially face to all challenges simultaneously,
making difficult to perform variable selection in a suitable way. In this paper,
we propose an original variable selection method based on an ensemble learning
method allowing variable selection in various cases, notably for high dimensional
data or missing data, while improving stability of the selection. To achieve this
goal, the main idea is to perform variable selection on random subsets of vari-
ables and, then, to combine them to recover which variables Xj are related to the
response Y . Note that ensemble learning methods for variable selection gener-
ally resample the individuals, but here, only variables are resampled. Performing
variable selection on several subsets of variables solve the high-dimensional issue
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and allows treatment of missing values by classical techniques. More precisely,
the outline of the algorithm are as follows: let consider a random subset of size
k among p variables. By choosing k small, this subset is low dimensional, al-
lowing treatment of missing values by standard imputation method. Then, any
selection variable scheme can be applied. We will focus on standard variable se-
lection methods, such as stepwise, lasso, but also on a more recent method, named
knockoff [4], which has the specific property to be consistent. By resampling B
times, a sample of size k among the p variables, we may count how many times, a
variable is considered as significantly related to the response variable Y and how
many times it is not. We need to define a threshold to conclude if a given variable
is significantly related to the response Y .

In the next section, we fully describe the proposed algorithm. Rules to tune
its parameters are given and mathematically justified. We also derive some the-
oretical properties of the algorithm. In Section 3, we illustrate the relevance of
the selection of variable method through a simulation study. Finally, a discussion
about extensions closes the paper.

2 Algorithm

2.1 Notation and context
Let consider a classical linear regression model

Y = Xβ + ε (1)

whereX = (X1, . . . , Xp) denotes a set of p explanatory variables, β = (β1, . . . , βp)
denotes the vector of regression coefficients, ε is a Gaussian noise with variance
σ2 and null expectation, Y is the response variable. n independent realisations of
(Y,X) are observed, leading to a data set with n rows and p+ 1 columns.

We assume that missing values occur on covariates only, without loss of gener-
alities [12].We noteR = (R1, . . . , Rp) the missing data mechanism so thatRj = 1
indicates variable Xj is missing, and Rj = 0 indicates variable is observed. The
n realisations of R are assumed to be independent. We do not put any restrictions
on the missing data mechanism, and any restrictions on the number of missing
values in order to cover a large range of situations.

We intended to select the “best” subset of predictors, i.e. the subset of non-
null coefficients of β. The central premise is that the data contains many features
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that are either redundant or irrelevant, and can thus be removed without incur-
ring much loss of information. Successful procedures are characterized by high
predictive accuracy, yielding interpretable models while retaining computational
efficiency. Penalized methods that perform coefficient shrinkage (such as lasso)
have been shown to be successful in many cases. Models with correlated predic-
tors are particularly challenging to tackle and missing data are difficult to handle
[14, 15]. Some alternative such as knockoff also provide statistical guarantees
[3, 4] but have not been adapted to handle missing data. Stepwise regression is
also very popular process of building a model by successively adding or remov-
ing variables based solely on the statistics such as AIC criterion or t−test of their
estimated coefficients. Unfortunately, the model is fit using unconstrained least
squares, therefore nothing can be said about the mathematical properties of the re-
sults. Furthermore, stepwise cannot be directly applied on high dimensional data
or data with missing values.

2.2 The method
As for ensemble methods, our algorithm has two steps: one which creates many
regression instances and one which aggregates instances into an overall regres-
sion. More precisely, each regression instance allows to test if the relationships
between (part of) explanatory variables and the response variable is significant
or not. Then, we aggregate tests of the instances to obtain a global test for each
variable.

To create regression instance, we sample k variables among the p variables.
Next, a variable selection procedure is applied on the k variables. If the method
does not handle high-dimensional data, k is chosen less than n, so that the high
dimensional issue is tackled. If the dataset has missing values, two cases can be
considered: the first one is the number of individuals with missing is very small.
For such a case, complete-case analysis can be a sufficient strategy to solve the
missing data issue. Otherwise, single stochastic imputation by the multivariate
Gaussian model can be performed. Note that because we do not aim to build con-
fidence intervals for regression coefficients, multiple imputation is not required
here. Imputation methods need accounting for the nature of the missing data
mechanism [11, 10, 12]. We will consider a classical method dealing with miss-
ing at random (MAR) mechanisms [10], but methods dedicated to missing not at
random (MNAR) mechanisms could also be used [16, e.g.].

Thus, any variable selection procedure can be applied, leading to the regres-
sion instances among the k variables that are significantly related to Y (according

4



to a given threshold). We iterate the process B times, leading to B regression
instances.

As a second step of the algorithm, the regression instances are aggregated.
For each variable Xj , we count the ratio rj between (i) the number of times the
variable Xj is selected as significantly related to the response variable Y and (ii)
the number of times the variable is present in the subsets. We conclude that a
variable Xj is significantly related to Y if rj is greater that a threshold r.

Sampling a subset of k variables implies that each variable is chosen a random
number of times. Therefore, a direct sampling of the variables implies that vari-
ance of Xj is not constant among the variables. This behaviour is irrelevant since
it required more iterations to bound the variance. Note that the sampling process
of a given variable can be viewed as a Bernoulli distribution and a bound on the
minimum of Bernoulli can be easily obtained through Chernoff inequality. An
alternative to this sampling scheme is random partitioning of the variables. If p is
a multiple of k, we have p/k subsets of variables by partition. Selection variable
techniques is applied to each of the p/k subsets so that Xj is observed with the
same proportion k/p over all subsets. We iterate the process by choosing random
partitions.

Three questions arise: (i) how to choose k, (ii) how to choose B and finally
(iii) how to choose the threshold r.

2.2.1 How many iterations?

To improve the stability of the procedure, the proportion of times that a variable
is considered as significant (rj) needs to be calculated from many iterations (B).

B has to be chosen, so that V (rj) is small. If the number of times the variable
Xj is significant follows a Binomial distribution, then for B̃ regression instances
gathering Xj (B̃ = B × k/p), we have V (rj) is less than 1

4B̃
. Thus, B̃ = 100

can be chosen to obtain a standard error less than 5%. For k fixed, it provides a
guideline to tune B.

We can note that B is related to p, meaning that the number of iterations of the
algorithm needs to be chosen according to the number of variables.

2.2.2 Which value for the threshold r?

rj can be seen as a variable importance measure or more precisely as an estimate
of α, the risk of the test between the null hypothesis H0 : “βj = 0′′ versus the
alternative H1 : “βj 6= 0′′ over all the B iterations. Following Neyman-Pearson
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lemma, rj needs to be chosen over than a threshold r (e.g. 95%) to control the α
risk.

To tune the threshold r whatever the data set, theoretical properties of the se-
lection method are needed. For instance, the false discovery rate is controlled by
knockoff at each iteration. Thus, it could be preserved by choosing r accordingly.
However, for many variables selection methods no such guaranties are available.
For them, r can be chosen a posteriori by empirical methods like cross-validation.
More precisely, the algorithm is applied on the train set, given a variable impor-
tance for each variable. Then, a grid of thresholds is fixed and a sequence of
nested linear regression models can be derived. For each one, an error of pre-
diction can be calculated. Note that in a context of regression, optimising r in
terms of prediction error is equivalent to optimisation in terms of regression coef-
ficient estimate, making cross-validation consistent with identification of non-null
regression coefficients.

Note that high-dimensional data and missing values are tricky for cross-validation,
since the linear models cannot be directly fit in both cases. The high-dimensional
issue can be tackled by a screening step using the variable importance measure,
while the missing data issue can be handled by imputing the test set and train set
simultaneously, excluding the outcome on the test set as proposed in [17].

2.3 Some mathematical properties
2.3.1 Aggregation of regression coefficients

Even if our goal is only to identify the subset of variables related to the response
Y , we investigate the performances of the aggregation of the regression coeffi-
cients estimates obtained by averaging of the B instances.

At first, let consider the sampling of variables for a regression instance and
assume for the moment the absence of missing data. For a regression instance,
let’s define δj such that δj = 1 if βj is drawn and zero otherwise. Putting them in
a diagonal matrix ∆ = diag(δ1, . . . , δp), the regression model based on a sample
of k variables can be rewritten as:

Y = Xβ + ε

= X∆β +X(I −∆)β + ε

= X∆β + ε′
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X∆ corresponds to the design matrix constructed on selected variables and ε′ ∼
N (X(I−∆)β, σ2I). Since ∆ is a projection matrix, then ∆2 = ∆ and (X∆)(∆β) =
X∆β.

We assume that X is inversible and, by convention, 0/0 = 0. Therefore

∆β̂ = (∆X ′X∆)−1∆X ′Y

and

E(∆β̂) = (∆X ′X∆)−1∆X ′E(Y )

= (∆X ′X∆)−1∆X ′(X∆β +X(I −∆)β)

= ∆β + (∆X ′X∆)−1∆X ′X(I −∆)β (2)
V(∆β̂) = (∆X ′X∆)−1σ2 (3)

We see from Equation (2) that the bias of β̂ is induced by the correlation be-
tween the subset of variables in the regression instance and the other variables
that are not selected in the regression instance. Thus, aggregation of regression
estimates by averaging is relevant if and only if the design is orthogonal and very
tricky otherwise.

2.3.2 Relevance to use k variables instead of p

The practical usefulness to perform selection from a subset of k variables instead
of p have been already explained. We now highlight how does this strategy influ-
ence the performances of a selection procedure.

Without loss of generality, consider that X gathers significant explanatory
variables only (i.e. βj 6= 0 for all 1 ≤ j ≤ p). Then, by independence between ε
and X

V(Y |X∆) = V(X(I −∆)β) + V(ε) (4)
= V(X(I −∆)β) + V(Y |X). (5)

The more higher the proportion of significant variables not present in the re-
gression instances, the more V(X(I − ∆)β) can be large (and V(Y |X∆) a for-
tiori). This implies that the regression scheme will be noised if relevant significant
variables are missed. This situation arises when the variables are sampled through
the algorithm, but identifying significant variables is more challenging on noisy
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data. Thus, to limit this loss of power, it seems more relevant to consider a large
value for the number of selected instances (k).

Previous results imply relationships between k and r. More precisely if k is
small, error of the model often contains significant variables and the ratio sig-
nal/error is lower. Sensibility of r to k will be discussed in the simulations.

3 Simulations

3.1 Simulation design
To study the quality of the procedure we simulate various cases varying the num-
ber of variables (p), the correlation between covariates (ρ), the signal to noise ratio
(snr), the nature of the missing data mechanism. For each configuration, T = 100
data sets are generated, and for each one, variable selection is performed accord-
ing to the proposed algorithm and methods presented below (Section 3.1.3).

3.1.1 Data generation

For a given configuration, data sets are generated as follows. First, n observations
for p covariates are generated according to a multivariate normal distribution with

null expectation, and variance



1 ρ . . . . . . ρ
ρ 1 ρ . . . ρ

.

.

.
. . .

. . .
. . .

.

.

.
ρ . . . ρ 1 ρ
ρ . . . ρ . . . 1

 where −1 ≤ ρ ≤ 1. Then,

the response Y is simulated according to a linear model Y = Xβ + ε where ε
is Gaussian with null expectation and variance 1

snr+1
, β is the sparse vector of

regression coefficients composed of zeros and a fixed value β only. This value is
chosen so that Var (Y ) = 1.

For all configurations, we keep:

• the number of individuals n = 200

• and the number of non-zero values in β is 8.

Before introducing missing values, configurations vary only by the values of p, ρ
and snr:

• we consider p = 100 or p = 300 variables. Let note that for the second
case, the number of variables is higher that the number of observations
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• we test two cases for the correlation ρ = 0 and ρ = 0.4. High correlation
among explanatory variables often generates spurious results for variable
selection

• finally, we test snr = 2 and snr = 4, by tuning β and the variance of the
noise under the constraint that the variance of Y is equal to one. Each case
corresponding to high or low difficulty to select relevant variables.

3.1.2 Missing data mechanisms

Next, missing values are added on covariates of each data set according to several
mechanisms. We consider a missing completely at random (MCAR) mechanism,
so that P (Rj = 1) = a for all j (1 ≤ j ≤ p) and a MAR mechanism, so that
P (Rj = 1|Y ) = Φ (a+ Y ) with Φ the cumulative distribution function of the
standard normal distribution. The coefficient a of those models is tuned to get (in
expectation) 20% of missing values. The MCAR mechanism is a particular case
of MAR mechanism, which is generally simpler to handle.

3.1.3 Methods

Parameters of the algorithm are tuned as follows: at each iteration k = 6 vari-
ables are drawn when p = 100, while k = 10 variables are drawn when p = 300;
B = 6000 iterations are performed; variables that are selected at least r = 95% of
the time are kept. Sensitivity to the parameters k, B and r is assessed in Section
3.3.

The investigated variable selection procedures are the knockoff, the lasso and
the stepwise (with AIC). In any configuration, these methods can be used through
the proposed algorithm, but not directly on the full data set because they have
some lacks with high-dimensional data and or missing values. Thus, we make
comparisons as follows: we first generate the data sets (without missing data)
and apply knockoff, lasso as well as stepwise variable selection procedure. Two
versions of the knockoff are available: the fixed-X knockoff and the model-X
knockoff. According to recommendations [18], we use fixed-X knockoff for low
dimensional data and model-X knockoff for high-dimensional data. Note that in
the proposed algorithm, only fixed-X knockoff is used. High-dimensional setting
is tackled by a screening step in stepwise.
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Then, we generate the missing values according to a pre-defined missing data
mechanism. If possible, knockoff, lasso and stepwise variable selection are ap-
plied using complete case analysis. Note that handling missing values by imputa-
tion would be challenging here because of the large number of variables compared
to the number of individuals [19]. The proposed algorithm is also applied by using
knockoff, lasso and stepwise variable selection where missing values are handled
by single stochastic imputation according to the Gaussian model. In addition,
we make comparison with a recent method combining multiple imputation and
random lasso variable selection [20] named MIRL. This method consists in per-
forming multiple imputation by chained equations to fill the data, then applying
random lasso on imputed data sets and combining selected subsets of variables.
Since multiple imputation by chained equations is too much time consuming for
large data sets, we cannot apply it for high-dimensional data.

All computations were performed using R [21]. Lasso was computed using
the library glmnet, knockoff using the library knockoff and stepwise using the
library stats. The R code used for MIRL has been obtained from authors. Single
stochastic imputation by the Gaussian model has been performed with the library
norm. The R code used for simulations is available on demand.

3.2 Results
We split results in four parts depending if we consider low/high dimension and
complete or incomplete data (results shown in Figure 1). We successively present
the results for the four ones. Finally, we study the robustness of our algorithm to
the tuning parameters.

3.2.1 Low dimensional data without missing values

In the case n > p without missing values, direct application of any standard se-
lection variable procedures can be performed. The top-left of Figure 1a reports a
very large number of false positives, FP, (over than 15) for lasso and stepwise. On
the contrary, this number is well controlled by knockoff (close to 1), while having
many true positives, TP, (over than 5) even when the signal to noise ratio is small
or correlation between covariates is large.

With our ensemble method (see the top-right of Figure 1a), the selection based
on knockoff shows larger number of TP and FP than its direct application on the
data-set (see the top of Figure 1a). For stepwise and lasso, performances are much
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better improved by our algorithm whatever the correlation and the signal to noise
ratio. Indeed, the number of false positives becomes close to 0.

3.2.2 Low dimensional data with missing values

The bottom of Figure 1a and Table 1 in Appendix report simulation results when
data are missing completely at random or missing at random. In such a case,
lasso, knockoff and stepwise cannot be directly applied. Therefore, complete case
analysis is used. Because of the decrease of the number of individuals, selection
methods have less power, leading to very poor performances (results shown in
Table 1 only). Indeed, the number of true positives is close to 0 and the number
of false negatives close to 8 for each of them. When applying the MIRL method,
selection is also quite bad. Indeed, the issue is that the predictive distribution of
missing values is not well estimated because of the too large number of variables
compared to the number of individuals [19].

On the contrary, by using our algorithm, the performances are globally similar
to the case without missing values (cf bottom of Figure 1a).

3.2.3 High dimensional data without missing values

The top of Figure 1b summarizes simulation results in the case n < p without
missing values. In a similar way to the case where the dimensionality is low (at top
of Figure 1a), our algorithm decreases the number of false positives for selection
by lasso or stepwise, but does not improve performances of the knockoff. Note
that the knockoff is well suited to handle high-dimensional data when data are
complete [4].

3.2.4 High dimensional data with missing values

Bottom of Figure 1b and Table 2 report results for configurations where n < p
with missing values generated according to a MCAR or MAR mechanism. Be-
cause of the large number of variables, MIRL method cannot be applied since the
imputation becomes too much time consuming. Direct application of variable se-
lection methods by complete case analysis appears clearly irrelevant (see Table 2).
Indeed, the number of false negatives is close to 8, whatever the selection variable
method: like in the low dimensional case, complete case analysis decreases the
power of the tests and selection variables methods rarely reject the null hypothe-
sis.
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On the opposite, our algorithm leads to a small number of FP, even if this
number is a little higher than in the case without missing values (see the top-right
of Figure 1b).

3.3 Influence of tuning parameters
To complete this simulation study, robustness to the tuning parameters is assessed.
We focus on the number of variables sampled (k), the number of iterations (B) and
the threshold (r).

3.3.1 Influence of k

Figure 2 reports the number of true positives and the number of false negatives ac-
cording to the number of variables sampled in the algorithm (when n > p without
missing values). Surprisingly, the number of true positives is globally decreasing
when k is increasing, like the false positive rate. More precisely, the increase is
important for stepwise, while it remains moderate for lasso and knockoff. The op-
posite could be expected since the regression scheme is more noised if k is small
(cf Section 2.3). The reason is that the counterpart to increasing k is to decrease
the degrees of freedom attributed to the model selection process. However, by
drawing k among p, the gain to increase k is small because the probability of se-
lecting significant variables is small (here 8 over 300), while degrees of freedom
are decreasing, implying a loss of power, but not a substantial decrease of noise
on the regression scheme.

The behaviour is more severe for stepwise. Indeed, this procedure addition-
naly often rejects the null if there are no significant variables in the subset. Such
cases are more frequent when k is small and tends to disappear when k increases.

Note that similar results are observed for the high dimensional setting (Figure
8 in Appendix) or when data are incomplete (Figures 6 and 7 in Appendix).

3.3.2 Influence of B

B controls the uncertainty on the proportion rj: for low values of B, the subset
of selected variables is expected to be unstable. To assess the robustness of the
results to the number of iterations, we inspect the standard deviation of the number
of false positives and true positives over the T = 100 generated data set according
to the number of iterations. For simplicity, we only inspect 2 configurations: in
the first one, data are complete with a signal to noise ratio of 4, null correlation
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Figure 2: Influence of k for low dimensional setting without missing values: num-
ber of true positives (on the left) and false positives (on the right) according to the
number of variables sampled in the algorithm (k) for the 4 configurations varying
by the signal to noise ratio (snr) and the correlation between covariates (ρ). Three
variable selection methods are reported (lasso, stepwise and knockoff).

between covariate and n < p (Figure 3), while data are missing according to a
MAR mechanism for the second one (Figure 9 in Appendix). As expected, in
both cases, the variability of the TP and FP is decreasing and reaches convergence
before 1000 iterations. This result is directly related to the variance of a proportion
as mentioned in Section 2.3.2. Furthermore, the number of true positives is more
stable than the false negative one, which is directly related to the larger number
of negatives than positives in the data. For comparison, when selection variables
methods are directly applied, standard deviation for TP is 0.14 for knockoff (1.29
for FP), 0 for lasso (13.35 for FP) and 0 for stepwise (6.34 for FP).

3.3.3 Influence of r

Of course, the threshold r allows a control on the FP and the TP since it is in
bijection with the number of positives. According to the selection method used,
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Figure 3: Influence of B for high dimensional setting without missing values:
standard deviation of the number of true positives over the 100 generated data sets
(on the left) and false positives (on the right) according to the number of iterations
of the algorithm (B) for the configuration with signal to noise ratio equal to 4
and null correlation between covariates (ρ). Three variable selection methods are
reported (lasso, stepwise and knockoff).

r can sometimes be tuned a priori, but in many cases, it should be driven by
data. For achieving this goal, we use cross-validation. Figure 4 highlights per-
formances of the algorithm when r is data driven (by using stepwise or lasso in
the complete case, in the low or high-dimensional setting). In all configurations,
cross-validation leads to choose a higher value of r than 0.95, which decreases
the number of positives. The gain in terms of FP is more substantial than the lost
in terms of TP since the number of real false positive (92 in the low dimensional
setting and 292 in the high dimensional setting) is much higher than the number
of real positives (8).

Finally, we illustrate the relationship between r and k, by investigating the
robustness of the procedure to k when r is chosen by cross-validation. Results
are shown in Figure 5. Compared to Figure 2 error rates are stable whatever the
choice of k. Thus, cross-validation for r tuning makes the procedure robust to the
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choice of k.

4 Discussion
High dimensional data as well as missing data are two of the main challenges for
applied statistician at the digital era. In this article we proposed an algorithm for
variable selection in the framework of linear models. This algorithm improves
the performances of many selection methods (in terms of true positive and false
positive rates) and provides a measure of importance for the explanatory variables.
Furthermore, it allows handling missing values (MAR or MCAR) and/or high
dimensional settings for any variable selection method. From a practical point of
view, the method has the advantage to allow parallel calculation, solving some
potential calculation time issues. In addition, its parameters can be easily tuned:
the number of iterations B can be checked by inspecting stability of proportions
of selection, while the number of variables drawn (k) can be chosen a priori (since
the method is robust to this parameter) and the threshold r can be chosen by cross-
validation.

Various extensions of the algorithm can be proposed. First, the algorithm
can be easily adapted in the case of Generalized Linear Models (GLM) or mixed
models, but additional statistical work has to be done to tune the parameters.

We did not explore the specific case of data missing not at random, but the
algorithm could be adapted to accounting for such mechanisms by using suitable
imputation method [16, e.g.].

Refinements of the algorithm could also be possible. In particular, accounting
for the variation around rj in the threshold could be quite easy. This could be
useful for high time-consuming configurations, where the number of iterations
need to be limited, since this variability could not be ignored anymore.

Outliers is also a classical problem in data analysis. While robust estimates
can be considered (see [22] for example), it is also possible to remove them by
replacing them with missing values. Therefore, this algorithm provides a way to
handle outliers in variable selection.

Moreover, in this article we fixed a threshold to include (or not) a variable
in the model for a given instance, but we could also aggregate the probabilities
(under the null hypothesis) that βj = 0 . A natural aggregation over all instances
is given by the empirical mean, that can be seen as the mean of the estimates of
P(βj = 0). Then, for each variable, this mean would be thresholded, as proposed.

Finally, we focused on variable selection, but one may notice that each in-
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stance gives estimates of β and we can also aggregate these estimates. However,
such an extension is not straightforward since estimates are generally biased on
all instances. Further research on aggregation of those biased estimates could
lead to the development of a robust estimator of regression coefficients in a high
dimensional setting with missing values.
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Algorithm Standard
ρ snr mech method TP FN FP TP FN FP
0 2 MCAR Knockoff 6.75 1.25 1.47
0 2 MAR Knockoff 6.78 1.22 2.18 0.18 7.82 0.44
0 4 MCAR Knockoff 7.43 0.57 1.14
0 4 MAR Knockoff 7.24 0.76 1.90 0.11 7.89 0.49
0.4 2 MCAR Knockoff 4.32 3.68 1.92
0.4 2 MAR Knockoff 4.79 3.21 2.62 0.07 7.93 0.47
0.4 4 MCAR Knockoff 6.15 1.85 2.45
0.4 4 MAR Knockoff 6.35 1.65 2.88 0.04 7.96 0.52
0 2 MCAR Lasso 7.09 0.91 1.74
0 2 MAR Lasso 7.21 0.79 3.13 0.45 7.55 2.62
0 4 MCAR Lasso 7.75 0.25 1.59
0 4 MAR Lasso 7.64 0.36 3.26 0.58 7.42 3.49
0.4 2 MCAR Lasso 5.40 2.60 3.14
0.4 2 MAR Lasso 5.77 2.23 4.17 0.21 7.79 1.83
0.4 4 MCAR Lasso 6.85 1.15 4.21
0.4 4 MAR Lasso 7.01 0.99 4.96 0.18 7.82 2.10
0 2 MCAR Stepwise 6.11 1.89 0.46
0 2 MAR Stepwise 6.48 1.52 1.07
0 4 MCAR Stepwise 7.14 0.86 0.31
0 4 MAR Stepwise 7.18 0.82 1.25
0.4 2 MCAR Stepwise 3.88 4.12 1.07
0.4 2 MAR Stepwise 4.42 3.58 1.76
0.4 4 MCAR Stepwise 5.91 2.09 1.77
0.4 4 MAR Stepwise 5.95 2.05 2.44

Table 1: Low dimensional setting with missing values: performances of three vari-
able selection methods (Knockoff, Lasso and Stepwise) when they are iteratively
applied on imputed subsets of variables (Algorithm) or when they are applied on
the complete individuals of the data set (Standard). Missing values are related
to failure because of a too low number of complete-cases. Data sets varying by
the correlation between covariates (ρ) and the signal to noise ratio (snr). For a
given configuration, T = 100 data sets are generated and performances of the se-
lection procedure are assessed by: the mean number of true positives (TP), the
mean number of false negatives (FN) and the mean number of false positives (FP)
(the number of real positives is 8 and the number of real negatives is 92).
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Algorithm Standard
ρ snr mech method TP FN FP TP FN FP
0 2 MCAR Knockoff 6.58 1.42 3.57
0 2 MAR Knockoff 6.32 1.68 6.22 0.02 7.98 0.77
0 4 MCAR Knockoff 7.20 0.80 4.21
0 4 MAR Knockoff 7.19 0.81 6.69 0.04 7.96 0.52
0.4 2 MCAR Knockoff 4.04 3.96 4.76
0.4 2 MAR Knockoff 4.32 3.68 6.52 0.03 7.97 0.53
0.4 4 MCAR Knockoff 5.51 2.49 4.75
0.4 4 MAR Knockoff 5.78 2.22 6.19 0.00 8.00 0.47
0 2 MCAR Lasso 7.11 0.89 4.39
0 2 MAR Lasso 6.96 1.04 8.63 0.14 7.86 3.07
0 4 MCAR Lasso 7.58 0.42 4.02
0 4 MAR Lasso 7.45 0.55 8.48 0.08 7.92 2.66
0.4 2 MCAR Lasso 4.42 3.58 5.22
0.4 2 MAR Lasso 4.77 3.23 7.33 0.03 7.97 1.83
0.4 4 MCAR Lasso 6.33 1.67 5.59
0.4 4 MAR Lasso 6.40 1.60 7.53 0.05 7.95 1.88
0 2 MCAR Stepwise 6.01 1.99 0.71
0 2 MAR Stepwise 6.18 1.82 2.92
0 4 MCAR Stepwise 6.77 1.23 0.80
0 4 MAR Stepwise 6.79 1.21 2.79
0.4 2 MCAR Stepwise 2.62 5.38 1.08
0.4 2 MAR Stepwise 3.22 4.78 2.13
0.4 4 MCAR Stepwise 4.65 3.35 1.36
0.4 4 MAR Stepwise 5.04 2.96 2.05

Table 2: High dimensional setting with missing values: performances of three
variable selection methods (Knockoff, Lasso and Stepwise) when they are itera-
tively applied on imputed subsets of variables (Algorithm) or when they are ap-
plied on the complete individuals of the data set (Standard). Missing values are
related to failure because of a too low number of complete-cases. Data sets vary-
ing by the correlation between covariates (ρ) and the signal to noise ratio (snr).
For a given configuration, T = 100 data sets are generated and performances of
the selection procedure are assessed by: the mean number of true positives (TP),
the mean number of false negatives (FN) and the mean number of false positives
(FP) (the number of real positives is 8 and the number of real negatives is 92).
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Figure 4: Influence of the thresholding in the low dimensional (left) and high
(right) setting without missing values: illustration for Lasso and Stepwise by tun-
ing the threshold by cross-validation or by fixing it to 0.95. Data sets vary by the
correlation between covariates (ρ) and the signal to noise ratio (snr). For a given
configuration, T = 100 data sets are generated and performances of the selection
procedure are assessed by: the number of true positives and the false positive (the
number of real positive is 8 and the number of real negative is 92 or 292).
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Figure 5: Influence of k for low dimensional setting without missing values when
r is chosen by cross-validation: number of true positives (on the left) and false
positives (on the right) according to the number of variables sampled in the algo-
rithm (k) for the 4 configurations varying by the signal to noise ratio (snr) and the
correlation between covariates (ρ). Two variable selection methods are reported
(lasso and stepwise).
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Figure 6: Influence of k in the low dimensional setting with values missing com-
pletely at random: true positive rate (on the left) and false positive rate (on the
right) according to the number of variables sampled in the algorithm (k) for the 4
configurations varying by the signal to noise ratio (snr), the correlation between
covariates (ρ). Three variable selection methods are reported (lasso, stepwise and
knockoff).

24



4 5 6 7 8 9 10

0
2

4
6

8

k

TP

4 5 6 7 8 9 10

0
2

4
6

8
10

k

FP

Lasso
Stepwise
Knockoff

rho=0 snr=2
rho=0 snr=4
rho=0.4 snr=2
rho=0.4 snr=4

Figure 7: Influence of k in the low dimensional setting with values missing at ran-
dom: true positive rate (on the left) and false positive rate (on the right) according
to the number of variables sampled in the algorithm (k) for the 4 configurations
varying by the signal to noise ratio (snr), the correlation between covariates (ρ).
Three variable selection methods are reported (lasso, stepwise and knockoff).
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Figure 8: Influence of k in the high dimensional setting without missing values:
true positive rate (on the left) and false positive rate (on the right) according to the
number of variables sampled in the algorithm (k) for the 4 configurations varying
by the signal to noise ratio (snr), the correlation between covariates (ρ). Three
variable selection methods are reported (lasso, stepwise and knockoff).
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Figure 9: Influence of B for high dimensional setting with missing values: stan-
dard deviation of the true positive rate over the 100 generated data sets (on the
left) and false positive rate (on the right) according to the number of iterations
of the algorithm (B) for the configuration with signal to noise ratio equal to 4,
null correlation between covariates (ρ) and values missing at random. 3 variable
selection methods are reported (lasso, stepwise and knockoff).
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