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CRYSTAL is a periodic ab initio code that uses a Gaussian-type basis set to express crystalline orbitals (i.e. Bloch
functions). The use of atom-centred basis functions allows treating 3D (crystals), 2D (slabs), 1D (polymers) as well
as 0D (molecules) systems on the same grounds. In turn, all-electron calculations are inherently permitted along
with pseudopotential strategies. A variety of density functionals is implemented, including global and range-separated
hybrids of various nature and, as an extreme case, Hartree-Fock (HF). The cost for HF or hybrids is only about 3-5
times larger than when using the local density approximation (LDA) or the generalized gradient approximation (GGA).
Symmetry is fully exploited at all steps of the calculation. Many tools are available to modify the structure as given
in input and simplify the construction of complicated objects, such as slabs, nanotubes, molecules, clusters. Many
tensorial properties can be evaluated by using a single input keyword: elastic, piezoelectric, photoelastic, dielectric, as
well as first and second hyperpolarizabilies, etc. The calculation of infrared and Raman spectra is available, and the
intensities are computed analytically. Automated tools are available for the generation of the relevant configurations
of solid solutions and/or disordered systems. Three versions of the code exist, serial, parallel and massive-parallel.
In the second one the most relevant matrices are duplicated on each core, whereas in the third one the Fock matrix is
distributed for diagonalization. All the relevant vectors are dynamically allocated and deallocated after use, making the
code very agile. CRYSTAL can be used efficiently on high performance computing machines up to thousands of cores.

I. INTRODUCTION

Quantum mechanical ab initio simulation is rapidly
gaining a central role in many scientific communities due
to decreasing computational cost, as well as the availability
of computer programs of increasing capability and ease of
use. In particular, the number of computer codes devoted to
periodic systems has been rapidly growing (many of them
are presented in this Special Issue; see also, for example,
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the book by Evarestov1). CRYSTAL was the first of such
codes to be distributed publicly in 1988 through the Quantum
Chemistry Program Exchange.2,3 Since then eight other
releases have followed in 1992, 1995, 1998, 2003, 2006,
2009, 2014 and 20174,5.
CRYSTAL can be used to study the properties of compounds
characterized by periodicity in one dimension (quasilinear
and helical polymers, nanotubes), two dimensions (mono-
layers, slabs) and three dimensions (crystals, solid solutions,
substitutionally disordered systems). As a limiting case,
molecules can also be studied (it is very useful, for example,
to investigate molecular crystals and the corresponding
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isolated molecule by using the same computational setup:
basis set, functional, thresholds, computer code).
Despite the many improvements and generalizations that
have been introduced since its first release, the basic aspects
of CRYSTAL have remained the same. Thus, this program
computes the electronic structure of periodic systems within
the HF and density functional theory (DFT) single particle
models using Bloch functions (BF; see section IV). As
regards DFT, the local-density and generalized-gradient
approximations (LDA and GGA), already available in the
early versions of the program, have been complemented with
exchange-correlation functionals corresponding to the third-
and fourth-rung of Jacob’s ladder6. To the latter rung global
and range-separated hybrids of the previous rungs are also
available. DFT methods can be augmented with Grimme’s
D27,8 and D39 dispersion corrections10. Also, “3c” composite
methods (i.e. HF-3c, PBEh-3c, HSE-3c, B97-3c)11 have
been made recently available in the code along with a recent
revision for solids12.
At variance with respect to other periodic codes, in particular
(but not only) based on the use of a plane wave basis set,
calculations with hybrid functionals (as well as HF) are only
three to five times more expensive than GGA.
In CRYSTAL the crystalline orbitals (CO) are expanded as
linear combinations of atom-centered Gaussian-type func-
tions (GTFs; also denoted as AOs in the following). Powerful
screening techniques are employed to exploit real space local-
ity, which is another distinguishing characteristic of the code.
Restricted (closed shell) and unrestricted (spin-polarized)
calculations can be performed with all-electron or with
valence-only basis sets using effective core pseudo-potentials.
Another unique feature is the extensive exploitation of
symmetry to achieve computational efficiency. Besides the
230 space groups, 80 two-sided plane groups, 99 rod groups,
and 32 crystallographic point groups, there is provision for
molecular point group symmetry (e.g. icosahedral) as well as
helical symmetry.
An extensive discussion of the use of symmetry, in particular
for low-dimensional systems, and with particular reference to
its implementation in the CRYSTAL code, can be found in
the excellent recent book by Evarestov13.
Automatic tools allow users to obtain lower dimensionality
systems from higher dimensionality structures by specifi-
cation of a few geometrical parameters. Thus, slabs (2D
periodic), nanorods (1D periodic) and nanocrystals (0D)
are easily generated from 3D crystalline structures as well
as nanotubes (1D) and fullerenes (0D) from 2D sheets or
multilayered slabs.
Full use of symmetry is involved in all steps of a CRYSTAL
calculation, leading to drastically reduced computation time
and required memory, along with improved task farming in
parallel computations.14–18 Symmetry is also used to select
the independent elements of tensor properties to be com-
puted, and plays a crucial role in the selection of dominant

configurations in determining the thermodynamic properties
of solid solutions, or, more generally, disordered systems.19,20

A wide variety of crystal properties can be computed auto-
matically, through a simple, single line, keyword. Those that
can be classified as total energy derivatives are summarized
in table I. The list of properties obtained from wave function
analysis is very long and can be found in the CRYSTAL17
Users’ Manual5. Some of them will be presented in section
VIII.
Many of the new features introduced in the code in the last
8-9 years are described in two papers presenting the 2014
(reference 21) and 2017 (reference 4) releases, to which we
refer for an extended description. Technical details about how
to run calculations and extract the corresponding information
(input/output structure) can be found in the CRYSTAL17
Users’ Manual5, which also contains information on formal
aspects. The many tutorials available on the CRYSTAL
website22 are a more direct and agile introduction to the
investigation of specific properties.
The choice of the Gaussian type basis set is of paramount
importance for solids, and requires some attention (see
section III). An extended list of basis sets is available on the
CRYSTAL website.22

CRYSTAL may be run either sequentially on a single pro-
cessor or in parallel. Parallel processing, in turn, can be
done either through a replicated data procedure (PCRYSTAL),
wherein all the most relevant quantities (i.e. matrices and
vectors) are copied on each processor, or according to a
Massive Parallel Processing (MPP) strategy in which the
large matrices are partitioned and distributed amongst the
processors.
While this summarizes at a glance the main features of the
code, the rest of the paper is organized into eight further
sections, where the most important points are discussed with
more details.
Section II describes the structure of the code including inner
checks of the accuracy and consistency. In section III the
choice of basis set is discussed, and the reasons why the
use of a standard molecular basis set for crystalline solids
can be unbalanced, inefficient and expensive are illustrated.
Some background material on HF and on the LDA, GGA and
hybrid functionals of DFT, as implemented in CRYSTAL,
is presented in Section IV. Then Section V describes the
many properties (often tensors of rank 2, 3 and 4) that can
be obtained automatically (a single keyword) and, in most
cases, at low cost. Two sub-sections are devoted to prop-
erties obtained through the CPHF/KS (Coupled Perturbed
Hartree-Fock/Kohn Sham) computational scheme and those
associated with vibrational degrees of freedom. Section
VI deals with symmetry, which plays a crucial role in the
efficiency and accuracy of the code. In this area CRYSTAL
out-performs most other codes, whether periodic or molecu-
lar.

An important issue is the limit separating systems that can be tackled with ab initio quantum mechanical methods and
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Property Tensor rank Formula Definitions Method

atomic gradient 1 ga
t =

∂E
∂ ra,t

Energy E and atomic position vector ra, of atom a; A

cell gradient 2 Gtu=
∂E

∂Atu
Energy E and lattice metric matrix A = (a1, a2, a3); A

polarizability 2 αtu=− ∂ 2E
∂εt ∂εu

Energy E and electric field ε; A

Born charge (IR intensity) 2 Za∗
tu =− ∂ 2E

∂εt ∂ ra,u
Energy E, electric field ε and atomic position vector ra; A

electric field gradient 2 qtu=− ∂εt
∂ ru

Electric field ε and position vector r; A

Hessian 2 Hab
tu = ∂ 2E

∂ ra,t ∂ rb,u
Energy E and atomic position vector ra; A/N

direct piezoelectricity 3 etuv=
∂Pt

∂ηuv
Polarization P and rank-2 strain tensor η; A/N

converse piezoelectricity 3 dtuv=
∂ηuv
∂εt

Electric field ε and rank-2 strain tensor η; A/N

first hyperpolarizability 3 βtuv=− ∂ 3E
∂εt ∂εu∂εv

Energy E and electric field ε; A

Raman intensity 3 Ia
tuv=− ∂ 3E

∂εt εu∂ ra,v
Energy E, electric field ε and atomic position vector ra; A

elasticity 4 Ctuvw=
∂ 2E

∂ηtu∂ηvw
Energy E and rank-2 strain tensor η; A/N

photoelasticity 4 ptuvw=
∂∆ε−1

tu
∂ηvw

Rank-2 dielectric tensor ε and rank-2 strain tensor η; A/N

second hyperpolarizability 4 γtuvw=− ∂ 4E
∂εt ∂εu∂εv∂εw

Energy E and electric field ε; A

TABLE I. Physical properties that can be computed with CRYSTAL. For each property, its formula and tensor rank are given along with the
general method of computation, which may be either analytical (A) or involve a mixed analytical/numerical (A/N) scheme. Here, t,u,v,w =
x,y,z represent Cartesian indices.

those that require approximate methods (force fields, semi-
empirical Hamiltonians, and so forth). This varies with many
parameters (level of ab initio theory, size of basis set, prop-
erty, etc.). It is a moving target; as the performance of the
hardware improves rapidly, so should the software. In section
VII we try to define where the border lies with reference to
our code. Subsequently, in section VIII, a few examples of the
many properties that can be obtained with our code from the
wavefunction are reported. The idea is to show that physical
understanding of a problem can be achieved and facilitated by
the several available interpretation tools. Finally, a few con-
clusions are drawn in section IX.

II. THE STRUCTURE OF THE CODE AND ITS
ACCURACY

The CRYSTAL project was formulated in 1976. The basic
computational structure of the code, as already mentioned, is
very similar to the one illustrated in three papers published
in 1980 (see reference 23 and 24) and 1983 (see reference
25). In 1988 this material was presented more systematically,
in connection with the first public release of the code,3 in a
book by Pisani, Dovesi and Roetti2 (see also reference 26).
Fundamental to the early development was the contribution
of V.R.Saunders, who joined the project in 1980 and imple-
mented a package for computing two- and one-electron inte-
grals up to d orbitals, afterwards extended to f, and included
an elegant procedure for handling the infinite Coulomb series
(see below). Subsequent extensions of the code have required
efforts from tens of collaborators.
As regards the basic structure, briefly:
- All relevant integrals (Coulomb, exchange, and monoelec-

tronic) are evaluated in direct space.23,24

- Efficient screening techniques allow for truncation of inter-
actions to a small subset of neighbors of a given atom.23

- Coulomb infinite series are treated using a combination of
ingredients: multipolar expansion of atomic and shell charge
distributions in spherical harmonics,25 together with an Ewald
summation of the infinite series that exploits the properties of
Gaussian functions, and the grouping of terms to reduce in-
tegrals from four to three centers when the distance between
interacting electrons is such that the distributions do not pen-
etrate one another. An efficient evaluation of the Coulomb
infinite series in a Gaussian basis set for 3D systems was pre-
sented in 199227 (subsequent proposals do not add much in
our opinion). The treatment of 2D and 1D systems was im-
plemented at roughly the same time, although only the latter
case was published.28

- The exchange series is truncated by a screening procedure
based on the behavior of the density matrix.29 This imple-
mentation avoids problems that affect other implementations,
even if recent developments and the use of screened Coulomb
range-separated have mitigated this limitation30–35.
- Symmetry is used in many steps of the calculation. It has
been implemented over many years for one- and two-electron
integrals and their storage,14 as well as for construction of
Symmetry Adapted Crystalline Orbitals (SACO) that lead to
factorization of the Fock matrix15,16 with a consequent major
reduction in memory allocation.18

- The DFT exchange-correlation contribution to the Fock
matrix is evaluated by numerical integration over the unit
cell volume. Following a standard numerical protocol36 ra-
dial and angular points for the integration grid are obtained
from Gauss-Legendre radial quadrature and Lebedev two-
dimensional angular distributions respectively.
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- Once the Fock (or Kohn-Sham) matrix is built, it is Fourier
transformed to reciprocal space and diagonalized.23 The re-
sulting density matrix is transformed back to real space in an-
ticipation of the next SCF iteration.
- The Unrestricted Hartree-Fock (UHF) option was imple-
mented, by Aprà, Saunders, Harrison in 1992-93, and applied
to many transition metal compounds37–39.
- Analytical gradients with respect to atomic coordinates and
cell parameters, needed for geometry optimization,40 were
implemented by Doll et al. in 2000 and following years41–44.
- Vibrational frequencies45–47 and second order elastic
constants48,49 are computed semi-analytically (numerical
derivatives of the analytical gradients);
- The most recent general documentation of the theory behind
the code and of its implementation dates back to 1996 (24
years!), when many contributions from various authors of the
code were collected by Cesare Pisani39.

A. Accuracy: inner and outer checks

Generally speaking, it is reasonable to assume that the
numerical accuracy of periodic codes is the same, in the best
cases, or lower, than that of molecular codes, due to the infi-
nite summations and series truncations required for periodic
calculations. The accuracy can obviously vary from property
to property, but it is difficult to estimate since comparison
with the experiment can be biased by the error bar of the
latter and by the many approximations implicit in the adopted
computational model such as basis set and functional. Cross
comparison with other codes is more difficult than in the
molecular context, where most of the programs use the
same basic ingredients. For example, the large majority of
plane-wave (PW) codes use pseudopotentials (PP) that are
often unique to that code.
One good way to check numerical accuracy (and the formal-
ism, as bugs can always be there!) is to perform inner checks.
Three types of inner check will be used below to evaluate the
accuracy of CRYSTAL.
In subsection II A 1, we show what happens when the size and
shape of the unit cell is modified (size and shape consistency),
or when the symmetry requirement is reduced/eliminated
(symmetry consistency), for a given physical system.
In subsection II A 2 we compare a particular property, the
infrared (IR) intensity of a large unit cell compound, obtained
with three different algorithms and then also with three
different parts of the code.
A third check consists of a comparison between systems of
different dimensionality and verifying that, in the limit of the
same physical situation, the numerical values coincide. When
starting from the 0D case, the results obtained with molecular
codes can be used for the comparison. This scheme has been
applied successfully to check the computed polarizability,
α51, first hyperpolarizability, β , and second hyperpolaziz-
ability γ52 obtained with the CPHF scheme (see section V B).
LiF in different aggregation states - finite and infinite chains,
slabs, and cubic crystal - was considered. For a finite linear
chain containing N LiF units, the (hyper)polarizabilities tend

to the infinite chain value at large N, N parallel chains give the
slab value when N is sufficiently large, and N superimposed
slabs tend to the bulk value.
In subsection II A 3 we provide two other examples of this
strategy, in which a nanotube is compared with the corre-
sponding monolayer. In that case the compared properties are
the vibrational wavenumbers, and IR intensities. When the
radius of the tube becomes very large, its properties must tend
to the properties of the monolayer. These are also additional
examples of size, shape and symmetry consistency, as we
compare very large nanotubes, containing 1200 (BN) or 2124
(chrysotile) atoms, and characterized by a given symmetry
and shape, to monolayers containing just a few atoms in the
unit cell (2 for BN, 18 for chrysotile) with a different shape
and symmetry. In all of these cases the agreement turns out to
be excellent.

1. Size, shape, and symmetry consistency checks

In principle, the unit cell of a periodic system can be cho-
sen in many different, but equivalent, ways so that all intensive
properties are expected to be the same. This might appear to
be a not very useful academic exercise, but that is not the case.
We provide here two examples for which the size consistency
check is critical.
The most common technique for studying defects in solids is
the supercell scheme. Consider, for example, a substitutional
defect formed by inserting a hetero-atom in a supercell (a mul-
tiple of the primitive cell). Thus, the system remains periodic
and the effect of the defect concentration may be explored by
increasing the size of the supercell. A necessary (but not suf-
ficient) condition for attributing the results obtained with the
two supercells to the effect of defect concentration is that both
supercells provide exactly the same results (per formula unit)
for the perfect host system.
A second example is provided by the study of solid solutions.
Consider, for example, the Mg-Ca-O system. Again, a super-
cell approach is usually adopted. Suppose we are interested
in a 25% Mg cation composition. The minimum supercell de-
scribing this composition is, obviously, MgCa3O4. But this
provides a very poor statistical sample of the many possible
configurations. In a supercell 8 times larger, Mg8Ca24O32,
many more configurations are possible, although the cost is
obviously higher. One possible strategy is to start with small
supercells (cheap) and, then, go to increasingly larger super-
cells (progressively more expensive), checking at each step for
convergence of the mean value of the properties of interest.
Again, a necessary condition is that the reference perfect sys-
tem, investigated with different supercells, provides the same
results.
In table II a set of properties for bulk MgO is evaluated with
supercells of different size, shape, and symmetry. The prop-
erties are the total energy, the three elastic constants, the elec-
tronic contribution to the dielectric constant, along with the
fundamental IR mode and its intensity. The first five lines re-
fer to cubic supercells containing 2, 8, 64, 216 and 512 atoms.
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T N SC IS G H Ec C11 C12 C44 ε∞ ε0 ν I ncycle ND
7 2 P 12 48 B3LYP −0.2363 368.8 111.2 189.0 1.71321 6.5950 436.9 4247.8 18 1
7 8 C(1,1,1) 8 48 B3LYP 0.0000 368.8 111.2 189.0 1.71321 6.7443 437.2 4247.8 21 2
7 64 C(2,2,2) 4 48 B3LYP −0.0135 368.8 111.2 189.0 1.71321 6.7482 437.1 4247.6 24 2
7 216 C(3,3,3) 2 48 B3LYP −0.0356 368.8 111.2 189.0 1.71316 6.7477 437.1 4243.6 25 2
7 512 C(4,4,4) 2 48 B3LYP −0.0767 368.8 111.2 189.0 1.71321 6.7468 436.9 4251.9 28 2
8 2 P 12 48 B3LYP −0.2354 370.4 111.0 189.4 1.71387 6.7041 438.1 4249.6 13 1
8 8 C(1,1,1) 8 48 B3LYP 0.0000 370.3 111.1 189.4 1.71387 6.7450 437.3 4249.6 20 2
9 2 P 12 48 B3LYP −0.2353 370.3 111.1 189.3 1.71415 6.7509 437.1 4249.7 16 1
9 8 C(1,1,1) 8 48 B3LYP 0.0000 370.3 111.1 189.3 1.71415 6.7450 437.3 4249.6 18 2
10 2 P 10 48 B3LYP −0.2354 370.3 111.2 189.2 1.71412 6.7545 436.9 4249.1 14 1
10 8 C(1,1,1) 8 48 B3LYP 0.0000 370.3 111.2 189.2 1.71412 6.7553 436.9 4249.1 14 2
7 8 C(1,1,1) 8 1 B3LYP −0.0518 368.8 111.2 189.0 1.71320 6.7450 437.0 4255.0 21 21
7 64 C(2,2,2) 8 1 B3LYP −0.0566 368.8 111.2 189.0 1.71320 6.7442 436.9 4254.9 24 189
7 40 C(1,1,5) 8 16 B3LYP −0.0087 368.8 111.2 189.0 1.71321 6.7443 437.4 4247.7 24 40
7 80 C(1,1,10) 8 16 B3LYP −0.0371 368.8 111.2 189.0 1.71321 6.7438 437.2 4247.0 25 75
7 120 C(1,1,15) 8 16 B3LYP −0.0207 368.8 111.2 189.0 1.71321 6.7411 437.3 4247.7 26 110
7 2 P 12 48 HF −0.2358 389.5 103.1 200.4 1.51445 5.9081 465.1 4157.7 18 1
7 8 C(1,1,1) 8 48 HF 0.0000 389.5 103.1 200.4 1.51445 5.9155 464.7 4157.7 20 2
7 64 C(2,2,2) 8 48 HF −0.0004 389.5 103.2 200.4 1.51445 5.9136 464.8 4157.5 22 2

TABLE II. Properties of perfect bulk MgO evaluated with supercells of different shape, size and symmetry. T summarizes the value of the
five thresholds controlling the truncation of the Coulomb and exchange series, where T= T1=T2=T3=T4=1/2T5. N is the number of atoms per
cell. The SC column indicates the size and shape of the cell, where P stands for primitive, and C for the conventional cell expanded along the
three lattice vectors by i,j,k. C(1,1,1) contains 8 atoms. IS is the shrinking factor, chosen to assure a convergence of the total energy to at least
10−8 Eh. G is the number of symmetry operators. H is the Hamiltonian or functional, i.e. either Hartree-Fock (HF) or hybrid (B3LYP).50 Ec is
the total energy difference (in micro-Hartree per formula unit) with respect to the conventional cell, whose energy is -1101.72507583 Eh. The
interatomic distances are the same in all cases (Mg-O = 2.10208181 Å). C11, C12 and C44 are the elastic constants in GPa. ε∞ and ε0 are the
optical (high-frequency) and static dielectric constants. ν is the fundamental vibrational frequency in cm−1 and I its IR intensity in km/mol
(normalised to the 8 atoms case). ND is the number of SCF plus gradient calculations for constructing the Hessian matrix; ncycle is the number
of SCF cycles required to reach convergence. Other computational conditions: grid for the exchange correlation integration XXLGRID (see
reference 5); convergence in the energy for the SCF cycle in geometry optimization 10−9 Eh; in vibrational frequency calculation 10−11 Eh
(10−12 Eh for the ND=1 case, see text).

It is seen that all properties remain essentially the same for the
5 cases. The maximum difference in energy, for example, is
always smaller than 0.25 µEh. It can be reduced by one or-
der of magnitude by increasing the parameters controlling the
number of direct and reciprocal lattice vectors in the Ewald
sums, with negligible cost. It should be noticed that when
the convergence threshold on energy TE=10−11 is used, the
vibrational frequency ν of the smallest cell is 6.7 cm−1 higher
than that of all other cases. Using TE=10−12, however, pro-
duces a value in line with the other (super)cells. This higher
sensitivity to SCF convergence is due to the fact that, for the
cell with only 2 atoms, the full-Hessian matrix is built with a
single point (see the ND column in the table), whereas for the
other cases at least 2 displacements are used.
Lines 6 to 11 in the table show the effect on the various prop-
erties of a more severe set of tolerances for the truncation
of the Coulomb and exchange series (for more details see
the CRYSTAL manual5). Roughly speaking, tolerances act
as thresholds for overlaps among Gaussian functions. Thus,
T=10 means that overlaps smaller than 10−10 are disregarded.
There is a cost related to these more severe computational con-
ditions; for example, increasing T from 7 to 10 the cost of the
SCF cycle increases for the various MgO supercells by 40%-
60%. As regards the results, all properties remain essentially
unaltered.
For the shape consistency check, three cases were considered.

Starting from the cubic conventional cell with 8 atoms, the c
lattice constant was elongated by a factor 5, 10 and 15, for a
total of 40, 80, 120 atoms in the supercell. In this case as well
the difference for all reported properties is negligible.
The symmetry consistency check is also quite important. In
CRYSTAL, indeed, symmetry is used in many steps of the cal-
culation. In a cubic system, for example, with 48 point sym-
metry operators, the computation time for the two-electron in-
tegrals is reduced by a factor ranging from 20 to 48, according
to the case, by the use of symmetry. When comparing results
for different symmetry one must be careful to avoid bias due
to the different number of symmetry operators. To use again
the defect example, it happens frequently that the highest sym-
metry configuration is not the energy minimum. The broken
symmetry case is then investigated. The energy difference,
that sometimes is very small, should not depend on the dif-
ferent number of point symmetry operators characterizing the
two cases. In table II the 8 and 64 atom cubic supercells, with
48 and 1 (C1) symmetry operators respectively, were inves-
tigated. The largest difference along all properties occurs for
the IR intensity, which varies by less than 0.3% (4244 vs 4255
km/mol) for the B3LYP functional.
The numerical noise can also depend on the adopted Hamil-
tonian. DFT results might be affected by the choice of the
numerical grid adopted for the integration of the exchange-
correlation functional; Hartree-Fock (HF), by the truncation
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of the exchange series. In the table the HF results for 3 super-
cells, S2, S8, and S64, are reported. The differences are even
smaller than the ones between the corresponding three B3LYP
cases (for example Ec for the supercell with 64 atoms is 1.35 ·
10−8Eh for B3LYP, and only 4 · 10−10Eh for HF ), indicating
that part of the residual noise in the latter case is attributable
to the numerical integration grid.
As a final comment, it should be noticed that, in most cases,
standard computational conditions (T=7) were used for the
above calculations. Working with more severe tolerances
(T=8 or 9) drastically reduces the very few minor anomalies.

2. Using alternative algorithms

A completely different check on the accuracy of the code
consists in evaluating the same property through alternative
algorithms. Since each alternative involves, for the most part,
quite different ingredients (quantities in direct or reciprocal
space, obtained from Fourier or anti-Fourier transforms, ana-
lytical or numerical derivatives, an SCF process or not), find-
ing the same value represents a check (although not complete)
of the accuracy of the algorithms and of their implementation.
An example is the IR intensity of the vibrational modes, which
can be evaluated in three different ways53, that probe three
quite different paths through the CRYSTAL code.

• One algorithm exploits the Berry phase (BP) theory due
to King-Smith and Vanderbilt,54 and Resta55 to evaluate
the dipole moment difference between the equilibrium
geometry and each one of the distorted geometries used
for numerical differentiation.56,57

• A second scheme utilizes localized Wannier Functions
(WFs) to obtain the dipole moment difference from
the sum of the reference WF centroids.58–60 The
geometries and numerical differentiation procedure are
the same as in the BP method.

• The third method employs the Coupled Perturbed
Hartree-Fock (CPHF) scheme of Hurst et al.61, as
adapted for electric fields in periodic systems and for
Coupled Perturbed Kohn-Sham DFT.51,62–65 This is
done in combination with the standard analytical treat-
ment of geometric energy gradients, based on the or-
bital energy weighted density matrix, to yield the de-
sired second derivatives of the energy with respect to
the field and atomic displacements.66,67

An application of the three algorithms to pyrope (four
units of Mg3Al2(SiO4)3, 80 atoms/cell, space group Ia3d, 48
symmetry operators) is reported in table III. Here the B3LYP
functional50,68 was used together with the same basis set as
in references 60 and 47: an 8-511G* contraction for Mg,
8-611G* for Al, 8-6311G* for Si and 8-411G* for O (1488
contracted AOs in the unit cell). The table shows that the
results obtained with the three schemes are very similar. The
largest difference is 57 km mol.−1, for mode 15 at 865 cm−1,
which is however a difference of only 0.4 %. The percentage

difference increases up to 4.5% for mode 7, but in that case
the intensity is relatively low, 43 or 45 km mol.−1, and the
absolute difference is only 2 km mol.−1. It should be stressed
that these results were obtained under standard computational
conditions. By increasing the accuracy requirements a
bit further, the differences can be reduced by an order of
magnitude.
As regards the cost of the three schemes, we observe that:
- The cost of the calculation of the IR intensity is always a
small fraction of the cost required by the construction of the
Hessian matrix.
- The cost of the BP and CP schemes is about the same,
whereas the WF scheme is more expensive.
- These figures reflect, more than the ideal efficiency of the
schemes, their story from the first implementation.
- The Berry Phase approach has been the first to be imple-
mented (1997). It is the simplest of the three: it does not rely
on iterative procedures, involves only little linear algebra, and
does not require additional Fock matrix builds. It has been
ported to a massively parallel implementation already in 2014
and applied to the study of large systems, up to an order of
magnitude larger than pyrope.
- The parallelization of the WF and CP schemes is not
complete yet and as efficient as the BP one.
- As a final comment, we observe that the BP and WF
schemes, with a calculation for each configuration explored
when building the Hessian matrix (displacements along x,y
and z for each atom) can be used in conjunction with the
fragment strategy (see Section V A 3), that is mandatory when
the IR spectrum of very large systems (containing, say, more
than 1000-2000 atoms) is required.

3. When changing the dimensionality of the system

Consider the properties of a set of (n,0) BN nanotubes. As
n increases the curvature of the tube decreases and, in the limit
of extremely large n the properties of the tube must be very
close to those of the monolayer.
Let us recall that the unit cell of the monolayer contains only
two atoms and 3N− 3 = 3 fundamental modes of vibration.
They are the A′′ mode at 836.7 cm−1, with IR intensity, I
= 13.07 km mol.−1, and the doubly degenerate E ′ mode, at
1376 cm−1 with I = 2340 km mol.−1. In the nanotube there
are 12n−4 fundamental modes of vibration since there are 4n
atoms in the unit cell and there is a degree of freedom cor-
responding to the rotation around its axis. For very large n
the effect of the curvature is negligible. Then, in the case of
a (12,0) nanotube, for example, the 48 atoms in the unit cell
correspond to the unit cell of the slab, plus 23 copies of this
cell; that is, to a supercell in which the two lattice vectors
of the 2D cell have been multiplied by 2 and 12. The set of
eigenvalues of the tube will correspond to the eigenvalues of
the monolayer at Γ plus a set of 23 other k-points of the first
Brillouin zone. In this limit,
- only the modes corresponding to those of the monolayer (A′′
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Modes Intensities δ (δ%)
BP WF CP (BP-CP) (CP-WF) (WF-BP)

1 113.66 3101 3098 3100 1 (0.10) 2 (0.06) 3 (0.03)
2 137.04 32 32 31 1 (0.00) 1 (3.13) 0 (3.23)
3 184.89 3303 3299 3298 5 (0.12) 1 (0.03) 4 (0.15)
4 212.97 0 0 0 0 (0.00) 0 (0.00) 0 (0.00)
5 258.64 646 646 649 3 (0.00) 3 (0.46) 0 (0.46)
6 332.64 6384 6372 6368 16 (0.19) 4 (0.06) 12 (0.25)
7 345.82 45 45 43 2 (0.00) 2 (4.44) 0 (4.65)
8 379.57 3457 3449 3458 1 (0.23) 9 (0.26) 8 (0.03)
9 420.81 1367 1359 1370 3 (0.59) 11 (0.81) 8 (0.22)

10 456.55 13689 13681 13664 25 (0.06) 17 (0.12) 8 (0.18)
11 480.33 852 847 842 10 (0.59) 5 (0.59) 5 (1.19)
12 530.44 794 795 798 4 (0.13) 3 (0.38) 1 (0.50)
13 580.18 1412 1407 1402 10 (0.36) 5 (0.36) 5 (0.71)
14 672.73 3 3 3 0 (0.00) 0 (0.00) 0 (0.00)
15 864.83 14100 14056 14043 57 (0.31) 13 (0.09) 44 (0.41)
16 895.95 5668 5670 5673 5 (0.04) 3 (0.05) 2 (0.09)
17 970.25 5802 5788 5780 22 (0.24) 8 (0.14) 14 (0.38)

I 3568 3562 3560 9.71 (0.22) 5.12 (0.05) 6.71 (0.17)
|∆|% - 0.17 0.65 0.73
|∆max|% - 0.59 4.44 4.65

TABLE III. Wavenumbers (first column, in cm−1) and intensities (km mol.−1) of the 17 IR active modes of pyrope. The latter were computed
with three different algorithms, namely the Berry Phase (BP), Wannier Function (WF) and Coupled Perturbed Hartree-Fock/Kohn Sham (CP)
schemes. The absolute and percentage differences (δ and δ%) among the three cases are shown in the last three columns. For example, BP-CP
stands for the absolute value of 100*(BP-CP)/BP. I is the mean intensity, |∆| and |∆max| are the mean and max difference for the full set of
vibrations. The shrinking factor for reciprocal space sampling is IS=3; the threshold for truncation of the bielectronic integrals is T = 7; the
functional is B3LYP. For more details see reference 53.

and E ′) have IR and Raman intensities different from zero; the
modes at any k 6= Γ are inactive for symmetry reasons;
- the frequency of three modes is going to zero, and its deriva-
tive as a function of n can be related to the elastic constants
of the monolayer in directions orthogonal to the tube axis (by
convention oriented along the x direction).
For the calculations, the B3LYP functional and a split valence
basis set has been used. Let us consider, first, the two modes
with the highest wavenumbers, that tend towards the highest
frequency mode of the monolayer at 1376 cm−1. Figure 1
shows the behavior of their wavenumbers as a function of n.
The A-symmetry case (atomic displacement along the peri-
odic direction of the tube) converges rapidly to the slab limit.
The difference in wavenumber is only 1 cm−1 for n = 30. The
intensity, shown in the second panel, is also very close to that
of the monolayer; for n = 30 it is 2382 km mol.−1 compared
to 2340 for the slab.

The situation is completely different for the E-symmetry
modes (in-plane modes along y and z, the two directions
orthogonal to the tube axis on each half of the circumference
of the nanotube). The frequency at the infinite n limit for
these modes must also approach the monolayer value of 1376
cm−1. However, for the (30,0) nanotube the frequency is
1474 cm−1 and the intensity is 1191 km mol.−1, as compared
to the target value of 2340 km mol.−1. When n = 150, the
wavenumber is reduced to 1404 cm−1 (within 28 cm−1 of the
target) and the intensity is 2010 km mol.−1. For the (300,0)
nanotube the frequency and intensity differ by only 14 cm−1

and 160 km mol.−1, respectively, from the slab values.

The same behavior with respect to n is obtained for the
A- and E-symmetry modes around 830 cm−1 (not shown)
corresponding to the A′′ out-of-plane, and much less intense,
mode of the slab.
The connection between monolayer and nanotubes is more
delicate and less evident for the nanotube modes that tend to
zero. In that case it is useful to represent the tube wavenum-
bers as a function of the inverse of n (see figure 2). It can be
shown that the slope of these curves is related to the elastic
components of the monolayer (i.e. C11 and C66).69,70 For
example, for the A1-mode

ωA1 =

√
C11

(MB +MN)

2π

a
1
n

(1)

where a is the lattice parameter of the monolayer, and MB
and MN are the atomic masses of B and N . The calculated
value of C11 (= C22) of the slab is 3.755 Eh leading to
ωA1 = 2656/n cm−1 which is in good agreement with the
fitted value of 2644 ± 15 cm−1 of figure 2 for the A1 mode.
The connection between C66 =

1
2 (C11−C12) = 1.480 Eh and

the E1 soft mode of the nanotube leads to ωE1 = 1667/n
cm−1, to be compared to 1659 ± 15 cm−1 from the fitting.
Finally, the relationship for the E2 soft mode is similar to that
for the A1 mode, but with half the total mass in Eq.(1) so that
ωE2 =

√
2ωA1 = 3756/n cm−1, which is to be compared with

3745 ± 15 cm−1 from the fitting.
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The BN case might be considered too simple since the
monolayer is planar, the unit cell contains only two atoms,
and there are many symmetry constraints involved in deter-
mining the 1D-2D correspondence. Thus, a second case was
considered, namely the lizardite 2D monolayer (18 atoms
in the unit cell) that corresponds to the infinite n limit of a
chrysotile nanotube with an ideal formula unit corresponding
to Mg3Si2O5(OH)4. The crystal structure of lizardite con-
sists of so-called TO layers, where a brucite-type octahedral
sheet (O) is attached to a silica tetrahedral sheet (T). The lat-
ter consists of di-trigonal rings formed by SiO4 tetrahedra
units through sharing one oxygen atom (an apical oxygen,
Oa). What makes their structures so peculiar and difficult
to determine is the bending flexibility of these slabs, which
can give rise to a range of layered structures where the layers
can be flat (like in lizardite), or wavy (like in antigorite), or
curled in the form of concentric spirally wrapped nanotubes
(chrysotile).71,72 In figure 3 a chrysotile tube, two lizardite
layers seen along two orthogonal views, and an antigorite bi-
layer are shown.
A family of nanotubes from (9,-9) to (59,-59) was considered;

the unit cell of the latter contains 2124 atoms. The B3LYP
functional and a split valence basis set (see Ref. 73) were
used. For the comparison of vibrational wavenumbers, we se-
lected the two most intense Raman peaks of lizardite, at 702.1
and 3800.9 cm−1, and examined how two frequencies of the
nanotubes tend to this limit when the radius increases. The
Raman spectrum of the nanotubes presents only two modes
with important intensity for large radii, as expected. These
modes are indicated as A1-large and A1-small in figure 4,
which reports the variation of the wavenumber of the two
peaks as a function of n. When fitted with the function ν =
a+b/n+c/n2+d/n3, the limiting values shown in the figure
are 700.67± 0.21 and 3798.17± 0.11 and differ from the slab
values by only 1.5 and 3 cm−1 respectively.
These results show that a) the accuracy of the frequency cal-
culation is very similar for unit cells containing either a few
(18) or more than two thousand atoms, and (b) the accuracy
is the same for both 1D and 2D systems. It is interesting to
note that for the (59,-59) nanotube, the high frequency mode
is much further from the monolayer (11 cm−1) than the low
frequency mode (0.2 cm−1) (note the different scales at the
right and left hand sides of the figure). The larger difference
is a measure of the residual interaction in the nanotube due to
the small but not null curvature, that generates a red shift for
the hydrogen stretching motion.

The chrysotile example will also be used in Section VI,
showing the effect of symmetry, that is particularly high for
nanotubes, and in Section VII, devoted to the code perfor-
mance, because the geometry of very large tubes73 contain-
ing up to 5000 atoms has been optimized74 for investigating
the relative stability of lizardite and chrysotile tubes, and be-
cause the vibrational frequencies and the IR spectrum have
been computed for tubes containing up to 2124 atoms thanks
to symmetry.
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FIG. 3. A single-walled chrysotile nanotube (top); two single layers
of lizardite with different orientations (center); and a layer of antig-
orite (bottom). The orientations of the lizardite layers are chosen to
match the orientation assumed in the nanotube and in antigorite. Si
is coloured in light brown; Mg in green; H in white; O atoms that are
bound to Si and coordinated to Mg are coloured in blue; the remain-
ing O atoms are coloured in red.

III. THE CHOICE OF THE BASIS SET.

A peculiar feature of CRYSTAL that makes it unique
amongst other codes, is the use of atom centered Gaussian-
type basis functions. The choice of the Gaussian basis set is
not only crucial to determine the accuracy of the results, but
also a delicate matter for tightly packed crystalline systems.
In the naive strategy, frequently adopted, molecular basis sets
are used as such. While for small-to-medium basis sets this
might be not a problem (for example when used for molecular
crystals) extended molecular basis sets often include diffuse
Gaussians with exponents as small as, say, 0.05-0.02 Bohr−2

needed to describe the tails of the wavefunction. Several dif-
fuse Gaussians are necessary to recover the correct long-range
exponential behavior in the external region. In contrast with a
molecule, however, a tightly packed 3D system like diamond
or MgO does not have any empty space external to the sys-
tem and, therefore, such functions are not needed either ex-
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FIG. 4. Variation of the two Raman active modes (A1 symmetry)
as a function of n for a set of (n,−n) chrysotile nanotubes with n
ranging from 9 to 59. The continuous curve has been obtained by
best fit with the function ν = a+b/n+c/n2+d/n3. The a coefficient
represents then the limiting value for n → ∞. Dotted lines indicate
the corresponding lizardite values (3800.9 and 702.1 cm−1).

ternally or internally24,75,76. Moreover, the Bloch functions
constructed from diffuse Gaussians tend to be very similar.
This leads to an overlap matrix that is nearly singular which,
in turn, creates serious numerical problems with regard to or-
thogonalization of the basis functions.
The major advantage of a local basis set is that matrices re-
main small and the number of integrals limited. In the fol-
lowing we document how it, then, becomes possible to cal-
culate the properties of very large unit cell systems at low
cost. This feature is lost progressively when the exponents of
the most diffuse Gaussian-type functions decrease. It is why
specific basis sets have been implemented for periodic sys-
tems, both by ourselves (see the CRYSTAL website) and other
groups.77–79 For those circumstances where diffuse functions
are desirable one may be able to add them subsequently by
means of perturbation theory, as suggested in a very recent
paper by Maschio and Kirtman.80

IV. HARTREE-FOCK AND DFT

As already mentioned in the introduction, CRYSTAL was
formulated for performing Hartree-Fock (HF) calculations of
solids, as opposed to the various codes that were appearing
in these years, all of them based on LDA, with many other
mixed ingredients. All the papers published by the group for
about 15 years, including covalent (graphite),23,24 ionic (MgO
and the relative stability of its phases),81 semi-ionic systems
like quartz,82 molecular crystals,83 defects treated with the
supercell scheme,84 transition metal compounds,37,85,86 as
well as many properties, were based on HF.
There are many reasons for this choice.
- The molecular, or quantum chemistry, background of
Pisani, Dovesi, Roetti and Saunders.
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- At that time (1970-80) most of the attention of the solid state
community (physicists) was focused on the band structure and
density of states, not on total energy and related properties
(formation energy, equilibrium geometry, bulk modulus), that
were on the contrary the key outcomes of the calculation for
a chemist. The accurate calculation of total energy was still a
challenge for most of the codes.
- At the beginning of the seventies, Euwema et al.87,88

implemented a code for 3D solids (applications to diamond,
BN and others), using many of the ingredients (HF, Gaussian
basis) that Pisani, Dovesi and Roetti were planning to use,
showing that this kind of calculations was possible, although
difficult.
- Probably the main reason for this choice (HF) was the
belief that in any case HF could represent a valid solution
by itself, and a good starting point for post HF treatments
(see the Colle-Salvetti correction below). This opinion was
quite unconventional in the solid state community. One of
the authors (RD) was invited in 1984 to a workshop, the
attendance of which was LDA-PW-PP based. When he
presented results for bulk silicon, most of the audience was
surprised to know that HF could produce a reasonable total
energy, equilibrium geometry, band structure, charge density
maps and Compton profiles, because it was a widespread
opinion that the pathological behavior of HF at the Fermi
level of the electron gas would just represent an example
of the inadequacy of HF in describing any system and any
property. So the final comment of the chairman was:
why to do expensive calculations that are completely wrong,
instead of using LDA that produces excellent results at much
lower cost?
We will come back to this point in section IV B, where we
will try to demonstrate that HF can be very useful in some
cases, in spite of the opinion of the chairman. We will also
show that, as implemented in CRYSTAL, HF is not much
expensive, at least for ionic and covalent compounds, for
which it performs best.
CRYSTAL authors were well aware of the limitations of
the pure HF treatment for many properties of crystalline
solids. Note, however, that these were not larger than the
ones affecting in these years the results produced with other
codes, due to the adopted functional (LDA), to problems
with the description of core electrons, to basis set limitations,
to continuity problems of the wavefunction at the frontiers
between zones in which the cell volume was partitioned in
some of the schemes in use at that time.
To try to overcome the inaccuracies of HF, an a posteriori
correction to the HF energy according to a scheme formulated
in 1975 by Colle and Salvetti89 was adopted. The imple-
mentation dates back to 198790 with a further extension in
1988.91,92

DFT schemes were inserted in the self consistent structure of
the code as an alternative to HF a few years later, mainly by
Causá, Zupan, Towler, in the LDA and GGA version.93–96 The
XC (exchange correlation) matrix elements were evaluated
by best fit, representing the XC potential as a set of Gaussian
functions. This part of the code became very efficient when
V. R. Saunders implemented a package in which the fitting set

was extended up to I functions (l=6), and the integrals were
evaluated by exploiting recursion relations (unpublished).
In 2000-2001, the integration technique for the XC matrix
elements was changed: the fitting strategy was substituted
by the numerical integration technique based on Becke’s
scheme,36 quite effective and accurate. The latter is based on
an atomic partition method, in which the radial and angular
points are obtained from a Gauss-Legendre quadrature
and a Lebedev two-dimensional distribution, respectively.
The choice of a suitable grid is crucial for both numerical
accuracy and cost. A pruned grid (the number of angular
points reduces with the distance from the nuclear position)
with 75 radial and 974 angular points is usually employed.
The reason for changing the strategy was due to the difficulty
in reaching high accuracy with the fitting scheme, in particu-
lar with all electron basis sets (linear dependence problems
when a too large set of fitting functions was used), and a
reasonable scaling with large unit cells (say more than 1000
atoms).
For a few years then it has been possible both to perform the
SCF with various functionals of the GGA family, and the
a posteriori correction for the correlation energy. Among
the various attempts, an SCF HF scheme supplemented by a
correlation only functional was used for a while.

The limitations of LDA and GGA became evident in the
eighties, and many proposals mixing HF and DFT exchange
were formulated. In their paper: Development of the Colle-
Salvetti correlation-energy formula into a functional of the
electron density, Lee, Yang and Parr (LYP, 1988)68 provided
the background for the formulation, in 1993, of the B3LYP
hybrid functional,50 one of the most cited and used, at least
in the molecular community. Many of the combinations
mixing the various ingredients (exchange and correlation,
Hartree-Fock and LDA or GGA) where rapidly incorporated
in the code.
Later, mGGA functionals were also implemented along
with range-separated hybrids (CRYSTAL14). Therefore, the
last version of the code incorporates exchange-correlation
functionals up to the forth-rung of the Jacob’s ladder.
Definitely, hybrid functionals were available in CRYSTAL
since mid-nineties95 (i.e. a few years after the seminal work
by Becke50) and used for many investigations in the next
years, whereas in the PW-PP community the migration from
LDA to GGA was slow. But the real challenge was the
implementation of hybrid functionals, whose cost was orders
of magnitude higher than for pure DFT, when used with a PW
basis.
A partial solution to this problem arose when range separated
hybrids appeared on the market, and hybrids became formally
available in many public PW-PP codes, although the number
of systems investigated at this level remains a small fraction
of the total, suggesting that the cost is still high with respect
to pure DFT, or possibly that technical problems persist.



11

A. On the choice of the XC functional

There is now a widespread consensus on the opinion that
mGGA and GGA are better than LDA, and hybrids are bet-
ter than mGGA and GGA, although the evidence is some-
times not strong, and the number of exceptions and counter-
examples is high. For instance, some of the present authors in
collaboration with A. Savin have proposed that presently the
selection of a functional is largely a personal choice and the
relative performance of different approximations can depend
on different statistical measures97–99.
In spite of this, during the last decades, the inclusion of HF
exchange in hybrid functionals has been proved to be cru-
cial for many properties from molecules to solids, so that in
many cases they are the methods of choice. As mentioned,
CRYSTAL offers a computationally efficient implementation
of different hybrid functionals, so that their performance can
be easily tested. Therefore, when investigating a new class
of problems, the attitude of many of the present authors is to
compare various functionals, most of them being hybrids, for
instance: B3LYP, PBE0 and HSE06, but also PBE and LDA
and finally HF, knowing that HF on one side, and LDA and
PBE on the other side, define the extreme values, and hybrids
are in between and in general much closer to what should be
considered the correct result.
While there could be some differences between the hybrid
functionals, mostly due to the way (and amount) HF exchange
is incorporated, many of those tested achieve a useful accu-
racy. On the basis of previous applications and general experi-
ence, some of the present authors use B3LYP as a first choice.
More than 25 years of accumulated experience brought to a
very rich statistical file, that has allowed us to know limits
and merits of the functional in the different situations. This
is why in the present work most of the reported results have
been obtained with the B3LYP functional.

B. Hartree-Fock and the superexchange interactions in
Transition Metal compounds

When in 1992-93 the UHF (as well as the Restricted Open
Shell Hartree Fock, ROHF) option was implemented, it was
applied to a set of transition metal (TM) oxides, (VO, MnO,
NiO)37,38, and, in a few years, to many other TM ionic com-
pounds: Fe2O3 hematite100, KNiF3

101, K2NiF4
102, KCuF3

85,
FeF2

103, Cr2O3
104, CaMnO3

105, Ti2O3 and V2O3
106, KMF3,

with M= Mn, Fe, Co and Ni86, MnCr2O4
107. Surprisingly,

the description of the spin density and the energetics of the
various spin states was reasonably accurate. The many spin
states, that in TM molecular complexes are often separated by
tiny energies, on which electron correlation plays a dramatic
role, are on the contrary properly described in solid state
compounds. Two factors simplify the scenario in solid state:
a) the ionic character of many of these compounds, that
increases the energy differences among spin states,
b) the high symmetry, that imposes orthogonalities reducing
the number of possible states and again separates the levels.
In these years the main tool for describing these compounds,

when approached with quantum mechanical periodic codes,
was through the LDA functional plus the so called scissor
operator108,109. Many of these systems, say for example
NiO, that are large gap insulators, when treated at the LDA
level turn out to be metallic, and the spin localization on
Ni is spread over many atoms. The scissor operator opens
the gap, maintains artificially the insulating character of
the system, and forces somehow the localization of the
uncoupled electrons. The amount of imposed separation
between valence and conduction bands is usually a function
of the target results.
A second, slightly more sophisticated version is LDA+U,
where U stands for Hubbard110,111. The U additional term
plays the same role as the scissor operator; in principle the
numerical values used for it could be obtained from atomic
data112. In practice, in many cases, it was used as a parameter
for reproducing the experimental results.
It should be underlined that the structural properties of these
compounds, like the lattice parameter, the bulk modulus,
the elastic tensor and even the formation energy, are not
very sensitive to the degree of localization of the unpaired
electrons, or to the quality of the description of the short
range exchange interaction.
Other properties, on the contrary, like the superexchange
coupling constants, are dramatically dependent on the quality
of this description.
The superexchange coupling constant, usually indicated
with J̄ (for historical reasons measured in Kelvin), is the
quantity that is tabulated by experimentalists, and that can be
considered a measure of the energy difference between the
ferromagnetic (FM) and antiferromagnetic (AFM) solution.
The usual way the calculated data are compared with exper-
iment is through an Ising model, in which the interaction
between magnetic centers is considered additive. As this
interaction is falling down exponentially with the distance
between the magnetic centers, in many cases it is sufficient to
consider the interaction between first magnetic neighbors.

∆E = 2zS2 |J̄| (2)

where z is the number of magnetic first neighbors with oppo-
site spin. Consider for example the KMF3 compounds, where
M can be Mn, Fe, Co, Ni and Cu. The ideal cubic struc-
ture (see Figure 5) is perturbed by the Jahn-Teller distortion
in the Fe, Co and Cu cases, whereas it is preserved in KMnF3
and KNiF3, thanks to the d5 and d8 electronic configuration
of the TM, that allows to fill completely the t2g and eg α lev-
els in Mn, and also the t2g β levels in Ni. The structure is
a simple cubic array of MF6 octahedra. The K+ ions fill the
empty space (dodecahedra) between the octahedra (see Figure
5, left). The M-F distance is a/2 (a is the lattice parameter).
There are six M second nearest neighbors of the central M
atom. The M-M distance is a. At low temperature, the sys-
tems are AFM. The AFM structure consists of (111) sheets
of M atoms of common spin, the spin alternating between the
sheets (see the central panel). As a consequence, each M atom
is surrounded by 6 second nearest M atoms of opposite spin.
For obtaining ∆E in Eq. 2, the unit cell is doubled, and the
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HF-SCF calculation is performed with (say for the Mn com-
pound) the 5 electrons up on both atoms (FM solution), and
with the spin up on one atom and down in the second in a sec-
ond run (AFM solution). The energy difference, divided by
two (we are interested in the energy difference per magnetic
center), is shown in Table IV B, first column. Thus,

|J̄|= ∆E
2zS2 (3)

In this case z= 6 (each TM atom is surrounded by 6 TM atoms
with opposite spin); and S2 = 1 (two electrons with spin 1/2)
for Ni, and S2 = 25/4 for Mn (five electrons, S=5/2). The J̄
values obtained with equation 3 are shown in the penultimate
column of TableIV B. It turns out that:
- The HF values are about 1/3 of the experimental values (see
the caption to the table).
- The PBE0, B3LYP and PBE vallues are about factors 1.5-
5 higher for J and 5-13 for Jy (see below), where the ratio is
similar for Mn and Ni.
It should be underlined that this qualitative agreement pro-
vided by HF remains valid in many situations:
- when a second star of magnetic neighbors is considered, as
shown in Ref. 86 for the KMF3 set.
- when the set of six first magnetic neighbors splits in two sets,
as in KFeF3 and KCoF3
- when the situation becomes even more complicated, as in
KCuF3, where both FM and AFM interactions appear85.
It should be underlined that this kind of comparison between

FIG. 5. The FM and AFM structure of KMnF3. In the left panel,
all the Mn atoms (at the vertices of the cube) have the same spin
(open circles). In the central panel the most stable AFM configu-
ration is shown, with alternating (111) sheets of α and β spin Mn
atoms; each Mn atom is surrounded by 6 Mn atoms with opposite
spin. In the AFM’ structure (to the right), only the four Mn neigh-
bors in the basal plane have opposite spin. The comparison of the
energies of AFM and AFM’ permits to check the additivity of the
superexchange interaction.

experiment and simulation is delicate, as it can be biased by
the models used in going from the raw experimental data to
the tabulated J̄ and from the calculated total energies to the
calculated J̄. For example, the calculations are performed at
the experimental geometry, in order to eliminate part of the
error due to the different (experimental vs calculated) lattice
parameter (remember that J̄ fall down exponentially). The
main limitation on the side of the calculation is however the
following. The UHF solution is an eigenfunction of the Sz op-
erator, but not of S2. Closed shell solutions, and the highest Sz

UHF solutions are also eigenvalues of S2. In the other cases,
the Sz solutions are a mixing of different S2 states, so that one
must be careful when comparing experimental and calculated
data. In DFT the situation is less clear, but in general to the
UKS (Unrestricted Kohn Sham) solutions the same meaning
is attributed as to the UHF wavefunctions.
Recently, in CRYSTAL it has been implemented an option
for evaluating the degree of contamination of the spin state.
The S2

H and S2
L columns of Table IV B report the mean value

of the S2 operator in the high (H, FM solution) spin state (Sz=2
and Sz=5 for KNiF3, and KMnF3, remember that the unit cell
contains two atoms). As expected, the high spin mean value
is close to the theoretical value (6 for the Ni compound, 30 for
the Mn one).
For the low spin state, with Sz=0, the S2

L value should be zero,
which is not, due to contamination. The S2

L value is very close
to Sz (2 and 5 for the Ni and Mn compound, respectively).
Yamaguchi et al.113 proposed a formulation for obtaining J̄,
indicated as J̄y and alternative to Eq. 3, that somehow takes
into account the spin contamination in the low spin state:

|J̄y|= ∆E
〈S2

H〉−〈S2
L〉

(4)

System Method ∆E(mEh) 〈S2
H〉 〈S2

L〉 J̄(K) J̄y(K)
KMnF3 HF 0.29406 30.0039 4.9996 1.24 3.71

PBE0 1.34328 30.0042 4.9742 5.66 16.95
B3LYP 1.87056 30.0049 4.8799 7.88 23.51

PBE 3.34401 30.0039 4.9639 14.08 42.17
KNiF3 HF 0.56853 6.0057 2.0030 14.96 44.85

PBE0 2.61530 6.0029 1.9622 68.82 204.38
B3LYP 3.20714 6.0030 1.9453 84.39 249.58

PBE 7.90360 6.0019 1.6996 207.98 580.10

TABLE IV. HF, PBE0, B3LYP and PBE energy difference per mag-
netic center (in mEh), high and low spin S2 expectation values for
the KMnF3 and KNiF3. J̄ and J̄y are the magnetic coupling con-
stants obtained with equation 3 and 4, respectively. Experimental
values span from 3.65 to 3.70 K114 for KMnF3 and from 44 to 51
K115 for KNiF3.

the new data are shown in the last column of table IV B. It
turns out that now the agreement with experiment is not only
qualitative, but also quantitative.
Using this same formula, the PBE, B3LYP and PBE0 data are
even farther from experiment than when using Eq. 3.
HF then seems to produce, ab initio, that is without any para-
metric arrangement as when using the scissor operator or
LDA+U, quite reasonable superexchange coupling constants.
A more systematic investigation must be performed to con-
firm the excellent results reported in Table IV B.
A comment can be added here concerning a CRYSTAL fea-
ture that we can call time consistency. Calculations for
KMnF3 and KNiF3 were performed in 1997107, obtaining
for ∆E 0.293 and 0.569 mEh, respectively, to be compared
with 0.294 and 0.569 mEh, obtained when preparing this
manuscript and appearing in the first column of Table IV B.
So the same calculation repeated after 23 years produces the
same total energy, with just a µEh difference. The stability of
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the results for so many years is probably not shared by many
other periodic codes.

V. ENERGY DERIVATIVES AND TENSORS

In the investigation of crystalline solids, a large fraction of
the literature is still focused on relatively simple and low-cost
properties, like the band gap and the density of states, for
which a single SCF calculation is required. Nevertheless,
the interest and computational effort is now moving towards
more complex (and more interesting, in the authors’ opinion)
observables, such as the physical tensors (elastic, dielectric,
piezoelectric, photoelastic, hyperpolarizability, and many
others) and the vibrational properties (frequencies, Infrared
and Raman intensities and spectra, thermodynamics). All
these properties are related to derivatives of the total energy
with respect to four variables, namely the coordinates of the
atoms in the unit cell (ra in table I), the lattice parameters
(ai), one (or more) external electric fields ε and one or more
magnetic fields (not implemented in CRYSTAL yet). The
first two lines of table I refer to the gradient, both with
respect to the Cartesian atomic coordinates41,42 and the
cell parameters.43,44 They are the basic ingredients for the
geometry optimization40 and transition state search116. The
former is very flexible and accurate (structures containing
more than thousand atoms in the unit cell have recently been
optimized without any particular problem, as for the cases
with a few tenths of atoms). Several algorithms rely on the
high numerical accuracy of the geometry optimizer: search
for equilibrium structures and transition states, volume- or
pressure-constrained minimizations117 for the determination
of the equation of state of bulk crystals, semi-analytical deter-
mination of the vibrational frequencies, nuclear relaxation of
strained lattices for the computation of elastic, piezoelectric,
photoelastic tensors, etc.
In table I examples of computed tensors of rank 2 or
3 or 4 are shown. To this latter set belongs the elas-
tic tensor (related properties are the seismic wave
velocities),48,49,69 the photoelastic Pockels’ tensor,118

the second order hyperpolarizability.119 The direct
and converse piezoelectricity,120 as well as the first
hyperpolarizability,52,121 are third order tensors. The di-
electric or polarizability is a second order tensor, and is
evaluated, as its higher order terms, analytically via the
Coupled Perturbed Hartree-Fock/Kohn-Sham (CPHF/KS)
method.51,52,65,119,121,122 The last column indicates that some
of these third or fourth order tensors are computed semi-
analytically: this means that a second derivative is computed
as a numerical derivative of an analytical derivative.
It must be underlined that in all cases:
a) a simple keyword is sufficient for the calculation of
the full tensor. For example, for the elastic, piezoelectric
and photoelastic tensors the input lines reduce to a single
keyword:
ELASTCON, or
PIEZOCON, or
PHOTOELA.

b) All the components of the tensor (they are, for the elastic
tensor, 3 and 21 for a cubic or triclinic system, respectively)
are obtained with a single calculation. This is not the case of
the experiment. Many different measurements are required;
each one of them produces a linear combination of compo-
nents of the tensor; a system of linear equations must be
solved for determining the individual elements of the tensor.
As usually small and large numbers appear, the accurate
experimental determination of the small components is
extremely difficult; this difficulty is increased by the fact that
in many cases the sign of the components is undetermined.
Two sets of properties listed in table I require some additional
comment, for their generality and importance.
The first one includes the Hessian matrix, that produces the
vibrational frequencies, and the IR and Raman intensities;
they permit a complete characterization of the vibrational
related properties, including the thermodynamics.
The second set includes all properties that can be obtained by
the SC-CP (self-consistent coupled perturbed scheme, a very
general, analytical, versatile, tool).

A. Vibrational frequencies, infrared and Raman spectra

Vibrational frequencies and related properties are available
in CRYSTAL since 15 years (CRYSTAL06). Frequencies
at the Γ point are obtained within the harmonic approxima-
tion by diagonalising the mass-weighted Hessian matrix, W ,
whose elements are defined as ,45,46,123,124:

W Γ

αi,β j =
H0

αi,β j√
Mα Mβ

with H0
αi,β j =

(
∂ 2E

∂u0
αi∂u0

β j

)
, (5)

where Mα and Mβ are the masses of the atoms associated with
the i and j coordinates of atoms α and β . Energy first deriva-
tives with respect to the atomic positions, gα, j = ∂E

/
∂uα, j,

are calculated analytically for all the uα, j coordinates (E is the
total energy, uα, j is the displacement coordinate with respect
to equilibrium). Second derivatives at u = 0 are calculated nu-
merically using a single displacement along each coordinate
(N=2, the central point and a point on the positive direction of
the coordinate):[

∂gα j

∂uβ i

]
≈

gα j(0, . . . ,uβ i, . . .)

uβ i
(6)

or averaging two displacements (N=3):[
∂gα j

∂uβ i

]
≈

gα j(0, . . . ,uβ i, . . .)−gα j(0, . . . ,−uβ i, . . .)

2uβ i
(7)

If the number of atoms is n, then (3n-3)*1 or (3n-3)*2
SCF+gradient (G) calculations are performed, for N=2 or
N=3, respectively. The default value for N is 2. The default
value for the step is 0.003 Å, much smaller that in other codes.
It is possible to use such a small step because the accuracy
of both energy and gradient is very high, as high must be the
accuracy in the definition of the equilibrium position. A value
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of 0.001 Å can be safely used in many cases. However, when
very soft modes are present in the spectrum, 0.003 Å for the
step, and N=3 are to be preferred. The accuracy in this case is
higher than with N=2, because the two displaced points along
each coordinate are symmetric with respect to the equilibrium
position.
Infrared (IR) intensities can be evaluated through three
alternative schemes, as discussed in the previous section.
The CPHF scheme is used for generating, analytically, the
Raman intensities. IR and Raman spectra are then easily
generated.124–126

Frequencies at k points different from Γ are similarly obtained
by making use of supercells and exploiting the translational
symmetry of the Hessian matrix to include phonon dispersion
effects.

1. Imaginary frequencies and the SCANMODE keyword

A special case arises when one (or more) of the eigenvalues
of the dynamical matrix is negative (imaginary frequency).
This happens when the optimized geometry is not a real
minimum; the possible reason is a constrained optimization
obtained imposing a symmetry higher than the real one, or a
unit cell too small. An option is available, SCANMODE, that
follows the eigenvector corresponding to the negative eigen-
value, looking for a minimum along this normal coordinate
that, if not corresponding to the A1 symmetry, reduces the
point symmetry to the one of the eigenvector. A subsequent
optimization usually permits to find the real minimum; the
diagonalization of the dynamical matrix produces a full set of
positive frequencies.

2. Isotopic shift and graphical animation of the modes

Identifying the exact nature of modes from observations
alone, is extremely difficult, and as a result, unreliable. There
are two particular tools, which are implemented in the CRYS-
TAL program, that greatly facilitate this task. The first is
the ability to change, arbitrarily and selectively, any of the
masses within the cell, or fragment thereof, without any addi-
tional computational cost, as indicated in equation 5. Within
the Born-Oppenheimer approximation, the Hessian matrix,
Hαi,β j, depends only on the electronic structure of the system,
so that a single calculation of this can be used with multiple
choices of masses, to give ‘isotopically’ shifted vibrational
frequencies. Since the choice of mass (or masses) is arbitrary,
there is no restriction to the mass of a ‘real/physical’ isotope,
so that highly exaggerated changes of the mass can be used
solely for the purpose of identifying and characterising a par-
ticular vibration.
The second is the graphical animation of the modes, whether
isotopically shifted or not, which provides a clear description
of both the spatial nature and amplitude of the vibrations. A
tool for such visualization is available on the CRYSTAL web-

site, www.crystal.unito.it.
Many other options are available in CRYSTAL related to
vibrations, including the calculation of phonon bands and
density of states, and of anisotropic displacement param-
eters (ADP),123,127, inelastic neutron scattering spectrum
and thermodynamic properties within the quasi-harmonic
approximation128,129.

3. The fragment strategy

Suppose we are interested in a system containing ten thou-
sand atoms, that generate three times more vibrational modes,
spanning a wavenumber window of, say, 4000 cm−1 of fun-
damental frequencies including the H stretching. This means
that there is a continuous band in many parts of the explored
wavenumber range. Such a continuum is essentially useless
from the point of view of the characterization of the system
(obviously this is not the case for the thermodynamic proper-
ties). Only the isolated IR or Raman peaks are of interest in
these cases.
So, instead of computing the complete Hessian (extremely ex-
pensive, but not far from reach with CRYSTAL), one can fo-
cus the attention and the computational effort on a fragment of
the full system, by building a dynamical matrix involving only
a subset of atoms of the full system, and diagonalizing it. This
strategy, based on the hypothesis of the local character of these
isolated modes is at hand with a simple keyword, FRAG-
MENT, and is quite effective.130 It has been applied recently
to the investigation of a set of defects in diamond131–133.

B. The coupled-perturbed Hartree-Fock and Kohn-Sham
method

1. Static electric field

For a molecule in a static electric field (indicated here as
E , whereas in Table I and in the rest of the manuscript the
symbol ε is used), the permanent dipole moment (µ) and (hy-
per)polarizabilities (α,β ,γ, · · · ) correspond to its energy (E)
derivatives of order 1,2,3,4, · · · with respect to the Cartesian
components of the field (indicated by the subscripts t,u,v,w
in the following equation):

E(E ) = E(0)−∑
t

µtEt −
1
2! ∑

tu
αtuEtEu+

− 1
3! ∑

tuv
βtuvEtEuEv−

1
4! ∑

tuvw
γtuvwEtEuEvEw + . . .

with E(0) the field-free electronic energy. One way of
obtaining these derivatives is by a numerical fit to finite field
energy values. In the case of periodic systems, however, the
finite electric field potential breaks the periodicity. In order
to circumvent that difficulty it is necessary to introduce a
so-called saw-tooth potential,134,135 which requires the use
of supercells large enough to generate a constant field with a
potential that changes sign at the center of each half supercell.
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The finite field (FF) method136 was the first treatment of
(hyper)polarizabilities to be implemented in the CRYSTAL
code.
An alternative to the FF method is the analytical Coupled-
Perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) scheme61

which, in the adaptation for periodic systems, does not have
need for supercells.64 The latter is a self-consistent coupled
perturbed approach that takes into account the relaxation of
the crystalline orbitals under the effect of an external electric
field. In principle, this treatment leads to the same results as
the FF method, but is more accurate, more easily extended to
(time/frequency)-dependent fields, and is more economical.
The adaptation to periodic systems, while avoiding supercells,
is not trivial since the molecular form of the perturbation op-
erator (E · r) is not bound and breaks translational invariance.
Hence, an alternative formulation has to be adopted62,63,137,138

wherein r is replaced by

Ωk ≡ ıeık·r∇ke−ık·r ≡ r+ ı∇k.

The new perturbation operator, Ωk, is block-diagonal in
the same reciprocal k-space as the unperturbed Fock matrix.
Hence, the factorization due to translational symmetry is
preserved.
The CPHF/KS method was first implemented in CRYS-
TAL09 for static fields, allowing for the calculation of the
electronic contribution to the static polarizability tensor α

(or, equivalently, the dielectric tensor ε∞) of closed- and
open-shell periodic systems.51,65 This scheme was further
extended to second-order in the perturbed wavefunction in
CRYSTAL14, thus allowing for the calculation of static
nonlinear properties (namely, first hyperpolarizabilities and
second hyperpolarizabilities with the 2n+1 rule).52,119

The same general approach has also been used for the
evaluation of vibrational (hyper)polarizabilities as well as
observables obtained as mixed derivatives of the energy with
respect to the field and nuclear displacements such as in-
frared and Raman intensities66,67,139,140 and the piezoelectric
tensor.141

2. Electric Field Frequency Dependence

In the two most recent versions of CRYSTAL4,5,21,142

the frequency of the field ω has been introduced into the
CPHF/KS method.143,144 The calculated dependence of the
electronic linear polarizability on ω (or wavelength λ ) can
be directly compared, for example, with experimental data on
the photoelastic tensor in the high frequency limit (see ref-
erence 118). However, the wavelength of the field must be
much larger than the size of the unit cell (λ � 1Å) to retain
the block-diagonal structure of the Ωk matrix.145

If the field is frequency-dependent, the determination of the
dynamic polarizability for a closed-shell system is obtained

as follows:

αuv(−ω;+ω) = − ∂ 2ETOT

∂Eu[−ω]∂Ev[ω]
=− 2

nk
ℜ

{
Pu[−ω],v[+ω]

BZ
∑
k

Tr
[

n
(
Ω(Eu[−ω])(k)U(Ev[+ω])(k)

)]}
, (8)

where ℜ indicates the real part and Tr the trace, nk is the num-
ber of k-points sampling the Brillouin zone (BZ), and P is
a permutation operator.146,147 Ω(Eu)(k) is the matrix repre-
sentation of the operator u+ ı∇ku in the AO basis; t,u,v are
Cartesian directions; and n is the diagonal occupation matrix
with eigenvalues equal either to 2 (for occupied orbitals in a
closed-shell case) or 0 (for virtual orbitals). The U(k) matri-
ces, that determine the first-order perturbed orbitals, are ob-
tained as:144,148,149

U
(Et[±ω])

ia (k) = lim
η→0+

G
(Et[±ω])

ia (k)

ε
(0)
a (k)− ε

(0)
i (k)±ω + ıη

, (9)

where G
(Et[±ω])

ia (k) is given by the derivative of the AO Fock
matrix element with respect to the frequency-dependent field
along the t-direction, which is subsequently projected onto the
unperturbed crystalline orbital basis set,

G(Et [±ω])
ia (k) = ∑

µ,ν

C∗µi(k)F
(Et [±ω])
µ,ν (k)Cνa(k) . (10)

In equation (9), ε
(0)
i(a)(k) is the unperturbed eigenvalue of

the occupied i (virtual a) crystalline orbital for each k-point
(k) of the reciprocal space. Since F(Et [±ω])(k) and, thereby,
G(Et[±ω])(k) depends upon U(k) the solution of equation (9)
for the U(Et[±ω])(k) matrices is obtained by fixing the value of
ω and then solving iteratively.
Knowledge of the U(Et[±ω]) matrices also allows one to study
the variation of the high-frequency dielectric matrix ε∞(ω)
through the relation:

ε
∞
uv(ω) = δu,v +

4παuv(ω)

V
(11)

where α is the polarizability of a unit cell and V its volume.
Far from resonance (ω � ε

(0)
a (k)− ε

(0)
i (k)) the parameter η

in equation 9 can be set to zero. On the contrary, near reso-
nance η is determined by the lifetimes of the excited states.
Conventionally, the value of this parameter is set equal to
the energy resolution of the experimental equipment, which is
typically 0.1 eV in UV-visible measurements. The dielectric
matrix, then becomes a complex function of frequency and,
in terms of the refractive index n =

√
ε∞, one can determine

the reflectivity R(ω) = | 1−n(ω)
1+n(ω) |

2 as well as the electron loss
function ELF(ω)=−ℑ(1/ε(ω)).
A formula for the dynamic first hyperpolarizability can be
obtained by starting with the 2n+ 1 rule expression for the
static limit (see equation (58) of reference 52) and subse-
quently taking advantage of the time-dependent HF formu-
lation for molecules developed by Karna and Dupuis.149 This
leads to a general expression for the first hyperpolarizability
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of closed-shell periodic systems in the presence of frequency-
dependent fields, which has been implemented in CRYSTAL
and validated.150,151

Equation (8) above holds for the HF model. The extension to
KS-DFT has been carried out in reference 119 for the static
case and in reference 150 for dynamic fields. The dynamic
hyperpolarizability is a third rank tensor. It depends on three
Cartesian field directions t,u,v and on two incoming frequen-
cies ω1 and ω2 (the out-going frequency is ωσ = ω1 +ω2).
Among all possible choices of ω1 and ω2 we take as an ex-
ample the Second Harmonic Generation (SHG). In Figure 1
of Ref. 151 the dxyz component of crystalline urea is shown as
a function of the wavelength for several Hamiltonians. The d
tensor is obtained directly from the hyperpolarizability β via
the relation d = π

V β, with V being the unit cell volume (the
other non-vanishing component, dzxy, has a very similar dis-
persion behavior). The curves obtained for the various Hamil-
tonians remain everywhere parallel, except when approaching
the first resonance. The same figure shows the well-known
tendency of LDA and GGA functionals to largely overesti-
mate high-order electric susceptibilities, which is exaggerated
near the first resonance. When the percentage of HF-exchange
decreases, dxyz increases at any frequency. This behavior is not
entirely unexpected since it correlates with the predicted band
gap, that decreases from HF (14.0 eV) to PBE0 (7.4 eV) and
B3LYP (6.9 eV) to PBE (5.2 eV) and LDA (4.8 eV).

The second order perturbation frequency-dependent U(k)
matrix, required for the calculation of the dynamic second
hyperpolarizability, has not been coded yet in CRYSTAL.
However the static finite field (FF) method136, combined with
CPHF/KS, provides, by best fit of the high-frequency depen-
dent polarizability and first hyperpolarizability, all the non lin-
ear electric χ(3)-susceptibilities involved in non linear optics
(NLO) processes, such as the electric field induced second-
harmonic generation (EFISH) or dc-Kerr effect151, with the
exception of the third-harmonic generation (THG) and the in-
tensity dependent refractive index (IDRI).

VI. USE OF SYMMETRY IN CRYSTAL

The role of symmetry in the simulation of crystalline com-
pounds is crucial, much more than in the molecular context.
This statement, that is obvious when referred to translational
symmetry, applies as well to point symmetry.
Translational symmetry is the mandatory tool for reducing the
infinite system (infinite number of atoms, of basis functions,
and then matrices of infinite size) to an infinite set of finite
problems (one for each point of the First Brillouin Zone, FBZ,
in reciprocal space), whose size is the one of the unit cell (see
the first two panels in figure 6). Continuity properties in re-
ciprocal space permit then to sample the FBZ at a relatively
small number of points.
The exploitation of point symmetry is not mandatory as the
translational symmetry is; it is however very useful from many
points of view:
i) it can improve performance dramatically;
ii) it can reduce enormously the required memory storage;

FIG. 6. Block-factorization of the Fock matrix for periodic systems.
F~g: in the basis of AOs, non-packed form (borders are blurry to indi-
cate that such matrix is infinite in principle); F~k: in the basis of AO
Bloch functions; F~k: in the basis of SACO Bloch functions. Also in
the last two cases the matrix is infinite (as there is an infinite number
of~k points in the Brillouin zone), but it is block diagonal.

iii) it helps in comparing simulation with experiment (for ex-
ample symmetry labels can be assigned to IR and Raman
peaks both experimentally and theoretically);
iv) last but not least, it greatly simplifies the set of data to be
given as input. The data needed to define a crystalline struc-
ture is greatly reduced if its space group is known, because the
unit cell can be generated automatically from the knowledge
of the asymmetric unit only. The same applies to slabs, rods,
polymers and molecules. Two significant examples are nan-
otubes and fullerenes, as obtained by geometrical construction
from graphene (only the fractional coordinates of one atom
and the length of one lattice parameter must be defined) or,
more generally, from a monolayer that is then rolled up. The
same kind of simplification applies to many structure manip-
ulations that modify either translational or point symmetry, or
both. For instance, a 2D graphene monolayer can be auto-
matically cut from a 3D graphite crystal simply by using the
keyword SLABCUT.
Obviously i-iv apply when the crystalline system has more
symmetry operators than just the identity. Note, however, that:
a) the number of crystalline compounds characterized by
some symmetry is very high. Whereas large molecules, with
few exceptions (say fullerenes), in most of the cases have null
symmetry, large unit cell systems with high symmetry are very
common.
b) even when symmetry is apparently lost, as is the case of de-
fects (translational symmetry broken) or of solid solutions, it
turns out that it somehow reappears; in the latter case, for ex-
ample, symmetry plays a fundamental role in optimizing the
sampling of large configurational spaces.

A. Symmetry and efficiency

The key steps where symmetry (translational and point) is
used are given in the following for the case where the BFs are
constructed from a local basis:

1. Diagonalization of the Fock matrix is restricted to the
subset of k points in the irreducible BZ. The eigenval-
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ues in a star of k points (a set of points that are symme-
try related) are the same, and the eigenvectors can be
generated by applying symmetry operators.

2. The time required for the calculation of one- and two-
electron integrals is reduced by a factor of up to the
number of symmetry operators in the point group. This
feature has been implemented in the first release of the
code.14

3. The Fock matrix diagonalization time can be reduced
dramatically if performed in the basis of the Sym-
metry Adapted Crystalline Orbitals (SACO)/Symmetry
Adapted Molecular Orbitals (SAMO), shown in the last
panel of figure 6. SACO/SAMO are generated auto-
matically in CRYSTAL from the selected basis set of
Atomic Orbitals (AO) in the unit cell, with no need for
additional information about irreducible representations
or characters. This part of the code was implemented
about 20 years ago.15,16 The savings factor in compu-
tation time is proportional to the second/third power of
the ratio between the number of AOs in the basis set
(NAO) and the size of the largest block in the Fock ma-
trix, when represented in the SACO/SAMO basis.

4. Construction of the density matrix scales with the third
power of the basis set size (N3

AO), as each of the N2
AO

matrix elements is obtained by summing over all occu-
pied crystalline orbitals (a fraction of NAO). Summa-
tions are much shorter if the matrix is constructed in the
SACO/SAMO basis first, and then transformed back to
the AO basis.

Reduction of computing time thanks to the use of symme-
try is not the only issue when handling very large unit cell
cases. Memory requirements can also become a bottleneck, if
not properly managed at every step of a calculation. Storage
of the Fock F, overlap S and density P matrices as full square
matrices in the AO-Bloch function basis represents the main
bottleneck and needs to be avoided. To make clear the follow-
ing discussion, we underline that the F, P and S matrices can
be represented in the AO basis (as in a molecular context), in
the Bloch function basis obtained from the latter by Fourier
transform (BF-AO), and in the Bloch function basis obtained
from SACOs again by Fourier transform from a direct lattice
representation starting from SACOs (BF-SACO).
- As regards the first representation, since the first formulation
of the code a vector representation has been used in which,
for example, the matrix elements between core orbitals (say
Ni1s) and other orbitals in the system are very few: only ma-
trix elements are evaluated and stored between this AO and
the other AOs on the same atom, but all matrix elements be-
tween Ni1s and its neighbors are disregarded, on the basis of
the screening performed with the tolerances defined in the in-
put deck. So these matrices, to be indicated as Fg, Sg and Pg

where g labels the (infinite) lattice vectors, are very compact,
and increase only linearly with the size of the system. For
example, the ratio between the dimension of the Fock matrix
Fg for chrysotile nanotubes with n=59 and n=29 is 2.02 (see
table V), exactly the same as the ratio between the number

of atoms. Obviously the number of matrix elements between
Ni2s or Ni3s and their neighbors increases rapidly. This strat-
egy permits to perform all electron calculations at a cost and
memory occupation only moderately larger (say by a factor
two to three) than a PP calculation, also for systems contain-
ing first row transition metal atoms.
- Since both one- and two-electron integrals are evaluated in
the AO basis, the original strategy when SACOs have been
implemented15,16 consisted in building first the Fock matrix
in the BF-AO basis (large square matrices), and then to trans-
form it to the BF-SACO basis, and back once diagonalized, at
each SCF cycle. In this way the advantages of the speed up
were not accompanied by the reduction of the memory occu-
pation.
- In the most recent formulation, in 2013-201417,18 F, S and P
are directly transformed from the AO to the SACO/SAMO ba-
sis (many small matrices instead of a single big one), and then
transformed to BF-SACOs (see figure 6, right panel), avoid-
ing then the bottleneck represented by the intermediate step in
which large BF-AO matrices appear.
For many years the maximum number of symmetry operators
in all vector and matrix allocations in CRYSTAL was 48, cor-
responding to the most symmetric cubic groups.
Nevertheless, a more general concept of symmetry was con-
sidered more recently, that allowed to extend this limit as ex-
emplified in the following.
- The number of point symmetry operators of icosahedral
fullerenes is 120; the group presents irreducible representa-
tions (IRREP) with dimensionality from 1 to 5. In the case
of largest degeneracy, only one of the five matrices, each one
corresponding to one row of the IRREP, must be diagonalized,
the eigenvectors of the others being obtained by rotation.
- In section VI C it is shown that for investigating solid so-
lutions supercells must be used in which the number of op-
erators is as large as the product of the number of symmetry
operators of the primitive cell of the end members and of the
number of translation vectors that are used to generate the su-
percell adopted for describing the configurations. In the ex-
ample of section VI C the symmetry operators are 144.
- In section VII the convergence of the thermodynamic prop-
erties of MgO is investigated by including the phonon dis-
persion through the SCELPHONO option. Supercells of in-
creasing size are used; for the largest one, the conventional
cell of MgO is expanded by a factor 11 along the three lat-
tice parameters, and contains 10648 atoms, with 95832 AOs.
Frequencies are evaluated for these large cells. Symmetry per-
mits to obtain the frequencies just performing in all cases only
3 SCF+G calculations (the equilibrium point, and two points
corresponding to a single displacement of Mg and O).
- In section II A 3 the exploitation of the rototranslational sym-
metry of nanotubes permits to investigate a BN tube as large
as (300,0), containing 1200 atoms and characterized by the
same number (1200) of symmetry operators.
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B. Symmetry in anisotropic properties

A number of physical properties can be given a tensorial
representation. For example, linear elasticity is described by
a fourth order tensor. Such a tensor consists of 21 indepen-
dent components for a triclinic crystal, whereas they reduce
to 3 in the case of a cubic crystal. Thus, symmetry is key to
study tensorial properties: which components must be com-
puted? Which elements are null by symmetry? Which are
symmetry-related? Moreover, experimental data are generally
reported with some standard orientation of the cell parameters
with respect to the Cartesian frame. For comparison between
calculated and experimental data to be consistent, the orien-
tation issue needs to be clearly stated. CRYSTAL performs
such a symmetry analysis of the tensor using the TENSOR key-
word. That is particularly useful in low-symmetric cases and
in the case of three-fold rotation axes. Such analysis is auto-
matically performed before the calculation. A single keyword
(ELASTCON, for example) is sufficient for generating the full
tensor of interest.

1. The magic symmetry of nanotubes

In the present section an example of the effect of symmetry
is provided, with numerical data, and reference to the (n,-n)
chrysotile nanotubes, already introduced in section II A 3.
Nanotubes are a special case for symmetry, because the num-
ber of symmetry operators increases with n, as shown in table
V.

It is worth remembering that the input for generating a nan-
otube from the monolayer is extremely simple, and consists of
only two lines:
NANOTUBE
n1 n2
In the present case, n2 = -n1. This is enough for generating
both the symmetry operators and the Cartesian coordinates of
all the atoms.
More information about formal aspects, examples and in-
puts/outputs can be found at the CRYSTAL Tutorials web
page (see “How to model nanotubes”) along with animated
graphical illustrations. Let us consider now the data shown in
table V, where results are reported for n = 9, 19, 29, 39, 49
and 59.
Due to the exploitation of the helical symmetry,73,152–154 the
computational cost for the full self-consistent field (SCF) and
gradient calculation is expected to increase very slowly when
passing from the lizardite monolayer (18 atoms and 236 AOs
in the unit cell) to the largest tube.
Calculations have been performed, for the geometry optimiza-
tion step of the calculation, with the replicated data version
of the code (PCRYSTAL), that is compatible with the use of
SACO’s, crucial for the drastic reduction of the computational
time in diagonalization.
The number of atoms, Nat , the size of the basis set NAO, the
number of symmetry operators (roto-translations and planes),
Nsym, are reported in columns 2-4. Nsym increases from 36 to
236 in such a way that the ratio Nat /Nsym remains constant.

This means that the number of irreducible atoms is the same
for all tubes.
The size of the irreducible part of the Fock Fg matrix, FIRR,
reported in the table, is nearly constant and slightly decreas-
ing when the size of the tube increases. For (9,-9) there are
about 1753 more matrix elements than for (19,-19), because,
due to the small radius R of the tube, there are matrix elements
between atoms on the opposite walls of the tube whose value
is larger than the thresholds (tolerances of the code). When
R increases further, the difference from tube to tube decreases
(by 269, 170, 38 and 13 matrix elements). The (very small)
difference for the largest tubes is not due to interactions across
the tube, but rather to the different curvature of the tubes.
The (nearly) constant size of the Fock matrix implies that the
number of bielectronic (Coulomb and exchange) and mono-
electronic integrals to be computed is constant for all the (n,-
n) tubes.
The Nmax column gives the maximum size of the matrices
to be diagonalized: it is 268 in ALL cases. This means
that instead of diagonalizing a matrix whose dimension is
27848×27848, in the (59,-59) case, we diagonalize many
matrices whose size is 268×268 or less. We can have a
rough estimate (lower limit) of the saving factor from the ratio
(27848/268)2 = 11000, four orders of magnitude!
The ratio Ra between FALL, the number of matrix elements of
the complete Fock matrix, and FIRR (the irreducible Fock ma-
trix), that generates FALL by rotation, is a measure of the real
exploitation of symmetry in the various cases. In the ideal
case, it should coincide with Nsym; it turns out that actually
the two numbers are very close: for example for the largest
tube, they are 220 vs 236.
In the last column the time for one SCF cycle is reported. The
cost of the 2124 atom case is only 7 times larger than the cost
of the monolayer, in spite of the fact that the ratio between the
atoms in the unit cell is as large as 118. The same ratio be-
tween (59,-59) and (9,-9) is only 2.5 for the time and 6.6 for
the number of atoms.
Partial costs for the various steps of the SCF are given in the
three P rows of table VI. We notice that:
- the time required by the calculation of the bielectronic inte-
grals, tbiel , is essentially constant. It just increases by 10% in
going from the smallest to the largest tube.
- The cost of the diagonalization step tdiag is a small fraction
of the total time per cycle, tcycle. tdiag increases from 12%
(n=19) to 21% (n=59). As tbiel is nearly constant, and tdiag is
increasing linearly with n, this is not surprising.
- tbiel + tdiag are as much as 67% of tcycle at the lower extreme,
but only 47% for (59,-59). Other parts of the SCF are growing
rapidly in cost.
- The cost of the monoelectronic part, tmono, remains always a
small fraction (10%) of the total.
- tP, the reconstruction of the density matrix, that being essen-
tially a matrix multiplication should scale with the third power
of the size of the basis, increases by a factor 9 from the two
extremes. For the largest tube, it is the most expensive step.
- tXC, the time required by the reconstruction of the XC
(exchange-correlation) contribution to the Fock matrix, in-
creases by a factor 2, and uses less than 10% of the total time
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Nat NAO Nsym Nmax FIRR FALL Ra t
Slab 18 236 6 10736 50036 5 1.6
(9,-9) 324 4248 36 268 29272 987606 34 4.5
(19,-19) 684 8968 76 268 27519 1954872 71 5.0
(29,-29) 1044 13688 116 268 27250 2952722 108 5.8
(39,-39) 1404 18408 156 268 27080 3958734 146 7.2
(49,-49) 1764 23128 196 268 27042 4947726 183 9.6
(59,-59) 2124 27848 236 268 27029 5956876 220 11.4

TABLE V. Computational data for lizardite (slab) and chrysotile nan-
otubes (n,-n) with n=9, 19, 29, 39, 49 and 59. Nat is the number of
atoms per cell, NAO is the size of the basis set (number of AOs), Nsym
the number of symmetry operators, Nmax is the size of the largest
matrix to be diagonalized, FIRR is the size of the irreducible part of
the Fock matrix, FALL is the size of the complete Fock matrix, Ra
is the ratio FALL/FIRR, t is the time for a single SCF cycle; a SCF
calculation requires about 25 cycles, and the optimization about 30
steps (small oscillations from case to case), so that the complete opti-
mization requires T=t×25×30. Calculations for the present and next
two tables performed on a computer using Intel(R) Xeon(R) CPU
E5-2683 v4 @ 2.10GHz cores. Each node contains 2 sockets of 16
physical cores (so 32 physical cores per node) and 128 GB of RAM.

for the largest tube. These data show that the exploitation of
symmetry for some steps (reconstruction of the density ma-
trix) can be improved.
- overall, the cost of the calculation increases by only a factor
2.3 when the number of atoms triplicates. Note also that all
calculations have been obtained with a very limited amount of
CPU time.
As a last comment, we notice that the exploitation of symme-
try requires:
-the classification of atoms, shells, atomic orbitals, construc-
tion of the tables that describe symmetry relationships be-
tween atoms,
- construction of the character table of the group, that in the
largest case contains as many as 236 symmetry operators,
- the rotation of matrix elements when all the symmetry op-
erators are applied to the irreducible Fock matrix for generat-
ing the complete Fock matrix, that will then be Fourier trans-
formed to F(k), the Fock matrix in reciprocal space.
- a similar set of rotations that is applied to the eigenvectors
obtained in the SACO basis for generating the density matrix
PIRR in direct space, that is then combined with the bielec-
tronic integrals for the next SCF cycle.
The cost of all that is not larger than 1-2% of the total.

C. Symmetry and Solid Solutions

An interesting area in which symmetry is very useful
are solid solutions.19,20,155,156 Suppose we are interested in
CaxMg1−xCO3, and consider for simplicity a particular com-
position, say 75% Ca and 25% Mg. The space group of the
two end members, MgCO3 and CaCO3, is R3̄C, with 12 point
symmetry operators. A statistically reasonable and compu-
tationally affordable choice for the supercell is a 2×2×1 ex-
tension of the hexagonal cell, that is 3 times larger than the

rhombohedral primitive cell containing two formula units (10
atoms). The supercell contains then 120 atoms (10×3×4),
and 144 symmetry operators (12 in the original point group
times (3×4) translation operators imported in the supercell).
The number of ways of distributing the 6 Ca atoms and the 18
Mg atoms in the 24 lattice positions is 24!/(6!18!) = 134596.
Many of these configurations are symmetry related, and then
equivalent. The quantum mechanical calculation can be lim-
ited to the subset of non symmetry equivalent configurations.
Then symmetry is used in CRYSTAL for the selection of the
SIC, Symmetry Independent Configurations. It should be no-
ticed that, due to the large numbers of operations (and then
computing time) required for the identification and sorting of
these equivalences, this is not an easy task.19,20,155 The num-
ber of SIC is, in this case, just 1033, more than 2 orders of
magnitude less than the total number of configurations.
The SIC are characterized by a residual symmetry (number of
symmetry operators that leave invariant the SIC); the number
of operators is comprised between 1 (no symmetry) and 144
(maximum symmetry). The number of symmetric SIC (indi-
cated as SSIC) is a small fraction of the SIC: 178 out of 1033;
of these 178, the largest part, 143, has multiplicity 72 (only 2
operators leave these configurations invariant).
Now, for obtaining at a given temperature the statistical aver-
age of a property of the solid solution, one should in principle
explore the 1033 SIC; this means to perform a complete quan-
tum mechanical geometry optimization, possibly followed by
the calculation of a specific property (for example the vibra-
tional frequencies) for each of them. However it is shown19,20

that the calculation can be limited to the subset SSIC, that rep-
resents a good statistical sample of the full set of SIC, as the
two panels in figure 7 suggest.
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FIG. 7. Energy distribution of the 1033 SIC (Symmetry Indepen-
dent Configurations, bottom) and of the 178 SSIC, characterized by
a multiplicity lower than 144 (top). The multiplicity is indicated by
the colors in the bottom panel, to the right. A configuration with
multiplicity, say, 4, is invariant to the action of 144/4 = 36 of the 144
symmetry operators. The zero energy is defined by the most stable
configuration.

The figure shows that the SSIC span the same interval of the
SIC. It also shows that the extremes in the interval are occu-
pied by the SSIC (in particular the low energy side, the most
important for the statistical averages). A deeper analysis con-
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firms that the distribution of the SSIC in each energy interval
is proportional to the SIC one, as evident from figure 8, where
the distribution of SIC and SSIC per energy interval is shown
(histogram) as well as the corresponding integrated quantity
(normalized to one).
The figure shows that the blue and red curves are very close,
and then that the statistical average can be performed includ-
ing just the SSIC instead of the SIC.
It is a common practice in the literature to consider, for cost
reasons (as well as, possibly, for the lack of tools able to
generate all the configurations in an ordered unique list), a
small subset of configurations, obtained, for example, by us-
ing some random generator for deciding the occupancy of
each lattice site.
The above discussion shows that this strategy brings sys-
tematic errors, because the low symmetry configurations (the
black ones in the figure) are on one hand the ones with the
highest probability to be extracted (their number is dominat-
ing, 855 vs 178), and, on the other hand, they are the less
relevant ones from the point of view of the statistical average
as they do not appear in the low energy region in figure 7. Vice
versa, the SSIC, the very important ones, have low probability
to be extracted.
One note should be added: inspection of the low energy region
in figure 7 shows that actually a small number of black config-
urations appears at energies that might have some role for the
statistical averages. It can be shown20 that they are very close
to one high symmetry configuration, and can be obtained by
simple permutation of two positions. This complement, eas-
ily implemented for the black configurations at relatively low
energy, further improves the computational scheme, and again
requires the application of symmetry.
In summary, a very effective strategy is the identification of
the SIC and SSIC, and the quantum mechanical calculation
of the latter only. For building their list, and for determining
their statistical weights, symmetry is crucial.
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FIG. 8. Distribution of the 1033 SIC (red histogram) and 178 SSIC
(blue histogram) per energy interval. Note that each SIC and SSIC
is multiplied by its multiplicity, to give the total number of 134596
configurations. The continuous curves represent the integrated quan-
tities, normalized to one (see the scale to the right).

System Ncore Nsym tcycle tbiel tmono tXC tP tdiag
Slab 1T P 64 6 1.4 0.4 0.6 0.1 0.0 0.2

P 64 1 4.2 1.6 1.6 0.5 0.0 0.2
(19,-19) P 64 76 5.0 2.7 0.6 0.5 0.4 0.6
(39,-39) P 64 156 7.2 2.8 0.9 0.8 1.6 1.0
(59,-59) P 64 236 11.4 3.0 1.3 0.9 3.6 2.4
(19,-19) MPP 64 76 43.1 2.7 0.6 0.6 0.5 38.8

MPP 64 1 280.7 190.5 24.7 25.6 0.7 38.7
(39,-39) MPP 64 156 301.9 2.5 1.2 1.0 2.0 295.2

MPP 128 156 160.4 1.2 1.3 0.9 1.5 153.0
MPP 64 1 827.8 404.7 61.5 59.5 3.6 296.7
MPP 128 1 445.9 201.1 30.5 30.4 2.5 150.8

(59,-59) MPP 128 236 502.1 1.9 0.9 2.2 4.4 490.1
MPP 256 236 291.4 1.2 0.5 2.1 3.0 284.3
MPP 128 1 957.5 323.6 54.4 48.9 4.4 488.6
MPP 256 1 510.5 159.8 33.5 25.3 3.0 286.7
MPP 512 1 355.9 87.6 15.8 15.3 3.9 229.8

TABLE VI. Cost in CPU seconds of the various steps of the SCF cal-
culation of three (n,-n) chrysotile nanotubes, when SACOs are used
(with P CRYSTAL, P rows) or not (with MPP CRYSTAL, MPP rows).
For obtaining the set of frequencies, 61 SCF+G calculations are per-
formed, 60 of which correspond to configurations without symmetry
(one atom is displaced). Ncore is the number of utilized cores. tcycle
is the times required by an SCF cycle. tbiel , tmono, tXC, tP, tdiag are
the time required for the calculation of the bielectronic and mono-
electronic integrals, of the exchange-correlation contribution to the
Fock matrix, for the reconstruction of the density matrix and for the
diagonalization of the Fock matrix, respectively. The first two lines
refer to the lizardite monolayer, whose unit cell contains 18 atoms.
Calculations performed on 64 cores, as described in the caption of
table V.

VII. CRYSTAL PERFORMANCE

A. Moving the border between quantum mechanical and
approximate methods

The frontier separating the systems that can be treated at
the quantum mechanical level, or with semi-empirical meth-
ods, or classical force fields is moving at high speed, thanks
to the rapid progress of hardware and to the (less rapid) im-
provements of software. Quantum mechanical codes, mostly
based on the various flavours of DFT, are becoming more gen-
eral and more efficient in many respects, although large differ-
ences exist among them (one example is the degree and effi-
ciency of parallelization).
So one might be tempted to define the largest system that can
be investigated at the quantum mechanical level.
The question is, however, not sufficiently precise, because
many additional variables must be defined besides the size of
the system, to make it meaningful.
The adopted basis set, the level of the theory (for example
LDA, or GGA, or hybrid DFT, or even higher level) as well
as the property to be investigated must be specified, because
their cost and use of memory can be quite different from case
to case. Also the more or less dense nature of the system (the
cost per atom of the unit cell of diamond is much higher than
the one of a zeolite, when a local basis set is used), the nature
of the atoms (a system containing transition metal atoms is
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Nat Ncore tcycle tbiel tmono tXC tP tdiag ttcentral ttdispl
1000 32 43.5 5.1 6.6 4.9 1.9 24.5 1609(37) 760(8)
1000 64 29.6 3.3 3.8 3.1 0.9 18.1 947(32) 552(10)
1000 128 16.9 2.0 2.6 2.0 0.5 9.0 574(34) 292(10)
1000 256 11.5 1.5 1.6 2.4 0.3 5.5 391(34) 171(10)
1000 512 9.2 1.2 1.0 2.4 0.2 4.2 313(34) 113(10)
1728 128 65.4 3.3 5.8 3.5 1.4 51.1 2223(34) 854(9)
1728 256 36.2 2.4 3.4 3.2 0.9 25.9 1231(34) 457(9)
1728 512 22.1 1.9 2.2 3.1 0.6 13.8 751(34) 257(9)
2744 128 244.6 5.1 13.0 5.7 3.9 216.2 9784(40) 6575(21)
2744 256 121.7 3.3 7.2 4.4 2.2 104.0 4868(40) 3287(21)
4096 128 778.6 7.8 26.5 8.4 11.2 723.1 31144(40) 19284(21)
4096 256 387.5 4.9 13.9 6.4 5.9 355.6 15500(40) 9466(21)
8000 256 2626.1 9.4 44.7 12.6 20.7 2536.1 89287(34) 57250(20)
8000 512 1420.0 5.9 25.4 10.5 11.2 1365.3 48280(34) 30894(20)
10648 512 6238.0 7.6 43.1 11.7 21.9 6151.4 212092(34) 130580(20)

TABLE VII. Relevant CPU times for a frequency calculation of MgO with large supercells. All calculations performed with the MPP (see text)
version of the code. Ncore is the number of cores utilized. tcycle is the time required by an SCF cycle at the equilibrium geometry, characterized
by 48 symmetry operators. tbiel , tmono, tXC, tP and tdiag as in Table VI. tcycle = tbiel+tmono+tXC+tP+tdiag. ttcentral and ttdispl are the total time
for the full SCF of the central and the first displaced point (48 and 8 symmetry operators, respectively). The number of cycles, that appears in
parentheses, is smaller for the displaced point, because in this case the density matrix of the central point is used as an initial guess (GUESSP
option in the code). This option permits to reduce the number of cycles by a factor 1.5 to 4. Standard conditions are used for the calculation
(T=7, XXLGRID for the exchange correlation integration, a shrinking factor equal to 1 (Γ point only). The SCF convergence threshold is
10−11 Eh, certainly more than necessary for the SCF. Such a large value was used to check the stability of the SCF process. In the case of
the largest supercell, if 10−6 and 10−8 Eh is used, which is certainly sufficient for the evaluation of all ground state properties, the number of
cycles reduces to 16 and 24, respectively.

Nat NAO IS ∆E ∆νmax RMS(ν) S Cv H0 ET

2 18 12 -0.973 - - 10.2242 17.2518 7.96472 2.1194
8 72 8 - 0.000 0.000 16.7634 28.3519 15.1517 3.4516
64 576 4 -0.004 0.069 0.046 20.8065 32.7003 16.4933 4.1756

216 1944 2 -0.053 0.100 0.072 21.5909 33.1811 16.5833 4.2894
512 4608 2 -0.194 0.091 0.066 21.8359 33.2973 16.6024 4.3204
1000 9000 1 -0.425 0.189 0.123 21.9397 33.3404 16.6074 4.3325
1728 15552 1 -0.461 0.173 0.134 21.9888 33.3587 16.6100 4.3378
2744 24696 1 -2.051 0.173 0.144 22.0152 33.3678 16.6114 4.3405
4096 36864 1 -0.999 0.262 0.169 22.0323 33.3733 16.6119 4.3421
8000 72000 1 -1.660 0.186 0.152 22.0489 33.3783 16.6126 4.3436

10648 95832 1 -1.990 0.242 0.174 22.0532 33.3796 16.6128 4.3440

TABLE VIII. MgO room temperature thermodynamic data computed with supercells of increasing dimension. Nat is the number of atoms in
the cell, NAO is the corresponding number of atomic orbitals (AO), IS the shrinking factor defining the Monkhorst-Pack grid of points in which
the reciprocal space is sampled. S and Cv (in J mol.−1 K−1) and H0 and ET (in kJ mol.−1) are the entropy, the heat capacity, the enthalpy
and the vibrational contribution to the enthalpy. ∆E is the total energy difference per formula unit (in micro-Hartree) with respect to the 8
atoms case (conventional cell), whose energy is -1101.72507579 Eh. RMS(ν) (in cm−1) is the Root Mean Square of the frequency difference
between the 21 modes of the conventional cell and the corresponding modes of the larger supercells. ∆νmax is the maximum difference in the
set. Standard computational conditions have been used.

more expensive than one containing only first or second row
atoms), and the level of required accuracy, that can be con-
trolled by input parameters, can have a dramatic effect on the
computational cost.
With respect to the many variables listed above, we remind
that all the examples of large systems to be presented in
the following have been investigated with the global hybrid
B3LYP. A global hybrid is considered extremely expensive
when used with many periodic codes; this is not the case with
CRYSTAL.

1. P and MPP CRYSTAL, and their relationship with
symmetry

As anticipated, there are two parallel versions of CRYS-
TAL. A replicated data procedure is used by PCRYSTAL,
wherein all the most relevant quantities are copied on each
node. In MPPCRYSTAL the large matrices are partitioned
and distributed amongst the cores; this version of the pro-
gram, first released in 2010, is advantageous in general for
systems with a large unit cell and low symmetry.
One of the most important differences is that in PCRYSTAL
each matrix to be diagonalized is attributed to a single core,
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whereas in MPPCRYSTAL it is distributed over as many
cores as required. This would suggest to use the latter in any
case when the system is large enough. A reasonable strategy
consists in attributing no less than 30 - 50 basis functions
to each core in the diagonalization step. So, for example,
with a basis set of 1000 AOs/cell, 20 cores can efficiently
diagonalize the Fock matrix.
When, however, the point symmetry is non-null, SACOs
(see previous section) are very effective in reducing the cost
of the diagonalization step. For example, in the case of the
already mentioned (10,10) icosahedral fullerene,17,157 the
large matrix to be diagonalized (86000 AOs) splits in many
small matrices, the largest of which is just 3600x3600 large.
This huge reduction suggests obviously the use of SACOs in
all the cases in which at least one point symmetry operator
exists, apart from the identity. At the moment, however,
SACOs are implemented only in the P version of the code,
not in MPP. So, in spite of the strong factorization due to
SACOs, when the matrices in the SACO basis become larger
than, say, 5000, the more economical strategy consists in
shifting from P to MPP.
The implementation of an MPP strategy, compatible with the
use of SACOs, would permit a further step forward in the
study of very large systems.

2. Comparing P and MPP, with and without symmetry: an
example

Data in Table VI refer to chrysotile nanotubes (subsection
VI B 1), and can help in understanding the interrelation be-
tween SACOs, P and MPP.
Let us consider the three lines referring to the (39,-39) tube
whose unit cell contains 1404 atoms and 18408 AOs. The sys-
tem is very symmetric (156 operators); so, when running in P
mode for, say, geometry optimization, using 64 cores, execu-
tion is incredibly fast: 7.2s (CPU time) per SCF cycle (tcycle
in the table), only 2.8s for the evaluation of the bielectronic
integrals (tbiel) and 1.0s for the diagonalization step, tdiag.
Let us consider now exactly the same case run with MPP (one
of the effects being that the construction of SACOs is switched
off, the same effect is obtained by using the NOSACO direc-
tive).
tcycle increases from 7.2 to 301.9s, mostly due to tdiag that
jumps from 1.0s to 295.2 s, all the other parts of the calcu-
lation remaining essentially unaltered. So the huge advantage
of SACOs is in the diagonalization step. Consider finally the
same case without symmetry (see the Nsym column). In this
case tcycle increases to 827.8s, about 115 times more than in
the case with symmetry, a factor not far from the number of
symmetry operators. Comparing, however, the various con-
tributions to this number, it turns out that the diagonalization
time of MPP is the same (plus or minus a couple of seconds)
for the case with 156 and 1 symmetry operators (no effect
of symmetry in the diagonalization step, as SACOs are not
active), whereas the difference is large for all other steps, as
symmetry in these parts of the code is active in MPP as is in P.

So for example the time for the calculation of the bielectronic
integrals increases by a factor even larger than the number of
symmetry operators (from 2.8s to 404.7s).
In the last three lines of the table the MPP results for the (59,-
59) system without symmetry are reported, when 128, 256 and
512 cores are used. The scaling is quite satisfactory in general,
and perfect for tbiel and tXC. The diagonalization scaling be-
tween 256 and 512 cores is smaller than expected, but in this
case the number of AO-BF/core is 54, near the lower border
mentioned above for the best use of the MPP diagonalization.
Two more comments on P and MPP CRYSTAL:
- sequential execution is also possible, and in fact it is a spe-
cial case of PCRYSTAL, when a single core, instead of n, is
attributed to the job.
- a single keyword permits to switch from the P to the MPP
version of the code.
A multi-task option also exists, that is very useful when many
medium size independent tasks must be performed, as it is the
case of the many SCF+G calculations required by a frequency
calculation of a relatively large system, or when investigating
solid solutions, for which many independent configurations
must be studied.

3. Thermodynamic properties of bulk MgO

Among the evidences that CRYSTAL can tackle large
systems, we present in tables VII and VIII a set of data
referring to MgO supercells containing 2 to 10,648 atoms.
The adopted split valence basis set contains 9 AOs for both
Mg and O, so that in the largest supercell there are 95832
AOs. For each supercell the vibrational modes are obtained,
by using the SCELPHONO option, that uses also the transla-
tional symmetry within the supercell in the selection of the
irreducible atoms to which the small x, y and z displacements
in the numerical calculation of the Hessian matrix are applied.
As a result, for all the supercells listed in Table VIII, the
Hessian matrix is constructed by computing 3 SCF+G points
only, the central one and two points in which one of the two
atoms is displaced by 0.003 Å. The point symmetry in the
three cases is 48, 8 and 2, respectively. For each supercell the
eigenvalues are obtained in an increasing number of k points.
For example, in the case of the 8,000 atoms supercell, we
obtain the eigenvalues at 4,000 k points. The thermodynamic
properties of the crystalline system are obtained by summing
up all the eigenvalues of the infinite set (here 4,000) of k
points of the BZ.
In the following we list some comments to tables VII and VIII:

1. they provide the evidence that a system with more than
10000 atoms and nearly 100000 AOs can be investi-
gated with CRYSTAL.

2. they provide the evidence that the results are very accu-
rate, as table VIII documents (see section II A).

3. All calculations are performed with MPPCRYSTAL,
with use, then, of symmetry in the calculation of the



23

integrals, but not in the diagonalization step (SACOs
non-compatible with MPP).

4. In all cases the time per cycle is dominated by the diag-
onalization step. It costs about 60% for the cells with
1000 atoms, and 96% for the cell with 8000 atoms.
This is because the other potentially expensive step, the
calculation of the bielectronic integrals, is strongly re-
duced by the use of symmetry: there are 48 operators in
the central point (equilibrium configuration).

5. The same case has been investigated with a variable
number of cores. The results for all computed prop-
erties are exactly the same. For the construction of the
table up to 512 cores have been used. tcycle scales quite
well with the number of cores, as a consequence of the
good scaling of the diagonalization step.

The scaling of the other steps of the calculation is not easily
verified, as the corresponding CPU times are extremely small.

It happens to see in the literature calculations referring to
very large systems, producing properties whose accuracy can
hardly be checked. To eliminate any doubt on the quality of
the results obtained in the present case, we add one more ev-
idence to the one provided in section II A about the numer-
ical accuracy of CRYSTAL. Columns 4-6 of table VIII re-
port the total energy (per MgO unit), and two statistical in-
dices obtained from the 21 frequencies that are common to
the conventional cell, containing 8 atoms, and to all larger su-
percells. The two indices are the maximum difference with
respect to the wavenumbers of the conventional cell, ∆νmax,
and the Root Mean Square RMS(ν) among the sets. It turns
out that both ∆νmax and RMS(ν) are always smaller than 0.3
cm−1, confirming that the accuracy is not only very high, but
also constant with the size of the unit cell.
We can then consider the thermodynamic properties, result-
ing from the summation extended to all k points. It turns out
that the data for all quantities converge to a well defined value
(this means that the numerical error is affecting all these prop-
erties on some decimal figures beyond the ones reported in the
table). Convergence is rapid: for Nat equal to 1000, the dif-
ference with respect to the largest calculation is 0.5% for S,
0.1% for Cv and even smaller for the other two properties. The
graphical representation (not shown) of the four quantities as
a function of the number of k points used in the integration is
extremely regular, confirming once more the above comments
on the negligible effect of the numerical noise.

B. A few examples of investigation on large systems with
CRYSTAL

In the following we illustrate a few cases of large systems
investigated in the last 7-8 years.
1) The first documentation of the MPP CRYSTAL structure
and performance dates back to 2012. In the paper at Ref.
158, whose title is: A New Massively Parallel Version of
CRYSTAL for Large Systems on High Performance Com-
puting Architectures, the feasibility of SCF calculations of

large supercells containing up to 14 units of MCM-41 (8106
atoms, 108584 AOs) on 512 cores was documented. The
mesoporous silica MCM-41 structure consists of a 41x41x12
Å unit cell containing 579 atoms. The supercells were built
expanding the MCM-41 unit cell along the c axis. The basis
set was a 6-31G∗ one. The B3LYP hybrid functional was
used.
2) In 2016 the structure of the simplest protein, crambin,
was investigated159 in its bulk, hydrated form, exploiting
in part neutron scattering information for the position of
some of the H atoms, and filling the rest with a set of water
molecules. The crambin molecule has 642 atoms; there are
2 molecules in the unit cell. The large voids in the structure
were filled with 0, 84 and 172 water molecules, resulting in
1284, 1536, 1800 atoms per cell, and, for the largest case,
16482 AOs. The B3LYP functional was used. At variance
with respect to the previous case, here the geometry was fully
optimized. This step was a real challenge for the code, due to
the presence of the many water molecules, with a relatively
large freedom to move, the null symmetry and the very large
size of the cell. In all cases the optimization process was
successful. Calculations were performed on 1920 cores. It
should be underlined that even larger protein systems are at
hand, with a sufficiently large number of cores.
3) Between 2012 and 2014 a full family of icosahedral
fullerenes was investigated,17,157 up to (10,10), containing
6000 atoms and 86000 AOs. The geometry was optimized. In
this case, thanks to symmetry, a single node with 8 cores was
enough for the full optimization with the B3LYP functional.
This is a strong evidence that symmetry can, in some cases,
be as effective as thousands of cores.
4) Recently, the interaction of CO2 within the pore of the
giant-metal organic framework MIL-100 has been investi-
gated. MIL-100 shows an extraordinarily complex structure
with about 2800 atoms in the primitive unit cell and contains
open metal sites (e.g. Al, Sc, Cr, Fe) that can interact with
CO2. Dispersion corrected hybrid functionals have been
successfully adopted to fully optimise the geometry and
predict the binding of CO2 with the metal sites160.
In the four previous examples, the code was used for just
SCF+G calculations, for geometry optimization, and then for
the investigation of many ground state properties. In the next
example the analysis extends to the vibrational calculations,
that are much more demanding.
5) In 2016 the thermodynamic properties of two garnet
systems, pyrope Mg3Al2Si3O12 and grossular, Ca3Al2Si3O12,
were investigated161 computing the phonon dispersion data
for six supercells of increasing size, from 80 to 2160 atoms.
A size consistency check, similar to the one documented by
table VIII for MgO, was performed and was very successful.
This was the first example of very large unit cell calculation
extended to the vibrational properties.
In the same years, large unit cell calculations for defective
systems were performed.162,163 The vibrational spectrum and
infrared (IR) intensity of supercells as large as 1000 atoms
were computed.164 Such a large supercell permits to explore
geometries in which the lateral interaction among defects is
progressively reduced.
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C. And then what about scaling?

We think that the previous sections provided sufficient
documentation concerning large systems and scaling. Thanks
to the efficiency of the code, and to the presence of symmetry
in many cases, the need of an extremely large number of
cores is rare.
A rich documentation can be found in the presentation paper
of the 2014 release of CRYSTAL, and in a recent paper.165

Here we report the response to a challenge concerning the
possibility of running codes up to 32.000 cores. In this
case two MCM-41 supercells were considered, X16 (9264
atoms/cell) and X24 (13896 atoms/cell and 186144 AOs/cell,
resulting from a 6-31G∗∗ basis set). The PBE functional was
used, for memory reasons. Calculations were run on the
SuperMUC (LRZ, Germany) HPC IBM iData-Plex machine
powered by 16 Intel cores per node running at 2.7 GHz, with
2 GB/core. Figure 9 documents:
a) that actually the code can run with this large number of
atoms and basis functions, on this large number of cores.
b) that the scaling (see the numbers on the curves; perfect
scaling is the diagonal of the figure, and corresponds to 1) is
excellent, larger than 0.8 for X24 up to 8000 cores, and up to
4000 cores for X16.
c) that also at 16000 cores the scaling is as large as 0.7 for
X24.
d) that the larger the system, the better the scaling.
e) that also at the limit of 32000 cores, it is not too bad for
X24, 0.45.

VIII. PROPERTIES FROM THE WAVEFUNCTION

A very large number of tools has been developed in
CRYSTAL for the analysis of the wavefunction, in direct
and reciprocal space. The subroutines for the calculation of
many of them have recently been parallelized for accessing
large systems (see Ref. 166). It is not the aim of the present
document to go through the full list; rather, we will give a few
examples referring to a specific scientific area, that of defects,
that offers the opportunity for illustrating a few of these tools.

A. Defects in diamond

Natural and synthetic diamonds attract significant inter-
est for many possible applications, such as high temperature
diodes, transistors, thermistors and detectors,167,168 thanks to
their high melting point, thermal conductivity, hardness and
wide band gap. The presence of selected intrinsic and extrin-
sic defects, which can be incorporated in diamond,169–172 can
change dramatically these properties.
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FIG. 9. Scaling with the number of cores as a function of the sys-
tem size on the SuperMUC system. X16 and X24 are obtained by
multiplying the MCM-41 cell by 16 and 24, respectively, along c.

Nitrogen is, by far, the most common impurity, and nitrogen-
containing diamonds are classified as type Ib, when a single
N atom is substituted for a carbon atom (Ns or C defect), or Ia
when the N atoms aggregate. The most common aggregates
are vicinal Ns pairs (A centers) or a combination of four nitro-
gen atoms surrounding a carbon vacancy V (B centers)173,174.
According to the dynamics of the diffusion process, and the
geological or preparation history, intermediate situations exist
in which there is just one, or two, or three N atoms around the
vacancy, before the final stage (the B defect) is reached. The
A, B and C centers are then the most common N defects in di-
amond. Many variants are also possible, with hydrogen atoms
saturating part or all the C atoms around the vacancy.131,175

The A163, B164 and C176 centers in diamond have been inves-
tigated with CRYSTAL, together with many other intrinsic and
extrinsic defects.

1. Spin states

Whereas the ground state of perfect diamond has a closed
shell structure (each atom forming strong covalent bonds with
the four neighbors), many of the defects present an open shell
ground state. Consider for example the carbon vacancy V.
Four covalent bonds are broken, and four uncoupled electrons
remain unsaturated on the four first neighbors of V.
In principle, one could imagine that the defect region reorga-
nizes in such a way to allow the C atoms to couple forming
somehow double bonds, as it is the case, for example, when
the (111) diamond surface is allowed to relax. The structure
of diamond is however too rigid for that, and atoms cannot
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a)

b)

FIG. 10. The VN0
2 defect. In panel a) the pristine diamond conven-

tional cell is shown, whereas in panel b) a local cluster of C and N
atoms adjacent to the vacancy and including 12 next-nearest neigh-
bors is represented. Mulliken net charges (in |e| units; boldface) are
shown near the atoms, for each symmetry irreducible atom. Bond
distances (in Å, italics) and Mulliken bond populations (in |e|) are
also shown in between the two involved atoms. Data refer to the
singlet ground state.

move as at the surface. So the four electrons on the four
atoms around the vacancy can give rise to three different
spin states, characterized by four up (Sz=2), three up and one
down (Sz=1), two up and two down (Sz=0) spins.

FIG. 11. Spin density profiles of the VN0
2 defect in its singlet (top)

and triplet (bottom) spin states along a path connecting the atoms
with relatively high spin density. Some of the atomic labels appear
in panel b) of figure 10, others refer to atoms connected to atoms at
the border of the reported cluster. All calculations were done with
the S216 supercell, B3LYP functional and the 6-31G-J* basis set.177

2. The charge and spin density, and the wavefunction
analysis

Once the geometry optimized, an overview of what hap-
pened upon the insertion of the defect is provided by the local
geometry and the charge distribution.
The ideal situation consists in having a few numbers summa-
rizing the changes with respect to the perfect diamond struc-
ture. To this aim, the distances in the defect region (supple-
mented by some angles, if necessary), the atomic charges and
spin momenta, and some indication on the kind of bond link-
ing the atoms, is sufficient to define the chemical situation
around the defect.
It is clear that from the wavefunction the charge and spin den-
sities can be generated. These are however 3D functions,
whose representation (2D maps or 3D plots) might not sat-
isfy the need of a concise description of the local situation.
In CRYSTAL various ways of integrating the charge (and spin)
distribution functions are available:
- The topological analysis of the electron charge density, per-
formed according to Bader’s prescriptions using Gatti’s TO-
POND package,178 that is integrated with the CRYSTAL pro-
gram;
- The Hirshfeld population analysis.
The reader can obtain more information and references for the
above two tools in the CRYSTAL manual5; for the latter, see
also Ref.179

-The Mulliken population analysis. It is the simplest, easy to
read and quickly computed tool for the analysis of the charge
and spin densities. It provides net charges, bond populations,
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System QC QN µC µN RCC RNC bCC bNC ∆E

VN0
2

s +0.12(2) -0.40(2) ±0.81(2) ±0.00(2) [1.51,1.52] [1.51,1.51] +[0.33,0.33] +[0.29,0.289] +0.41t +0.12(2) -0.40(2) +0.89(2) +0.05(2) [1.50,1.510] [1.51,1.52] +[0.34,0.34] +[0.28,0.29]

VN−2
d +0.06(2) -0.39(2) +0.47(2) -0.00(2) [1.51,1.53] [1.50,1.50] +[0.35,0.36] +[0.30,0.30] +1.46q +0.11(2) -0.38(2) +0.88(2) +0.08(2) [1.51,1.513] [1.52,1.54] +[0.33,0.34] +[0.24,0.24]

VN0
1

d +0.10(1) -0.41(1) -0.68(1) +0.00(1) [1.51,1.53] [1.51,1.51] +[0.33,0.33] +[0.28,0.28] +0.46+0.09(2) +0.80(2)
q +0.09(3) -0.38(1) +0.88(3) +0.15(1) [1.51,1.51] 1.525 +[0.33,0.34] +0.27

TABLE IX. Atomic Mulliken net charges Q, spin densities µ and bond populations b (in |e|) for each type of atom surrounding the vacancy
for the VN0

2, VN−2 and VN0
1 defects in diamond. Data have been obtained for the doublet (d) and quadruplet (q) spin states for VN−2 and VN0

1,
and for the triplet (t) and singlet (s) for VN0

2. Energy differences between high and low spin states ∆E (in eV) are reported. In all cases the
low spin state is the ground state. Multiplicity (number of equivalent atoms) is given in parentheses. Note that in the VN0

1 case there are two
sets of carbon atoms, that are shown in two contiguous lines. Distances R (in Å) and bond populations b refer to the N atom(s) and its (their)
first neighbors, and to the carbon atoms around the vacancy, and to their first neighbors. When more than two values exist, ranges are given in
square brackets.

atomic magnetic moments.
The main criticism to the Mulliken analysis concerns the way
the charge (spin) density is partitioned among atoms (half-
and-half). So the results of this analysis can change when the
basis set is changing. However, when comparing similar sit-
uations treated with the same basis set, trends and differences
are meaningful, and this analysis turns out to be very useful.
In figure 10 the distances, the net charges and the bond popu-
lations around the VN0s

2 defect (the neutral VN2 defect in its
ground singlet state) are reported. In table IX the data of the
excited triplet state, as well as of a couple of other defects in
diamond, namely the negatively charged variant of VN0

2, in-
dicated as VN−2 , and VN0

1 are reported for comparison. For
the negatively charged defect, the neutrality of the unit cell,
required by the infinite nature of the system, is obtained by
adding a uniform charge background whose integral is equal
to a unitary positive charge.
A few comments:
1) in perfect diamond, each carbon atom is obviously neutral
(net charge QC=0 |e|). So the net charges shown in the figure
and table measure the charge displaced as a consequence of
the presence of the vacancy V and of the two nitrogen atoms.
2) The net charge on nitrogen is about the same in the six
cases, varying from -0.38 to -0.41 |e|. Nitrogen is accumulat-
ing nearly half an electron.
3) The net charge on the first three carbon neighbors of N is
+0.13 |e|; this means that the NC3 cluster is essentially neu-
tral. This is not surprising, as the electronic structure of dia-
mond is extremely rigid, and it is very difficult (energetically
expensive) to pull electrons from or add them to a C-C bond.
4) Also the net charges of the CV atoms (the unsaturated car-
bon atoms around the vacancy) have limited variations from
case to case: from +0.06 to +0.12 |e|.
5) The net charges of second and third neighbors of the va-
cancy fall rapidly to zero, and the perturbation turns out to be
very localized.
6) The integral of the spin density extended to the unit cell is
equal to 0. (singlet), 1. (doublet), 2. (triplet), 3. (quadruplet).

7) A large fraction of this spin density is concentrated on the
two (VN0

2 and VN−2 ) or three (VN0
1) CV atoms. For example,

it is 0.88 |e| in the quadruplet state of VN0
1; so 0.88x3 = 2.64

|e| out of 3 electrons are concentrated on the three CV . In
the case of the charged defect VN−2 the spin density is more
diffuse, and the sum must be extended to more neighbors for
approaching the formal spin momentum of the unit cell.
8) The magnetic moment µ on CV is about the same for the
three high spin cases: 0.89. 0.88 and 0.88 |e| for VN0

2, VN−2
and VN0

1, respectively.
9) In the low spin cases µ decreases to 0.81 |e| (VN0

2) and
0.68, 0.80, 0.80 |e| (VN0

1).
In the charged defect, in which the Pauli repulsion is higher in
the vacancy region, µ on CV is as small as 0.47 |e|.
10) The magnetic moment on the nitrogen atoms is always
very small: close to zero in the low spin cases, and in between
0.05 and 0.15 |e| in the high spin cases.
11) In spite of the high concentration of the spin density on
the atoms around the defect, the residual spin density is far
from short ranged. In general (see figure 11) the µ value on
the n-th neighbor has opposite sign with respect to the one on
the (n+1)-th neighbor of the vacancy, according to a sort of
spin density wave. As a consequence also atoms relatively far
from the defect region can contribute to the EPR signal.
12) The equilibrium geometry, apart from the very local sit-
uation, is not much sensitive to the kind of defect, or to its
charge state. The C-C distance in pristine diamond is 1.56 Å.
It decreases to 1.50-1.52 Å (see table IX) for the C-C and N-C
bonds involving one atom on the border of the vacancy. The
next C-C bonds, however, are in between 1.55 and 1.56 Å,
confirming that the geometrical perturbation is very localized.
13) The same holds for the b bond populations between the
defect atoms and their neighbors, shown in the table: C-C and
N-C are large and positive, indicating strong covalent bonds;
for the next bonds, the 0.34 |e| value of pristine diamond is
recovered.
In summary, the simple Mulliken population analysis is able
to provide a rich, although not complete, description of the
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FIG. 12. Spin density maps of the VN0
2 defect in its singlet (top)

and triplet (bottom) spin states. Two carbon (in grey) and one of the
nitrogen atoms (in blue) surrounding the vacancy define the plane of
each figure. Isodensity lines differ by 0.01 |e| /(a3

0). Spin density is
truncated at ±0.1 |e| /(a3

0). Continuous, dot-dashed and dashed lines
represent positive, null and negative spin densities, respectively.

electronic structure around the defect. A similar description is
much more cumbersome if a PW basis set is used.
Further information on the nature of the unpaired electron, his
spatial extent, and the kind of atomic orbitals involved is pro-
vided by the spin density maps, like the one of figure 12 which
shows the accumulation of spin density on the carbon atoms
around the vacancy, and how it propagates to the next neigh-
bors. The figure might be slightly misleading, as the high spin
density peaks are truncated at ±0.1 |e| /(a3

0) (hence the large
white area on the two sides of these atoms). The shape of the
isodensity lines is the one of a p orbital. The two lobes are
asymmetric, with the largest one pointing towards the empty
space of the vacancy, where however there is competition (or
Pauli repulsion) with the other CV atom. Short range repul-

sion and spin polarization involve obviously also the N atom,
on the other side of the vacancy, and the carbon atoms linked
to CV .
The comparison of the two figures helps to understand why
the singlet state is more stable than the triplet. The presence
of an additional nodal plane between the two CV atoms in-
creases the kinetic energy, and destabilizes the singlet state.
The different spin on the two CV atoms (α in one case, β

in the other), strongly reduces, however, the Pauli repulsion,
which is dominant at these short distances. The spin pressure
between the two CV atoms, that forces to move part (a very
small fraction) of spin density in the direction opposite to the
vacancy, and then generates a spin polarization on the atoms
linked to Cv, is smaller in the singlet case, as the number of
isodensity lines (6 for s and more than 10 for t, remember that
the density is truncated at the tenth isoline) documents. Note
also that the polarization on N essentially disappears (see also
the µ values in table IX).

3. The EPR parameters

Two important parameters can be evaluated with CRYSTAL,
that are related to the spin density. The Fermi contact term for
an unpaired electron

An
iso =

8π

3
geµegnµN |ψ(Rn)|2 (12)

arises from the direct interaction of nuclear and electron spins,
and is only non-zero for states with finite electron spin density,
|ψ(Rn)|2, at the nuclear site Rn (see figure 11). In Eq.12 the
parameters ge, µe, gn and µN are the free-electron g-factor,
Bohr magneton, gyromagnetic ratio of In and nuclear magne-
ton respectively.
The second is the traceless tensor Bn at nucleus Rn, defined
as:

Bn
i j = geµegnµN

∫
drn|ψ(rn)|2

(3rnirn j−|rn|2δi j

|rn|5
)

(13)

where rn is the electron distance to Rn. It samples the long-
range properties of the wavefunction as a result of the r−3

scaling. It is essential, therefore, for basis sets to be suffi-
ciently flexible so that these differing dependencies can be ad-
equately described; a quite rich basis set (17 AO/atom), tai-
lored in particular for EPR calculations, has been used for
generating the data discussed in this section.177

The spin density maps, figure 12, are a 2D representation of
the 3D spin density function that, when integrated according
to equation 13, provides the Bn

i j values. When the square of the
wavefunction magnitude is partitioned according to the Mul-
liken scheme, the µ values of table IX are obtained.
Table X compares the calculated176,180 and experimental Aiso
and B tensor values for two defects, namely the C (substitu-
tional nitrogen) and the VN−2 center. In the first case there is
un unpaired electron on one of the first neighbors of N, hence
a doublet state. In the second case there are 3 unpaired elec-
trons, and in principle both a quadruplet and doublet state are
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Atom Aiso B1 B2 B3 reference

14N
92.6 21.6 -10.8 -10.8 Exp.187

82.0 23.2 -11.6 -11.6 Calc.176

13C1
208.2 132.1 -66.1 -66.1 Exp.187

208.9 137.9 -68.9 -68.9 Calc.176

13C2
35.5 7.0 -3.5 -3.5 Exp.188

34.9 6.4 -3.4 -3.0 Calc.176

15N
+4.0 -0.6 +0.5 +0.1 Exp.181

+4.1 -0.6 +0.5 +0.1 Calc.180

13C1
+240.7 +76.8 -38.4 -38.4 Exp.181

+245.1 +80.6 -40.5 -40.1 Calc.180

TABLE X. Experimental and calculated hyperfine coupling constants
(MHz) for the P1 (first three rows) and VN−2 (last two rows) defective
center. B tensor components are sorted so that |B1| > |B2| > |B3|.

possible. The latter is however by far the most stable, and
to it refer the experimental data by Green et al..181 For the C
defect other experimental determinations exist,182–184 that dif-
fer by less than 1% from the ones reported in the table. The
agreement between simulation and experiment is excellent. A
similar good agreement is observed for other cases, for exam-
ple the N+

2 center (see references 185 and 186), the positively
charged version of the A center (two vicinal substitutional N
atoms). The defect is ionized in order to have unpaired elec-
trons, and then to generate an EPR signal. This confirms that,
at least for light atoms, the present approach produces excel-
lent results.

Other related properties can be obtained from the simula-
tion (and sometimes from the experiment).
- When the local symmetry is low enough, the symmetric ten-
sor B is not diagonal, and then usually six parameters are
produced, the three eigenvalues, and the three eigenvectors,
or the three angles defining the orientation of the local frame
with respect to the absolute frame. These three angles are ob-
viously a by-product of the calculation.
- The Electric Field Gradient tensor at the nuclear position,
that couples with the quadrupolar nuclear momentum when
the nuclear spin I is equal or larger than 1 (in atomic units).
In many cases it has been computed and compared with ex-
periment since long (1998). For example in reference 189
where the so called trapped holes in MgO, CaO and SrO due
to Li and Na substitutions for oxygen are investigated at the
Hartree-Fock level, that performs very well in localizing the
hole, at variance with other functionals containing a smaller
fraction of exact exchange, or no exchange at all. Two very
recent applications are in Ref. 186 and 180.
The same ingredients can be used for estimating the two im-
portant parameters of the Mössbauer effect, namely the chem-
ical shift and the quadrupolar splitting) (see the CRYSTAL
manual and Ref. 190).
- At the moment CRYSTAL is on the contrary unable to com-

pute the g tensor. A (not completely satisfactory) solution to
this limitation consists in obtaining it from a cluster treated
with a molecular code, once verified that the periodic and clus-
ter values of Aiso, B and P coincide, or are very similar.
The amount of data can be much larger if more EPR active
atoms around the defect center are considered. From the sim-
ulation side this is obviously not a problem (see the An

iso and
B values reported in Ref.176 for many C atoms at increasing
distances from the N defect). The accuracy and resolution of
the experimental spectrum can on the contrary matter.
In the case of the neutral Li vacancy in LiF (color center),
very accurate data produced more that 50 years ago191 pro-
vide partial EPR information up to the seventh neighbors of
the vacancy. In a simulation by Mallia et al.192, a quite rea-
sonable agreement is observed with the experiment, that might
improve if the experimental labelling of some of the farther
neighbors is changed.

IX. CONCLUSIONS

To the authors’ knowledge, CRYSTAL was the first peri-
odic ab initio code to be distributed publicly (1988). De-
spite the rapidly evolving computational technology of quan-
tum molecular codes, and even more so of periodic codes, all
the major ingredients of the current program were already in
place at that time. However, there have been many additions,
generalizations and technical improvements. Among the spe-
cial features that may not be available elsewhere we cite:
1) Extensive use of symmetry to dramatically reduce CPU re-
quirements.
2) Global hybrids, such as B3LYP (available from the
nineties) and PBE0, can be used at a cost that is only 3 to 5
times larger than PBE and GGA. This also applies to Hartree
Fock. A large set of other functionals spanning Jacob’s ladder
is also available.
3) The ability to treat large systems. For example, the
wavenumbers and IR intensities of systems with a unit cell
containing much more than 1000 atoms can readily be ob-
tained. In table VII such calculations for a MgO supercell con-
taining 10648 atoms are documented. The general treatment
for systems of that size (total energy, geometry optimization,
vibrational frequencies, and the full set of properties) is not a
far-off target.
On the other hand, ab initio calculations for vibrational prop-
erties of systems with, say, more than 200-300 atoms using
other codes are extremely rare.
4) Scaling with the number of cores is excellent - up to thou-
sands of cores for sufficiently large systems.
5) Careful attention has been paid to achieving high accuracy.
For any new implementation the level of accuracy has always
been discussed and documented. Referring again to vibra-
tional frequencies, we mention in this regard the accurate re-
production of experimental spectra in the terahertz region193.
6) A very broad array of tensor property calculations is avail-
able (elastic, piezolectric, photoelastic, dielectric, static and
dynamic first and second-order hyperpolarizability, hyperfine
coupling, electric field gradient, IR and Raman intensities,
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etc.).
7) There are also many tools for characterization of the wave-
function/density in direct or reciprocal space (Mulliken, Bader
and Hirshfeld analysis, Wannier localization, x-ray structure
factors, electron momentum distributions and Compton pro-
files).
In addition, graphical tools have been developed during
the years to help visualization and plotting of computed
properties194–198.
Even though the capabilities of CRYSTAL have been greatly
enhanced since its first release in 1988 there are still a num-
ber of limitations, some of which we hope to remove in the
near future. Amongst the latter are the availability of mag-
netic and mixed electric-magnetic properties, as well as spin-
orbit coupling, and a general treatment of anharmonicity. The
efficiency of the code must also be improved, for example by
parallelizing those parts of the CPHF routines that deal with
Raman intensities.
At the present stage CRYSTAL represents a reliable, general,
accurate computational tool. Its stability over more than 40
years is a strong warranty for any user.
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