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Abstract—In the 50s, biologists discovered that some electric
fish are capable of discriminating the pose as well as the electric
and geometric properties of surrounding objects by navigating
and measuring the distortions of a self-generated electric field. In
this paper, we address the challenging issue of ellipsoidal objects
pose and size estimation for underwater robots equipped with
artificial electric sense. Unlike current methods, the approach
can estimate both the position and size in parallel with a
single straight trajectory. No multi-polarization nor reactive
self-alignment control are necessary to locate the object. The
approach is a purely model-based heuristic that selects the best
ellipsoid parameters among a set of potential candidates. It is
based on a set of 4 electric measurements recorded at several
positions along the robot trajectory along which the displacement
is measured. The efficiency of the method is assessed over
numerous experiments with different objects, several positions,
and orientations, and two different kinds of water (fresh and
salt water). Despite some model simplifications and experimental
errors, location and size estimation errors are on average below
1cm and 15% respectively, while offering promising perspectives
for real-time computation.

Index Terms—Electric sense, object location, size estimation.

I. INTRODUCTION

ELectric sense (or E-sense) is a sensorial ability used al-
most exclusively by some aquatic animals [1], [2]. Some

fish can passively sense fluctuations of the nearby electric
fields (passive E-sense), while others such as the elephant
nose fish can sense the distortions of a self-generated electric
field (active E-sense). Using E-sense these nocturnal fish can
efficiently navigate in the confined turbid waters of equatorial
forests. Behavioral experiments have shown that they can also
perform complex cognitive tasks such as discriminating the
size, electric properties and shape of objects [3], [4]. This
ability is remarkable since the location and object properties
are nonlinearly intricated in the electrical measurements [5].
In this paper, we address this difficult inverse problem with
an underwater sensor equipped with E-sense.

II. PREVIOUS WORK ON ELECTRIC SENSE

In underwater robotics, artificial E-sense has been developed
to supplement conventional sensors (sonar or vision) in harsh
conditions. For instance, in turbid waters, the multiple echoes
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due to suspended particles make the sonar signals difficult to
interpret and the light absorption or scattering reduces dras-
tically the performances of vision [6]. E-sense effectiveness
has been proven for reactive navigation [7], object electrolo-
cation [8], [9] or underwater docking [10]. According to our
knowledge, in the field of E-sense based object recognition,
only three contributions were proposed so far. Bai et al. [11]
proposed an approach combining reactive navigation and a
learning procedure to estimate the shape and the pose of an
ellipsoidal object with an underwater sensor [12]. This sensor
is an axisymmetric insulating shell with electrodes located at
its extremities. Setting the emitters under voltage generates an
electric field or “E-field”. The perturbations of the E-field by
the object are measured through the voltage between receiving
electrodes. Exploiting the symmetries of the sensor and the
object in the same equatorial plane, the approach first iterates
reactive maneuvers to align the robot with the object. In a
second phase, some maps built beforehand in simulation are
used to determine the ellipsoid aspect ratio and the object’s
lateral distance and size using an equivalent sphere model
and a Gaussian process regression. The second contribution
was proposed by Lanneau et al. [13]. Similarly, the location
and size estimation of ellipsoidal objects were separated and
solved in cascade. Object location was obtained through re-
active self-alignment or multiple signal classification method
(MUSIC) [14], an algorithm that requires multi-polarization
of the sensor to enrich the electric measurements recorded at
different positions around the object. Once electrolocation is
performed, the geometry and orientation of an object were
estimated with a least-square estimation of its polarization
tensor [15], coupled with an analytical model of the sensor
measurements introduced in [7]. To close this state of the
art, in [9], electrolocation and volume estimation of different
objects were performed with an Unscented Kalman Filter
and an analytical model of the electric response of spherical
objects. All these methods gave good results. However, they
require complex sensor motions.
In contrast, we here propose a purely model-based heuristic
that estimates the pose and size of an ellipsoidal object
with a single straight trajectory. Requiring no reactive control
nor multi-polarization, the approach is relevant for semantic
mapping purposes since objects can be detected, located and
recognized as a background task while navigating for other
purposes. This heuristic is based on a simple new score
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Fig. 1. Location and size estimation experiment. (a) The sensor performs a
60cm straight trajectory from the pose S(1) to S(n). The robot poses are
defined by: S(t) = (xr(t), yr(t), θr(t)). The ellipsoidal object is located
at 30cm from S(1) and at a lateral distance d from the trajectory. It has a
size: a, b, a pose: x, y, θ and an electrical property: γo. (b) The tank is a
4m3 one, filled with salt water (γ = 1.6 S/m) and equipped with a gantry
on which the sensor is attached. (c) The object is mounted on a small steel
needle which is glued to a plastic rod laid on the tank floor.

function designed for quantifying the error between experi-
mental measurements and those predicted by a model. The
score is then used as a comparison criterion to select among
a set of candidate parameters, those that best fit with the
measurements. Beyond object estimation, this score can also
be used to assess the consistency of the predictions of different
models with a given database of measurements. A preliminary
version of this idea was presented in [16]. Here, we refine the
score function (see Sec. III), supplement the heuristic with an
object detection phase (see Sec. IV), optimize the algorithm
to decrease its computational time, and largely enriche the
experimental section to clearly illustrate the efficiency of
our method for objects of different geometry (spheres and
ellipsoids), different poses, and with two water conductivities:
a fresh water with conductivity γ = 0.04 S/m and a salt water
(γ = 1.6 S/m) with a concentration of salt about 10 g/L (see
Sec. V). While we obtained estimation results close to those
of the existing methods, we are capable of estimating the size
(aspect ratio and volume) of an ellipsoidal object without its
prior location. Moreover, according to our knowledge, this is
the second time after [8], that E-sense is used for underwater
perception in salt water, and the first, for geometry estimation.

III. CONTEXT OF THE STUDY

A. Description of the sensor and of its experimental use

In all this article, we use a slender sensor presented in [17]
(see Fig. 1). This sensor consists of a plastic cylinder equipped
with 6 electrodes e1, ..., e6 grouped into pairs that belong
to 3 macro-electrodes ε1, ..., ε3. Its length and diameter are
lF = 22cm and dF = 2cm respectively. The 3 macro-
electrodes are arranged along the sensor axis at−11cm, 3.5cm,
and 11cm. This sensor was designed to provide an analytical
model of measurements [18] (see Sec. III-B) while ensuring

an E-field of dipolar shape mimicking that of the fish. The E-
field around the sensor is generated by setting the tail macro-
electrode (emitter) under voltage with respect to the other
grounded electrodes (receivers). A voltage U = 2V is set
at a frequency fr = 15kHz with an off-board sine wave
generator. The electric currents that flow across the 4 receivers
are measured at the frequency fp = 66Hz with an ampere
meter circuit [17]. Note that only the amplitude of the electric
currents is measured (the phase is not considered). To each
recorded measurement, we assigned an index t with t ∈ N
and t0 = 1. At the end of the trajectory: t = n. The 4 electric
measurements on e1, ..., e4 are noted I1(t), · · · , I4(t). The
sensor poses are recorded along the trajectory S in a global
reference frame, and noted S(t) = (xr(t), yr(t), θr(t)). For
each macro-electrode ε, the 2 currents are first filtered in the
Fourier domain to remove the noise (cutoff frequency 2kHz),
before being combined to create more informative signals (see
Fig. 2) noted δIax and Ilat. The currents δIax(t) and Ilat(t)
are named axial and lateral currents since they stand for the
sum and the difference of the left and right currents flowing
across the same macro-electrode. The 4 currents δIax,1, δIax,2,
Ilat,1, Ilat,2 are gathered into a measurement vector named
M(t). As explained in [18], these 2 linear combinations of the
raw currents allow inferring whether the object is insulating
or conductive (its electric property) and if it is on the left or
the right side of the sensor. In our experiments (see Fig. 1.a),
the sensor is moved along a 60cm length straight line in the
equatorial plane of the object. The object is initially placed at
the middle of this line (with a given lateral distance d from it,
and at the center of the 2 meters wide tank), and sufficiently far
from the probe to be out of its range. The sensor is controlled
by its forward velocity V = 1cm/s and its angular velocity
Ω = 0rad/s. They are measured online thanks to the robot
gantry. The object has a conductivity γo different from the
water conductivity γ that is assumed to be known. Due to the
small range of the object electric response, we assume that if
there are several objects in the scene they are sufficiently far
from each other so that the robot cannot detect both of them at
the same time. Due to symmetry, the estimation of the object
geometry is reduced to that of its elliptic cross-section in the
sensor plane. However, it is worth noting that in this article,
the model used by the approach is that of a three-dimensional
ellipsoidal object. Note also that our heuristic would work in
the same way with curved trajectories, as soon as the probe
motion is known, and the object remains in its detection range.
Experiments are performed with ellipsoidal objects (a=32mm
and b=16mm) including spherical ones (r=20mm). Half of
them are conductive (aluminum), and the others are insulators
(plastic). For each object, we perform experiments at several
distances and orientations with respect to the sensor straight
trajectory (see Fig. 1.b and Fig. 1.c).

B. Model of electric measurements

Let us consider an object in a conductive medium bounded by
several electrodes that are set under voltage. Integrating the
governing electro-static equations of this problem for arbitrary
geometries, i.e. solving the direct (electro-static) problem,
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Fig. 2. Illustration of the 4 electrical currents measured along a trajectory for
an insulating sphere at a lateral distance d = 40mm in salt water. (a) 4 raw
currents measured. (b) 4 filtered and combined currents with their associated
model estimations. In this case, the model score is equal to 0.267.

needs resorting to numerical methods as the Boundary Element
Method (BEM). However, when the sensor is slender, one can
address this direct problem analytically as it has been done
in [18] for spherical objects. Hereafter, we use the analytical
model of our sensor but with ellipsoidal objects. It is worth
noting that the choice of ellipsoidal objects is of particular
relevance for E-sense since in a uniform field, any object
responds at leading order, as an equivalent ellipsoid [15], [19].
Mathematically, this electric response is modeled by the first-
order generalized polarization tensor of the object [20]. This
model allows defining the function f that gives the electric
currents vector M̂(t) for an object O and a robot pose S(t).
For each t ∈ 1, ..., n, we thus have:

M̂(t) = f(S(t), O) =


δIax,1(S(t), O)
δIax,2(S(t), O)
Ilat,1(S(t), O)
Ilat,2(S(t), O)

 , with: (1)

δIax(S(t), O) = − 1

4πγ
C0GRθsPR

t
θsG

tC0U, (2)

Ilat(S(t), O) = − 1

4π
P⊥HRθsPR

t
θsG

tC0U, (3)

where γ is the conductivity of the medium, δIax and Ilat
are our current vectors, U is the voltage vector, C0 and P⊥
are two matrices that define the robot morphology, P is the
polarization tensor that encodes the object electric response
in its proper frame, Rθs is a rotation matrix where the angle
between the robot and the major axis of ellipsoid is noted
θs = θ−θr. Finally, G and H are two matrices that depend on
the distances between the object center and the electrodes. The
vector C0U is named axial basal (or “background”) currents.
More details are given in Appendix A.

C. Score for assessing the fit of measurement models

Problem statement: Considering t vectors of electric currents
M(t), and their associated robot poses S(t), we seek for the
location, size and orientation of the object equivalent ellipsoid
that responds to the E-field generated by the sensor, i.e. we
seek for:

• the 2D position x, y and the orientation θ of the elliptic
cross-section,

• the size of the elliptic cross-section with a, b its semi-
major and semi-minor axis,

• the electric conductivity γo of the object, assumed to be
conducting or insulating.

To assess the discrepancies between model-based estimation
of the measurements and their real values along a trajectory,
we use the function g (inspired by a fitting criterion proposed
in [21]):

g(M, M̂) =
1

n

∑n
t=1(

∑4
i=1 |Mi(t)− M̂i(t)|)∑n

t=1 (
∑4
i=1 |Mi(t)|)

(4)

with M = (M(1),M(2), ...M(t)) the vector of measure-
ments, and M̂ = (M̂(1), M̂(2), ...M̂(t)), the vector of
estimations. The function g is a fitting score defined as the
mean of the errors between the real measures and their model-
based prediction over a set of time samples. For each time
index t, the errors for each δIax(t) and Ilat(t) are summed
and normalized to ensure the error on δIax(t) and Ilat(t)
to have the same contribution to the score. A score of 0
and ≥ 1 stands for a perfect and a poor fitting respectively.
For the purpose of illustration, in Fig. 2 we represented the
measured and modeled currents for an insulating sphere. In
this example, the estimation fits well the electric measurements
while the score is about 0.267. This score is not equal to zero
because of the model approximations and experimental errors.
The main modeling error is due to the fact that the model
neglects the object response beyond its dipolar components in
spite of its non-negligible size with respect to the basal field,
especially when it is close to the robot. Other errors originate
from the experimental set up itself: (i) the rod supporting the
object has its own electrical response, (ii) the object pose
cannot be perfectly known (it is estimated in situ before each
experiment by remote controlling the robot up to touch the
object on each side), (iii) the conductivity in the tank is not
uniform (but depends on temperature, salinity) and is measured
by a conductometer (WTW197i) with 0.5% accuracy. It is
difficult to separate and quantify these errors as they are
mixed together. To assess the influence of each parameter
on g, the model parameters are varied in (4) while the real
measurements are maintained fixed. The results of this study
are presented in Appendix B. In short, we found that the
angle of the ellipsoid weakly influences the score. However, an
error on the x-axis (longitudinal) has a strong influence as it
produces a phase shift of the signal. Finally, an error on the y-
axis or on the object size has the most critical impact on g as it
drastically affects the object response by changing the distance
object/robot or the object’s volume. These tendencies will be
confirmed by the experimental results (see Sec. V), where we
will see that the parameter that has the smallest influence on g,
i.e. the angle of the ellipsoid, is the most difficult to estimate.

IV. A MODEL-BASED HEURISTIC

A. Overview of the algorithm

As the problem is strongly nonlinear, solving the inverse prob-
lem is difficult and may be impossible. The idea behind the
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Fig. 3. Overview of the heuristic estimating the object pose and size.

development of an exhaustive grid search heuristic comes from
the following facts. First, the direct problem can be solved
fast by using the analytical model. Second, all parameters are
bounded in small intervals which reduce the computational
efforts of a systematic exploration of the space of candidates.
The location (x, y coordinates) is constrained by the limited
range of the electric sensor due to the rapid decrease of the
E-field (the maximum detection range is below one robot
length). Regarding the size parameters (a, b), they need to be
consistent with the assumptions of the dipolar model [18], i.e.,
they should be below 1cm. However, our experiments have
shown that the model remains reliable for an object whose
size is below 1/4 of the robot length (5cm). Finally, in our
experiments, we consider that the orientation θ of the object
ranges in [0, π] and the object conductivity γo is either equal
to 1e5 for conductive objects, or 1e−5 for insulating ones [13].
The parameter space being bounded, when a perturbation on
the electric measurements is detected, our method consists in
discretizing the object parameters interval, to create a base
of candidate solutions, and to test each of them to find the
best fitting between estimations and measurements (the lower
g). All the scores for all candidate solutions are updated each
time a new measurement is recorded. This heuristic can be
decomposed in 4 main steps presented in Fig. 3:

1) Navigate until a perturbing object can be detected,
2) Retrieve the robot side on which the object is and

identify whether it is insulating or conducting,
3) Create the first candidate base, and estimate the location

and size of a sphere that best explains the measurements,
4) From this first approximation, create the second base of

candidates and estimate the final size and pose of an
equivalent ellipsoid.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Pose and size estimation of a conductive ellipsoid (32× 16mm) with
d = 50mm and θ = 0 in salt water. Score of the model using the ground truth
parameters (0.313). Real object (red), estimated object (blue), all candidate
solutions (purple). a) Navigate until the object is detected (t = 1 to t = t1),
b) Get its side, its electrical properties and create the sphere base (t = t1),
c) Estimate the sphere, d) Create the ellipsoid base (t = t2), e) Estimate the
ellipsoid, f) Select the smallest score (0.293).

The sphere-based location stops when the robot has navigated
over a fixed distance after detection (explained in Sec. IV-D).
The estimation of the ellipsoid stops when it remains con-
sistent after several sensor positions, or in the worst case
when the perturbation of the object has disappeared. The
solution obviously depends on both the space discretization
parameters (set by the user) and the trajectory of the robot
(a few centimeters). The discretization parameters and the
trajectory are studied in Sec. V-E.

B. Object detection

The first stage consists of the detection of the perturbing
object. When there is no perturbation of the E-field we have
|δIax,i| ≈ |Ilat,i| ≈ 0. While the sensor goes forward, it
discovers its environment with its 2 front electrodes (see
Fig. 4.a). As soon as |δIax,1| becomes greater than a fixed
threshold, an object is detected. This threshold is set as twice
the noise level and fixed once for all since the noise level does
not depend on γ [17]. At this instant, we note t = t1.

C. Determination of the electric properties of the object

When an object is detected (see Fig. 4.b), depending on the
sign of δIax,1 we can infer on which side (left or right) of the
sensor, the object is, along with its electric properties γo. There
are 4 possible scenarios detailed in [13]. Then, we assign the
intervals of the location of the equivalent sphere such as:
• xsphere ∈ [xr(t1) + lF /4, xr(t1) + lF /4 + lF ],
• rsphere ∈ [0, lF /4],

If δIax,1 < 0 (respectively δIax,1 > 0), the object is insulating
(resp. conducting):
• γo = 1e−5 (resp. γo = 1e5).

If δIax,1, Ilat,1 > 0 (resp. δIax,1, Ilat,1 < 0), a conductive
object (resp. insulating) is on the left.
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• ysphere ∈ [yr(t1), yr(t1) + lF ].
If δIax,1 > 0, Ilat,1 < 0 (resp. δIax,1 < 0, Ilat,1 > 0), a
conductive object (resp. insulating) is on the right.
• ysphere ∈ [yr(t1), yr(t1)− lF ].

The x and y intervals define a rectangle depicted in black dot
in Fig. 4.b.

D. Estimation of the equivalent sphere

The continuous intervals of (xsphere, ysphere, rsphere) are
changed into grids of nodes separated by 3 steps εx, εy, εr
set by the user with εx = εy . This discretization provides a
set O = {Oi}, i ∈ {1, ..., nbsphere} of triplets gathering the 2
coordinates and radius of the candidate spheres (see Fig. 4.b).
Applying the f function (1) to each Oi, allows estimating the
vector M̂ that would be measured by the robot for such an
object along the trajectory S. Then, the sphere parameters that
best fit the electric measurements are selected by scoring each
Oi with the g function (4). This heuristic selects the spherical
object model that minimizes g after a certain amount of
different positions (see Fig. 4.c). The displacement required to
switch from sphere to ellipsoid estimation was set empirically
to 4cm in accordance with the robot speed and data acquisition
rate we used. At this step, we note t = t2 with t1 ≤ t2 ≤ n.
The lower score sphere approximation defines the triplet noted
(xsphere, ysphere, rsphere). It is computed as follows:

argmin
i∈{1,...,nbsphere}

g(M, M̂) with a spherical model. (5)

E. Estimation of the equivalent ellipsoid

Based on the above sphere approximation, at t = t2 a second
set O of ellipsoidal candidates is generated. Applying the same
method to the remaining points of the trajectory allows refining
(x, y), while providing the 3 other parameters (a, b, θ) (that
define the object ellipsoidal estimation).
• x ∈ [xsphere ± lF /20],
• y ∈ [ysphere ± lF /20],
• θ ∈ [0, π],
• a, b ∈ [rsphere ± lF /16] with a ≥ b.

In this second estimation, the resolution of the x, y and size-
parameters grid is twice higher than for the sphere, i.e. one
sets 4 steps εx, εy, εa, εb where (εx, εy) are half those of the
sphere, and εa = εb = εr/2. The estimation of θ requires a
further discretization parameter εθ. This discretization provides
a second set O gathering the vectors of ellipsoid parameters
Oj , with j ∈ {1, ..., nbellipsoid}. This stage corresponds to
the Fig. 4.d .e .f. Finally, the algorithm ends by minimizing
g again, but now using the model of the ellipsoid instead of
that of the sphere in (5).

F. Score illustration with experimental data

Fig. 4 illustrates the approach applied to a 32 × 16mm
conductive ellipsoid at 50mm in salt water. To supplement this,
in Fig. 5, we show the results of the algorithm applied to an in-
sulating ellipsoid at 50mm in salt water. The measured electric
currents on the first macro-electrode used to feed the heuristic
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Fig. 5. Pose and size estimation for an insulating ellipsoid 32 × 16 with
d = 50mm in salt water. This ground truth ellipsoid is depicted in red and
the estimated model in blue. a) Currents Ilat,1 and δIax,1 measured by the
robot together with the real and estimated models , b) Step by step score for
the real object model and the estimated model along the full trajectory, c)
Cumulative score for the model resulting from the heuristic (blue) compared
to the real object model cumulative score (red), d) Position of the probe when
it detects the object and starts the location and size estimation of a spherical
model (t = t1), e) Result of the estimation of a sphere in blue (t = t2),
f) The 10 ellipsoids that have the best score at the end of the heuristic g)
Ellipsoid with the minimum score at the end of the heuristic.

are plotted in Fig. 5.a in black. The currents corresponding to
the real (ground truth) model are in red, while those estimated
by our heuristic are in blue. In Fig. 5.b and.c we show the
step by step evolution of the score and the cumulative score
for the real model and the best estimated model along the
trajectory. As it can be seen, the algorithm found a model
that better fits the measurements than those calculated with
the real object parameters, which is due to non-negligible
modeling and experimental approximations. The fitting score
(cumulative score) of the best estimated ellipsoid is (0.353)
while the score calculated with the real model is (0.368).
Finally, the parameters of the estimated elliptic equatorial
section (x, y, a, b, θ) are (0.149,−0.215, 0.027, 0.02, 0) while
the real one are (0.145,−0.215, 0.032, 0.016, 0) (see Fig. 5.g).
In Fig. 5.d we present the position of the probe when it detects
the object (step 1 of the heuristic). At this step, the spherical
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Fig. 6. Pose and size estimation of spherical (r = 20mm) and ellipsoidal
objects (a = 32mm, b = 16mm) in salt water. Real object (red) and
estimated object (blue). The columns display 3 different lateral distances
d = 40, 50, 60mm. (a) 3 experiments with a conductive sphere, (b) 3
experiments with an insulating sphere, (c) 9 experiments with a conducting
ellipsoid, (d) 9 experiments with an insulating ellipsoid. In (b) and (c) the 3
rows display different ellipsoid orientations (0◦, 45◦, 90◦).

TABLE I
POSE AND SIZE ESTIMATION RESULTS CORRESPONDING TO THE FIGURES

6 AND 7 WITH εx = εy = εa = εb = 0.0025, εθ = 22.5.

E` (m) Es (%) Eθ (◦)

3 expe. (insu. spheres) 0.0044 7.0 -
3 expe. (cond. spheres) 0.0053 11.2 -

SALT all spheres expe. 0.0048 9.1 -
WATER 8 expe. (insu. ellipsoids) 0.0076 18.9 25.3
1.6 S/m 8 expe. (cond. ellipsoids) 0.0084 16.6 30.9

all ellipsoids expe. 0.0080 17.7 28.1

FRESH 16 expe. (insu. ellipsoids) 0.0088 22.8 30.4
WATER 16 expe. (cond. ellipsoids) 0.0111 18.0 11.4
0.04 S/m all ellipsoids expe. 0.0099 20.4 20.9

model-based estimation is started. Fig. 5.e illustrates the result
of this equivalent sphere estimation (step 3 of the algorithm).
Fig. 5.f shows the 10 best-scored ellipsoids provided by the
algorithm. This figure illustrates the complexity of the electric
inverse problem. Indeed, even after a large displacement (more
than one robot length), the algorithm found an acceptable
location but many different sizes and orientations remain with
very close scores. This is explained by the fact that size,
orientation and location errors can compensate each other.

V. EXPERIMENTAL RESULTS

A. Overview of the experiments

To illustrate the effectiveness of our approach, we processed
54 experiments (22 in salt water, 32 in fresh water). For all
these experiments, we used the same discretization parameters,
empirically chosen as indicated in Sec. V-F. These parameters
are εx = εy = εa = εb = 0.0025m and εθ = 22.5◦, which
implies an average number of tested models per experiment,
about 5.5 104. All the results were generated off-line on a
laptop computer equipped with an Intel Dual Core i7 2.2GHz
CPU. For each experiment, the computational time under

Ground truth
Estimated

(a)

Ground truth
Estimated

(b)

Fig. 7. Pose and size estimation of ellipsoidal objects (a = 32mm, b =
16mm) in fresh water. Real object (red) and estimated object (blue). The
columns display 4 different lateral distances (50−60−70−80mm), and the
rows, 4 ellipsoid orientations (0◦, 30◦, 60◦, 90◦). a) 16 experiments with a
conductive ellipsoid, b) 16 experiments with an insulating ellipsoid.

Matlab for the whole trajectory was about 80s (in comparison
the experiment duration was about 60s). To quantify the
estimation results, we used the 3 following metric errors of
[13] defined by:
• E` =

√
(x− xreal)2 + (y − yreal)2,

• Eθ = |θ − θreal|,
• Es =

√
((a− areal)2 + (b− breal)2)/(a2real + b2real),

with (x, y, a, b, θ) and (xreal, yreal, areal, breal, θreal) the pa-
rameters of the estimated and the real object model, while
the subscripts `, θ and s are related to the “location”, the
“orientation” and the “size” respectively.

B. Results in salt water

Fig. 6.a (resp .b), shows the location and size estimation
errors obtained for a conductive (resp. insulating) sphere, by
using the ellipsoid model. For each sphere, we conducted 3
experiments at different distances and obtained an average
error on the size Es ' 9%, and on location E` ' 0.0048m
(see Tab. I). As expected, the objects are well located and the
size of the estimated ellipsoid is close to the sphere shape.
Similar experiments are illustrated in Fig. 6.c and .d, but for
16 experiments performed with our 2 ellipsoidal objects (one
conductive, one insulating). For each of both, we tested 3
different distances and 3 different orientations (0◦, 45◦, 90◦).
In Fig. 6.c and .d, one experiment is missing at 40mm (last
row) since the robot was colliding with the object. In this
second case, we obtained Es ' 17%, E` ' 0.008m and
Eθ ' 28◦.

C. Results in fresh water and comparison with [13]

To supplement the above results in salt water, we show in
Fig. 7, 32 experimental results obtained with the same ellip-
soids but in fresh water. In this case, Es ' 20%, E` ' 0.009m
and Eθ ' 20◦ (see Tab. I). These results are globally less good
than in salt water. However, this is only due to the fact that we
performed more experiments at larger range (see Sec. V-D). To
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perform these experiments, we used the data produced in our
previous paper [13]. Results are consistent with those of [13]:
Es ' 20% with the heuristic, against Es ' 16% (and 10%
after a reactive alignment in [13]); Eθ ' 21◦ in this paper
against Eθ ' 27◦ without alignment in [13]. Finally, even
if the estimation of the size is not as good as in [13], these
results make sense since we estimate the 6 object parameters
in parallel with a unique algorithm, while when estimating the
size in [13], the ground truth location is supposed to be known
after the location or an alignment phase.

D. Discussion about the heuristic results

The heuristic has similar performances in salt and fresh
water except for the range, that was reduced in salt water.
This difference was due to the hardware. Our electronic
board being designed for fresh water, was saturated by the
increase of currents in highly conductive salt water. To avoid
this saturation in salt water, the emitting voltage had to be
decreased which resulted in a diminution of the range. In
the future, we plan to develop a new electronic board able
to self-adapt to a wider range of conductivity. Regarding
the results of the heuristic in itself, we observe the same
characteristics as in [13] that we now briefly remind. Size and
location are rather well estimated even if the algorithm tends
to underestimate the distance and the size. Orientation remains
difficult to estimate as this is confirmed by the weak sensitivity
of our score to θ (see Appendix B). The results are better for
conductive than for insulating objects and are improved when
the objects get closer to the sensor, except when θ approaches
90◦ (last rows of Fig. 6 and 7). In this pathological case, the
quadripolar response of the object which is ignored by our
dipolar model has a non-negligible effect on the measurements
and introduces a strong bias in the estimates of the algorithm.
Finally, when the object is pushed away from the probe, the
influence of the noise increases and the performance of the
algorithm obviously drops, this phenomenon being reinforced
in salt water for the aforementioned reasons.

E. Influence of the robot location errors on the results

In the previous part, we have shown results obtained using dif-
ferent datasets including different objects, distances, and orien-
tations. To get a meaningful evaluation of the repeatability of
the heuristic, we repeated several times the same experiment to
check if the results were consistent. We arbitrarily selected one
experiment (insulating ellipsoids at 50cm with an orientation
angle of 0◦), and we performed 15 times the same straight
trajectory in our salt water tank. Due to the imprecision
of the robot gantry and to the heterogeneity of the salinity
in the water tank, we obtained slightly different currents
measures (see the 15 Ilat,1 signals in Fig. 8.a). These different
currents explain the differences between results displayed in
the histograms (see Fig. 8.b). Globally, the location error varies
of ±3mm, the size estimation of ±6% and the orientation
error that was always critical, varies of ±30◦. These results
are consistent and confirm the repeatability of the heuristic.
To go further and assess whether a robot equipped with a
more imprecise onboard location system, can also use such a

(a)

(b)

Fig. 8. Results obtained by repeating 15 times a trajectory with an insulating
ellipsoid (32 × 16mm), d = 50cm and θ = 0 in salt water. a) Differences
on Ilat,1 for the 15 experiments b) Histograms of location, size and angle
errors for these 15 experiments.

heuristic, we added noise with a normal distribution and zero
mean on the sensor velocity V , as well as on the heading
Ω. The standard deviation of the noise was the same as for
the linear velocity and the heading. In Tab. II and Fig. 9 we
show that as the standard deviation of the noise increases, the
quality of location and size estimation results drops, which
makes sense since the current measurements do not correspond
to the models anymore.

F. Influence of the heuristic parameters on the results

We close the discussion by assessing the influence of the
heuristic parameters on the results. In Tab. III and Fig. 10,
we show that increasing the discretization, rapidly impacts
the computation time but does not change much the results.
The parameters presented in Table III column 3 are the best
compromise between time and accuracy. This explains why
we chose these values to perform all the experimental results
presented in the paper. Table III, column 1, also shows that
using the sphere model to approximate an ellipse gives an
important error on the size estimation, but a precise location
by testing significantly fewer models. This point confirms the
validity of the strategy which consists first to roughly estimate
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TABLE II
EXPERIMENT WITH AN INSULATING ELLIPSOID AT 50 MM WITH NOISE ON

THE MEASURE OF THE MOTION.

Noise on V and Ω 0 10 20 30

E` (m) 0.0025 0.0055 0.012 0.035
Es (%) 16 12 9 33
Eθ (◦) 22.5 45 45 67.5

Corresponding Fig. 6.d 9.c 9.d 9.e
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Fig. 9. Experiments with an insulating ellipsoid at d = 50mm in salt water
adding white noise on the robot linear and angular speed. The simulated noisy
trajectory is depicted in black on each plot.

an equivalent sphere, and then to reduce the search area around
this sphere location and to refine the discretization parameters.

VI. CONCLUSION

We proposed a new model-based heuristic for object location
and size approximation with electric sense. The approach
is a purely model-based approach using a new dedicated
score function to quantify the error between experimental and
model-based measurements. This score is used as a compar-
ison criterion to select among a pool of possible models, the
model that best fits with experimental measurements. Such
a score can be useful for further research in the field, e.g.
to measure the quality of experimental data or to compare
different models for the same dataset. As the existing methods,
the three-dimensional objects are modeled by their dipolar
response and excited by an active sensor sharing the same
equatorial plane. While consistent with other methods, our
approach contrasts with them since: (i) it works with a simple
unique trajectory (alignment phases are not necessary), (ii)
it does not separate location and size estimation but rather
estimates all parameters in parallel, (iii) it does not require
multiple polarizations of the sensor. Finally, this paper also
contributes to the future application of electric sense in sea
water. In the future, we plan to improve the results by

TABLE III
EXPERIMENT WITH DIFFERENT ALGORITHM PARAMETERS. THE TIME TO

PERFORM THE STRAIGHT TRAJECTORY WAS 60S.

Estimated model Sphere Ellipsoid Ellipsoid Ellipsoid

εx, εy , εa, εb(m) 0.005 0.005 0.0025 0.00125

E` (m) 0.005 0.007 0.0025 0.0076
Es (%) 35 13 16 4
Eθ (◦) - 45 22.5 45

Time (s) 57 26 90 397
Sphere tested 14792 1936 14792 108375

Ellipsoid tested - 2574 10075 19035
Corresponding Fig. 10.a 10.b 10.c 10.d
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Fig. 10. Location and size estimation of an insulating ellipsoid in salt water
with different algorithm parameters. The depicted robot position corresponds
to the robot location when the heuristic has selected the result.

integrating the quadripolar response to our analytical model
and to reduce the processing time by using intervals algebra.

APPENDIX

A. Model parameters

In this first appendix, we give the details of the matrices in
(2) and (3). C0 and P⊥ are 4× 4 matrices depending on the
robot morphology, P is the 3 × 3 matrix tensor that encodes
the object electric response, Rθs is a rotation matrix, with
θs = θ−θr denoting the angle between the robot and the major
axis of the ellipsoid. G and H are 4 × 3 matrices modeling
the influence of the distances between the object center and
the electrodes. In the experimental conditions of the article,
P⊥, C0, G, H are defined as:

P⊥ = 104.diag(5.29, 6.74, 6.95, 5.52)

C0 =
γ

102
.


7.65 −3.15 −2.31 −2.18
−3.12 8.39 −3.19 −2.07
−2.29 −3.20 7.80 −2.30
−2.18 −2.09 −2.33 6.60



G =

(xo − x1)/r31 yo/r
3
1 0

...
...

...
(xo − x4)/r34 yo/r

3
4 0



H =

(3y(xo − x1))/r51 (2y2o − (xo − x1)2)/r51 0
...

...
...

(3y(xo − x4))/r54 (2y2o − (xo − x4)2)/r54 0


where k = 1, 2, 3, 4, rk =

√
(xo − xk)2 + (yo)2 with xk

the axial coordinates of the electrode εk and (xo, yo) the
object center position in the robot frame. Note that throughout
the article, we only exploited the two first receiving macro-
electrodes of our 4 macro-electrode sensor. Finally, P is the
leading order tensor of an ellipsoidal object [19], [22]. It
defines the prolate (b = c) ellipsoid electrical response such
as:

P = V γddiag
(

1

γ + γdA(η)
,

1

γ + γdB(η)
,

1

γ + γdB(η)

)
with γd = γ0− γ the difference between the object and water
conductivities, V = 4π/3ab2 the object volume, η = a/b the
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TABLE IV
SPHERICAL MODEL EVALUATION

Sphere models Scores Diff. scores Figures

Model real object x, y, θ 0.429 - Blue on all figures

x +1cm (right) 0.540 0.111 Red on Fig. 11.a
x -1cm (left) 0.493 0.064 Green on Fig. 11.a

y +0.5cm (further) 0.467 0.038 Red on Fig. 11.b
y -0.5cm (closer) 0.682 0.253 Green on Fig. 11.b

r +0.5cm (bigger) 1.130 0.701 Red on Fig. 11.c
r -0.5cm (smaller) 0.648 0.219 Green on Fig. 11.c

aspect ratio of the ellipsoid. The functions A, B are elliptic
integrals defined by B(η) = (1/2)(1−A(η)), and:

A(η) = η−2
∫ +∞

1

1

t2 (t2 − 1 + η−2)
dt.

In the particular case of the sphere, these integrals are not
needed since for a = b, A(η) = B(η) = 1/3, while P is
simply given by:

P = γdV
3

2γ + γ0
diag(1, 1, 1)

Moreover, in this case, owing to object’s isotropy, we have
R = Rt = 13×3.

B. Influence of each parameter on the score

In this second appendix, we study the influence of each
parameter of the spherical and ellipsoidal analytical models
on the fitting score. In Fig. 11.a, .b, .c, we compare the
measurement of Iax,1 with its value based on the spherical
model and 3 different values of each parameter. The first value
is the ground truth value, the two others are the ground-truth
value to which we add or subtract a constant error. In Fig. 11.a,
we modified the x-axis position of about 1cm. In Fig. 11.b,
we modified the y-axis position of about 0.5cm. In Fig. 11.c
we modified the sphere radius of about 0.5cm. Finally, in
Fig. 11.d, we modified the orientation of the ellipsoid. In
this last case, we used the ellipsoidal model. The associated
scores corresponding to these tests are gathered in Tab. IV. As
illustrated by this set of experiments, the angle of the ellipsoid
has a small influence on the score. However, an error on the
x-axis has a strong influence as it produces a phase shift on the
signal. Finally, the errors on the y-axis, or on the object size,
have the most critical impact on the score as they modify the
object response by changing the distance object/robot or the
object volume. This study confirms the difficulty to estimate
the angle of the ellipsoid as this parameter has a very small
influence on the score compared to the others.
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