

#### Epigenetic modifications as a molecular mechanism for transgenerational effects in Daphnia exposed to ionising radiation

Marie Trijau, Jana Asselman, Olivier Armant, Christelle Adam-Guillermin, Karel de Schamphelaere, Frederic Alonzo

#### ► To cite this version:

Marie Trijau, Jana Asselman, Olivier Armant, Christelle Adam-Guillermin, Karel de Schamphelaere, et al.. Epigenetic modifications as a molecular mechanism for transgenerational effects in Daphnia exposed to ionising radiation. 6th International Symposium on DEB theory for metabolic organization, DEB2019, 2019, BREST, France. hal-02635522

#### HAL Id: hal-02635522 https://hal.science/hal-02635522

Submitted on 19 Aug2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. IRS INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Epigenetic modifications as a molecular mechanism for transgenerational effects on *Daphnia magna* exposed to radionuclides

Marie TRIJAU<sup>1</sup>, Jana ASSELMAN<sup>2</sup>, Olivier ARMANT<sup>1</sup>, Christelle ADAM-GUILLERMIN<sup>1</sup>, Karel de SCHAMPHELAERE<sup>2</sup> and Frédéric ALONZO<sup>1</sup>

> <sup>1</sup> Laboratoire d'Ecotoxicologie des radionucléides IRSN/PRP-ENV/SERIS/LECO – Cadarache, France <sup>2</sup>Laboratory for Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent 9000, Belgium

# Background

In order to assess long term consequences of exposure to ionizing radiation on wildlife, radio-induced effects have to be studied at a multigenerational scale. Multigeneration exposure experiments were performed in *Daphnia magna* exposed to depleted uranium, alpha and gamma radiation<sup>1,2</sup> and multigenerational DEBtox models were developed. Considering that gamma radiation effects observed on growth and reproduction and DNA alterations shared similar trends across generations<sup>3</sup>, a

## Results

DNA methylation changes detected in all generations

Number of detected DMCs

multigenerational damage compartment was introduced into the DEBtox models. Damage level in this compartment is transmitted from female to offspring, driving the increase in effect severity observed at organism scale across generations.





Daphnia magna

### What is the nature of multigenerational mechanisms at molecular scale?

- Several studies suggested that the increase in mutation frequency observed in offspring from irradiated parents in mice would not result from the directed transmission of mutations between generations, but from **epigenetic modifications**<sup>3,4</sup>.
- Ionizing radiation are known to induce DNA methylation changes in rodent during laboratory tests (in-vitro and in-vivo <1 generation) and in field studies, but are radio-induced methylation changes transmitted across generations? <sup>5,6,7,8,9</sup>

# Research questions

• Are there radio-induced DNA methylation changes in *Daphnia magna* and are they transmitted to non-exposed generations ?

• How do they link to radiosensitivity at organism scale?

| Generation | 6.5 μGy h⁻¹ | 41 mGy h⁻¹ |
|------------|-------------|------------|
| FO         | 209         | 243        |
| F2         | 392         | 413        |
| F3         | 330         | 329        |

- ~5.4 million CpG sites examined (>98% showing no variation)
- ~74 000 CpG sites included in the differential methylation analyses
- Detected DMCs include both hypo- and hyper-methylation, with a slightly greater proportion of hypomethylated DMCs (~55%)

## **Functional analysis**

Most represented biological functions across the three generations (F0,F2 and F3) are:



- Examples of genes with DMCs:
- → X-box-binding protein (generation F0)<sup>10</sup>
  → 60S ribosomal protein L28 (generations F2 and F3)<sup>11</sup>
  → "heat-shock" protein (hsp70) (generations F2 and F3)<sup>12</sup>

**Cellular response to stress** Protein stability Cell death prevention

### Methylation changes across generations

### **Comparing DMC positions**

**Comparing methylation levels** 



![](_page_1_Figure_34.jpeg)

• F2 and F3 generations share about 10 % of their total DMCs at each dose rate

![](_page_1_Figure_36.jpeg)

- Common DMCs show similar methylation levels between F2 and F3 generations
- Methylation changes were probably transmitted to offspring through the germline and remained visible in unexposed generations

## Toxic effects of gamma radiation at organism level

- A decrease in fecundity of 19% was observed in F0 at 41.3 mGy.h<sup>-1</sup>
- No effect on reproduction or growth were detected in subsequent recovering generations

### Differential methylation analysis

![](_page_1_Figure_43.jpeg)

 Cytosines in CpG context only
 For each CpG site, an average methylation level is calculated

DMC = Differentially Methylated Cytosine

= CpG site with a methylation level significantly different between control and exposed

# Conclusions

- DNA methylation changes were detected in *D. magna* exposed during their whole life cycle (F0) and in their offspring exposed as germline cells (F2), even below 10 µGy.h<sup>-1</sup>
- Common methylation changes were identified between generations F2 and F3, demonstrating a case of transgenerational epigenetic inheritance

• Some of the genes concerned with DNA methylation changes are involved in the biological response to ionizing radiation, but the link with higher biological scales remains unclear

<sup>1</sup>Delphine Plaire, « Etude transgénérationelle des altérations de l'ADN et de leurs conséquences sur les traits d'histoire de vie et le budget énergétique de Daphnia magna exposé à l'uranium appauvri. » (PhD Thesis, Aix-Marseille, 2013), <sup>2</sup>Florian Parisot, « Etude mécaniste des effets transgénérationnels des radiations ionisantes alpha et gamma chez Daphnia magna exposé à l'uranium appauvri. » (PhD Thesis, Aix-Marseille, 2013), <sup>2</sup>Florian Parisot, « Etude mécaniste des effets transgénérationnels des radiations ionisantes alpha et gamma chez Daphnia magna exposé à l'uranium appauvri. » (PhD Thesis, Aix-Marseille, 2013), <sup>2</sup>Florian Parisot, « Etude mécaniste des effets transgénérationnels des radiations ionisantes alpha et gamma chez Daphnia magna exposé à l'uranium appauvri. » (PhD Thesis, Aix-Marseille, 2013), <sup>2</sup>Florian Parisot, « Etude mécaniste des effets transgénérationnels des radiations ionisantes alpha et gamma chez Daphnia magna exposé à l'uranium appauvri. » (PhD Thesis, Aix-Marseille, 2013), <sup>2</sup>Florian Parisot, « Etude mécaniste des effets transgénérationnels des radiations ionisantes alpha et gamma chez Daphnia magna exposé à l'uranium appauvri. » (PhD Thesis, Aix-Marseille, 2013), <sup>2</sup>Florian Parisot, « Etude mécaniste des effets transgénérationnels des radiations ionisantes alpha et gamma chez Daphnia magna exposé à l'uranium appauvri. » (PhD Thesis, Aix-Marseille, 2013), <sup>2</sup>Florian Parisot, « Etude mécaniste des effets transgénérationnels des radiations ionisantes alpha et gamma chez Daphnia magna exposé à l'uranium appauvri. » (PhD Thesis, Aix-Marseille, 2013), <sup>2</sup>Florian Parisot, « Etude mécaniste des effets transgénérationnels des radiations of Mutagenesis 598, no 1–2 (2006): 50-60, https://doi.org/10.1016/j.mrfmmm.2006.00.007; <sup>5</sup>Igor Koturbash et al., « Epigenetic dysregulation underlies radiation-induced transgénérational genome instability in vio », International Journal of Radiation Cong/10.1016/j.inrfmmm.2004.06.007; <sup>5</sup>Igor Koturbash et al., « Epigenetic dysregulation underlies radiatio