
HAL Id: hal-02634895
https://hal.science/hal-02634895

Submitted on 27 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact Sparse Nonnegative Least Squares
Nicolas Nadisic, Arnaud Vandaele, Nicolas Gillis, Jérémy E Cohen

To cite this version:
Nicolas Nadisic, Arnaud Vandaele, Nicolas Gillis, Jérémy E Cohen. Exact Sparse Nonnegative Least
Squares. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, May 2020, Barcelona, France. pp.5395-5399, �10.1109/ICASSP40776.2020.9053295�. �hal-
02634895�

https://hal.science/hal-02634895
https://hal.archives-ouvertes.fr

EXACT SPARSE NONNEGATIVE LEAST SQUARES

Nicolas Nadisic? Arnaud Vandaele? Nicolas Gillis? Jeremy E. Cohen†

? University of Mons, Belgium.
†CNRS, Université de Rennes, Inria, IRISA, Rennes, France.

ABSTRACT

We propose a novel approach to solve exactly the sparse nonnega-
tive least squares problem, under hard `0 sparsity constraints. This
approach is based on a dedicated branch-and-bound algorithm. This
simple strategy is able to compute the optimal solution even in com-
plicated cases such as noisy or ill-conditioned data, where traditional
approaches fail. We also show that our algorithm scales well, despite
the combinatorial nature of the problem. We illustrate the advan-
tages of the proposed technique on synthetic data sets, as well as a
real-world hyperspectral image.

Index Terms— nonnegative least squares, sparse coding,
branch-and-bound.

1. INTRODUCTION

Nonnegative least squares (NNLS) problems of the form

min ||Ax− b||22 such that x ≥ 0, (1)

where x ∈ Rn, A ∈ Rm×n, and b ∈ Rm, are a variant of least
squares (LS) problems where the solution is required to be entry-
wise nonnegative. Nonnegativity is useful for models where data
are additive combinations of meaningful components [1]. For ex-
ample, in hyperspectral images, the spectra of pixels are nonnega-
tive linear combinations of the pure components they contain [2].
NNLS is also one of the principal tools used in the so-called “al-
ternating approaches” to solve nonnegative matrix factorization [3].
As a constraint, nonnegativity is known to naturally induce sparsity,
that is, produce solutions with few non-zero components; see for
example [4] and the references therein. Sparse solutions express
data points as combinations of only a few atoms, thus improving
the interpretability of the decomposition. For instance, in the task
of identifying the materials present in the pixels of a hyperspectral
image, sparsity means a pixel will be composed of only a few mate-
rials. However, there is no guarantee on the sparsity of the solution
to a general NNLS problem, while controlling the sparsity level of
solutions is important in many applications, such as hyperspectral
imaging [5] and sparse NMF [6]. Hence comes the need to design
sparsity-enhancing techniques.

The sparsity of a vector x is typically measured by its `0-“norm”,
‖x‖0 = |{i : xi 6= 0}|. It is equal to the number of nonzero compo-
nents in x. However, as this “norm” is non-convex and non-smooth,
it is hard to enforce `0 constraints. One way to overcome this is-
sue is to use the `1-norm as a convex surrogate, via the well-known

NN and NG acknowledge the support by the European Research Coun-
cil (ERC starting grant No 679515), and by the Fonds de la Recherche Sci-
entifique - FNRS and the Fonds Wetenschappelijk Onderzoek - Vlanderen
(FWO) under EOS project O005318F-RG47.

LASSO approach [7]. This approach implies a regularization param-
eter (usually denoted λ) that can be hard to tune, especially if one re-
quires a specific level of sparsity. This regularization also introduces
a bias: the optimized problem is different, therefore the solution and
its support may change. Thus, in some cases, it is preferable to di-
rectly solve an optimization problem with `0 constraints, without the
use of a convex surrogate. In this setting, we propose a technique for
solving the sparse NNLS problem with an explicit level of sparsity
via a hard constraint on the `0-“norm” of the solution.

Problem: Given A ∈ Rm×n, b ∈ Rm and k ∈ N, we wish to
solve exactly the following sparse NNLS problem

x∗ = argmin ‖Ax− b‖22 such that ‖x‖0 ≤ k and x ≥ 0. (2)

This problem is also referred to as nonnegative sparse coding [8].
Because of the discrete nature of the `0-“norm”, Problem (2) is com-
binatorial, with

(
n
k

)
possible supports for x. A brute-force algorithm

would solve a NNLS subproblem for each possible support and se-
lect the solution with minimal error. This is the approach used by [9]
in the context of sparse NMF. However, the number of possible sup-
ports grows exponentially with n and k. To avoid computing all of
them, the solution we propose can prune the search space using a
branch-and-bound strategy. With this technique, the problem is still
solved exactly, but far fewer NNLS subproblems are solved, leading
to reasonable computing times even for large n and k.

In Section 2, we discuss competing algorithmic approaches to
the nonnegative sparse coding problem. In Section 3, we present a
novel branch-and-bound algorithm. Finally, in Section 4, we illus-
trate the effectiveness of the approach on synthetic data sets and on
a practical application of hyperspectral unmixing.

2. RELATED WORK

Sparse coding is a well-studied problem, with many heuristic ap-
proaches available for solving large-scale problems [10]. One of
the most popular, the `1-regularized LASSO, solves the problem
minx≥0 ||Ax− b||22 +λ||x||1 for some λ > 0. In this method, spar-
sity is encouraged through the regularization parameter λ. Selecting
a value for this parameter that achieves a given level of sparsity is not
straightforward. Moreover, existing theoretical guarantees for sup-
port recovery such as the Exact Recovery Condition [11] are quite
restrictive for some uses of sparse NNLS, in particular when used
as a routine for solving sparse NMF [9]. However, it benefits from
the powerful properties of convex optimization, and efficient convex
optimization algorithms exist that make use of optimality conditions
to perform screening or design a stopping criterion [12].

Greedy algorithms are another popular approach. Techniques of
this type start with an empty support, and then select the atoms one
by one to enrich the support, until the desired sparsity, k, is reached.
The atom selection is done in a greedy way, selecting at each it-
eration the atom that maximizes the decrease of the residual error.

Orthogonal variants of these algorithms ensure an atom will not be
selected more than once. Popular examples are orthogonal matching
pursuit (OMP) [13] and orthogonal least squares (OLS) [14]. Non-
negative variants of these algorithms have been proposed; see [15]
and the references therein. They aim to solve (2) heuristically, but
theoretical recovery guarantees are similarly limited.

Bienstock proposed a branch-and-cut algorithm to solve a
cardinality-constrained quadratic program (CCQP), a problem sim-
ilar to (2) with different constraints, using continuous relaxation at
every iteration [16]. Bertsimas and Shioda extended it by proposing
a new way to solve the continuous relaxation problems [17]. Mhenni
et. al generalized this CCQP and proposed a novel branch-and-bound
algorithm to solve exactly the continuous relaxation problems using
dedicated optimization methods [18, 19].

3. THE ARBORESCENT ALGORITHM

We propose a novel technique to solve the sparse NNLS problem
exactly via a branch-and-bound algorithm called arborescent1.
In this algorithm, the possible patterns of zeros (that is, the possible
supports) in the solution vector are enumerated on a tree, as shown in
Figure 1. Each node represents an over-support K of x. The entries
of x indexed by K are those that are not constrained to be 0. The
cardinality of K is equal to the current tree depth. Exploring a node
means solving the following NNLS subproblem

f∗(K) = min ||A(:,K)x(K)− b||22 such that x(K) ≥ 0, (3)

where x(K) is the subvector of x whose entries are specified by the
subset K ⊆ {1, 2, . . . , n}. The value f∗(K) is the error associated
with the node corresponding to K. In arborescent, an active-
set algorithm [20] is used as the NNLS solver. The key property
of active-set methods is that they solve the NNLS problem exactly,
without a need for parameter tuning. Note that active-set methods
allow for a warm start, that is, the algorithm can be initialized at
the current node with the solution from a previous node. This sig-
nificantly speeds up the iterative process since it starts close to the
optimal solution.

X = [x1 x2 x3 x4 x5]

root node, unconstrained

k′ ≤ n = 5

X = [0 x2 x3 x4 x5]

X = [0 0 x3 x4 x5]

X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k′ ≤ 2 = k → stop

X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k′ ≤ 3

X = [x1 0 x3 x4 x5] ... k′ ≤ 4

Fig. 1. Ex. of the arborescent search tree, for n = 5 and k = 2.

Branch. The root of the tree represents the unconstrained prob-
lem. No component of x is constrained to zero, that is, K =
{1, 2, . . . , n}. At this root node, the support of x is required to
have cardinality at most k′ = n (unconstrained). From this root
we generate one child node for each component of x, where the
respective component is not in the support (and thus constrained to
zero). The cardinality of the support of x in these children nodes is
therefore at most k′ = n − 1. The tree is constructed recursively,
by constraining one additional component to be equal to zero per
node. When the tree has reached the depth were the cardinality of

1arborescent Realizes a Branch-and-bound Optimization to Require
Explicit Sparsity Constraints to be Enforced in NNLS Tasks.

the support set is k′ = k, the desired sparsity is obtained and the
leaf nodes at this depth represent feasible solutions to (2).

As described above, several nodes of the arborescent tree
would correspond to the same over-support K. For example, in Fig-
ure 1 there would be a redundant node {0, 0, x3, x4, x5} as the child
of both {0, x2, x3, x4, x5} and {x1, 0, x3, x4, x5}. To avoid this re-
dundant computations, we first order the nodes in the root node in
order of increasing magnitude of the entries of the unconstrained so-
lution. Let x∗ be the optimal solution of (1), we reorder the entries
of x∗ so that the x∗1 ≤ x∗2 ≤ · · · ≤ x∗n. With this information, we
can deduce if the node has already been explored.
Bound. As an additional entry of x is constrained to be zero for
each child node, the error of a given node will always be greater
than or equal to the error of its parent, by construction. As soon as
we reached a leaf of the tree, we obtain a feasible solution whose er-
ror is therefore an upper bound for (2). Hence if a given node has an
error greater than this upper bound, all the children of this node will
also have a higher error, and it can be safely pruned. A key element
of a branch-and-bound algorithm is the strategy used to explore the
tree. A relevant exploration can quickly lead to a good admissible so-
lution, and thus to a bound allowing the pruning of large parts of the
search space. As described above, in arborescent, the solution
x∗ to the unconstrained problem is computed in the root node and
the components of x∗ are sorted in ascending order. Thereafter, the
exploration is done depth-first, and “left-first”. Among all children
of a node, the node furthest left is explored first, that is, the compo-
nents that are closest to zero in the unconstrained solution are con-
strained first. This is based on the hypothesis that if a component is
close to zero in the solution of the unconstrained problem, it is more
likely to be zero in the optimal solution of the constrained problem.
We have observed empirically that this approach outperforms more
complex strategies, including greedy node selection (that is, select-
ing the node with the lowest error).
Pseudocode. arborescent is detailed in Algorithm 1. The set P
is the pool of nodes. On line 5, it is initialized with the root node,
that has a full support (no component is constrained). On line 6, a
node is selected in P , following the strategy described above, and
removed from P on line 8. On line 9, the NNLS subproblem defined
by A and b limited to the corresponding over-support K is solved
using the initialization x. If the error is larger that the current lowest
error, no child node can be optimal, and the node is pruned (line 11).
Otherwise, the exploration continues. If the desired sparsity level
k is not reached, a new node is generated for every component of
the over-support (lines 14 and 15). If the value of k is reached, the
error of the current node is compared to the lowest error found so far
(line 17), and if it is lower, it replaces it (line 18).
Computational complexity. In the worst case, arborescent has
to build and explore the whole tree, that is, to solve a number of
NNLS subproblems equal to

∑r
l=k

(
r
l

)
. In the best case, all nodes

except the leftmost ones are pruned, so the number of NNLS sub-
problems to solve is

∑r
l=k l. In practice, the number or nodes ex-

plored is far from the worst case; see section 4.2.

4. EXPERIMENTS

The code of arborescent, along with test scripts, is provided on
gitlab.com/nnadisic/sparse-nmf. All experiments were
performed on a personal computer with an i5 processor, with a clock
frequency of 2.30GHz. arborescent is implemented in C++ with
a MEX interface, and its competitors are implemented in Matlab. All
algorithms are monothreaded.

Algorithm 1: arborescent
Input: A ∈ Rm×n

+ , b ∈ Rm
+ , k ∈ {1, 2, . . . , n}

Output: xbest = arg min
x≥0
||Ax− b||22 s.t. ||x||0 ≤ k

1 Init x0 ← NNLS(A, b)
2 Sort the elements in x0 in increasing order
3 Init K0 ← {1, ..., n}
4 Init best error ← +∞
5 Init P ← {(K0, x0)}
6 while P 6= ∅ do
7 (K, xparent) = P .select()
8 P ← P \ {(K, xparent)}
9 (error, x)← NNLS(A(:,K), b, xparent(K))

10 if error > best error then
11 prune (do nothing)
12 else
13 if size(K) > k then
14 foreach i ∈ K do
15 P ← P ∪ {(K \ {i}, x) }
16 else
17 if error < best error then
18 best error ← error
19 xbest ← x

20 return xbest

4.1. Comparison on Synthetic Datasets

We compare arborescent to four algorithms:
• A `1-penalized coordinate descent, implemented by modifying the
Matlab code from [21]. This method uses a dynamic tuning of the
regularization parameter λ to reach the desired sparsity. After a first
run, the support of the solution is restricted to the k highest values,
and a NNLS solver is run only for the values within the support so
that the solution is guaranteed to be k-sparse while the bias of the `1
approximation is removed. We refer to this method as L1-CD.
• The interior-point method SDPT3 (version 4.0) [22, 23] with CVX
as a modeling system [24, 25] that solves the `1-penalized problem.
The regularization parameter λ is chosen as the final value of λ ob-
tained by the previous method presented above, and the same post-
processing is used. We refer to this method as CVX.
•Nonnegative OMP (NNOMP) and Nonnegative OLS (NNOLS) [15]
for which the Matlab codes are provided by the authors.

Synthetic test cases are built by generating a random matrix
A ∈ Rm×n

+ and a random k-sparse vector xtrue ∈ Rn
+, comput-

ing b = Axtrue, and trying to find again xtrue with A, b and k as
parameters of the sparse NNLS algorithm. We consider four cases:
well-conditionedA and noiseless b, well-conditionedA and noisy b,
ill-conditioned A and noiseless b, ill-conditioned A and noisy b. For
well-conditioned A, each entry of A is generated using the uniform
distribution in [0,1] (rand(m,n) in Matlab). For ill-conditionedA,
we proceed in the same way, then compute the SVD ofA = UΣV T ,
replace Σ by values between 10−6 and 1 equally spaced in a logscale
(logspace(-6,0,n) in Matlab), and finally take A = UΣV T .
For b, we also use the uniform distribution in [0,1]. For the noise e
added to b, we generate a vector where each entry is generated using
the normal distribution of mean 0 and variance 1 (randn(m,1) in
Matlab), then rescale e← 0.05 e

||e||2
||b||2 so that ||e||2 = 0.05||b||2

(the noise level is 5%). We generate such data sets for three values

of m: 1000, 100, and 20, with fixed n = 20 and k = 10, for a total
of 12 test settings. For each setting, 100 data sets are randomly gen-
erated, and processed by the 5 algorithms. For each algorithm, we
measure the relative error ||Ax−b||2

||b||2
averaged over these 100 runs, as

well as the average computational time, and the number of successes
(meaning the number of times the support of xtrue is recovered).

Tables 1 to 3 present the results of the experiments. As ex-
pected, arborescent always has an error of zero for noiseless
data as it solves the problem exactly. This is particularly interesting
when A is ill-conditioned, because then the competitors generally
fail to identify the support. For noisy data, it always outperforms
the competitors in terms of error, and of number of successes. It
has a large majority of successes in all but the most difficult cases,
when m = 20 and b is noisy. However, the superior performance of
arborescent comes at the cost of an increase in running time.

4.2. Scalability of arborescent

To test the scalability of our solution, we run it with the same data
model as in Section 4.1, in the well-conditioned and noiseless case,
with the following parameters: m = 1000, n = {10, 12, ..., 60} and
k = n

2
. Again 100 datasets are generated for each pair {n, k}, and

processed by arborescent. The results are presented in table 4.
We see that, despite the exponentially increasing size of the combi-
natorial problem (in the worst case scenario, arborescent would
have to explore

∑n
l=k

(
n
l

)
nodes; note that

(
60
30

)
> 1017), most of the

search space is pruned, and only a few nodes are explored. The run-
ning times does not increase exponentially, allowing the use of our
solution in medium-scale problems. Note the computational time is
not always monotonic as n increases (for example, n = 52). The
reason is that the NNLS is sometimes significantly more difficult to
solve (hence more nodes need to be explored) which increases the
computational time. This happens very rarely.

4.3. Application on a Hyperspectral Image

In this section, arborescent is used to identify the materials
present in the pixels of a hyperspectral image. The input data is
the well-known Cuprite image [26]. It features 250× 191 = 47750
pixels in m = 188 denoised spectral bands. We refer to this 188 ×
47750 matrix as M . For the dictionary D, we use the output of the
successive projection algorithm algorithm [27] that selects a subset
of the columns of M . The number of materials is n = 12, so D
is a 188 × 12 matrix, and we want to find a 12 × 47750 matrix,
V , representing the abundances of materials in each pixel such that
M ≈ DV . Every column of this matrix represents a pixel, and an
independent NNLS subproblem: V is computed by solving 47750
NNLS problems. As an additional constraint, we require the solution
to be column-wise k-sparse with k = 5. We solve the problem first
with a NNLS algorithm with no sparsity constraints (we refer to it as
NNLS), then with arborescent and with L1-CD, using the same
post-processing and settings as section 4.1. For each algorithm we
report the running time, the relative reconstruction error ||M−DV ||F

||M||F
,

and the average column-wise sparsity. Table 5 shows the results
of the three considered algorithms. Although NNLS naturally pro-
duces a relatively sparse solution, it is higher than the sparsity target.
L1-CD, on the contrary, produces a solution sparser than required
(showing the difficulty to tune the parameter), at the cost of a high
error (from 1.74% for NNLS to 4.21% for L1-CD). arborescent
produces a solution with the required sparsity, and at the same time
a low error, very close to the NNLS one (1.78%). Figure 2 shows the
resulting material abundances for arborescent.

Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b
Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ.

L1-CD 0 6.83 100 5.01 3.13 97 3.50 8.61 16 6.28 4.12 9
CVX 0 796.90 100 4.96 634.62 100 0.08 609.45 96 4.98 571.72 98
NNOMP 0 5.60 100 4.96 3.73 100 2.79 4.14 3 5.83 3.63 3
NNOLS 0 4.67 100 4.96 3.36 100 1.95 4.21 23 5.50 3.13 22
arbo. 0 43.09 100 4.96 1369.30 100 0 29.80 100 4.96 1223.20 100

Table 1. Results for m = 1000. Relative error is in percent. Time is in milliseconds. Succ. is the number of successes, that is, the number of
times the algorithm recovered the support of xtrue.

Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b
Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ.

L1-CD 0.27 1.93 93 4.97 2.48 84 3.65 2.22 11 6.02 1.97 7
CVX 0 536.95 100 4.73 502.00 100 0.02 508.60 98 4.84 489.68 58
NNOMP 0.48 2.83 89 4.98 2.79 83 3.09 2.83 3 5.50 2.80 2
NNOLS 0.20 2.52 95 4.88 2.62 91 2.15 2.55 14 5.11 2.55 18
arbo. 0 46.32 100 4.73 1145.10 100 0 29.39 100 4.71 1304.40 63

Table 2. Results for m = 100. Measures are defined as in table 1.

Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b
Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ. Rel. Err. Time Succ.

L1-CD 2.88 1.39 23 4.29 1.31 15 3.41 1.44 5 4.66 1.53 1
CVX 0.00 532.23 100 3.26 495.62 23 0.95 548.41 39 3.07 509.10 7
NNOMP 3.02 2.85 12 3.85 2.74 6 2.07 2.96 2 3.57 2.88 0
NNOLS 2.57 2.59 18 3.73 2.54 10 1.48 3.02 12 3.26 3.08 1
arbo. 0 46.84 100 3.09 1472.20 30 0 34.20 100 2.83 1283.70 11

Table 3. Results for m = 20. Measures are defined as in table 1.

n Time (ms.) NNE
10 3.6504 9.24
12 6.3706 11.02
14 9.3337 15.41
16 16.386 18.16
18 24.837 23.15
20 42.344 29.37
22 83.267 41.06
24 97.774 35.82
26 137.17 38.1
28 277.33 59.06
30 268.09 48.33
32 392.77 54.57
34 601.7 67.74

n Time (ms.) NNE
36 678.09 60.62
38 667.68 48.9
40 1034.3 63.56
42 3134.9 166.41
44 2070.5 97.17
46 2610.7 97.94
48 8236.9 249.19
50 1936.8 52.14
52 39119 900.74
54 6209.8 132.3
56 9173.5 161.73
58 8752.4 146.14
60 14149 182.91

Table 4. Results of the scalability test of arborescent. Time is
the average over 100 instances (for k = n/2, m = 1000). NNE is
the average number of nodes explored in the tree.

NNLS L1-CD arbo
Time (s.) 15.81 22.35 1053
Rel. Error (%) 1.74 4.21 1.78
Sparsity 6.61 4.34 4.77

Table 5. Results of the regression on Cuprite image.

5. CONCLUSION

We proposed arborescent, a dedicated branch-and-bound algo-
rithm to tackle the k-sparse nonnegative least squares problem ex-
actly. It works in very general settings, where existing approaches
such as LASSO or greedy algorithms fail to identify the support of
the optimal solution. The branch-and-bound technique allows for

substantial pruning of the search space, so this combinatorial prob-
lem can be solved exactly with a drastic reduction of computation
time over brute-force methods. The combination of relative speed,
scalability, and an exact solution provide a broadly applicable tech-
nique for medium-scale sparse nonnegative least squares problems.

Fig. 2. Material abundances in the Cuprite image. These correspond
to true materials; for example the first row corresponds to Muscovite,
Dumortierite, Alunite and Montmorillonite; see [28]. (Note that spa-
tial coherence is strong while this is not explicitly enforced as the
sparse NNLS are solved independently for each pixel. This indicates
that the solution is meaningful.)

6. REFERENCES

[1] Daniel D. Lee and H. Sebastian Seung, “Unsupervised learning
by convex and conic coding,” in Advances in neural informa-
tion processing systems, 1997, pp. 515–521.

[2] José M. Bioucas-Dias, Antonio Plaza, Nicolas Dobigeon,
Mario Parente, Qian Du, Paul Gader, and Jocelyn Chanus-
sot, “Hyperspectral unmixing overview: Geometrical, statis-
tical, and sparse regression-based approaches,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 5, no. 2, pp. 354–379, 2012.

[3] Nicolas Gillis, “The why and how of nonnegative matrix fac-
torization,” Regularization, Optimization, Kernels, and Sup-
port Vector Machines, vol. 12, no. 257, pp. 257–291, 2014.

[4] Simon Foucart and David Koslicki, “Sparse recovery by means
of nonnegative least squares,” IEEE Signal Processing Letters,
vol. 21, no. 4, pp. 498–502, 2014.

[5] Wing-Kin Ma, José M. Bioucas-Dias, Tsung-Han Chan, Nico-
las Gillis, Paul Gader, Antonio J. Plaza, ArulMurugan Am-
bikapathi, and Chong-Yung Chi, “A signal processing perspec-
tive on hyperspectral unmixing: Insights from remote sensing,”
IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 67–81,
2013.

[6] Patrik O. Hoyer, “Non-negative matrix factorization with
sparseness constraints,” Journal of Machine Learning Re-
search, vol. 5, no. Nov, pp. 1457–1469, 2004.

[7] Robert Tibshirani, “Regression shrinkage and selection via
the lasso,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[8] Patrik O. Hoyer, “Non-negative sparse coding,” in Proceedings
of the 12th IEEE Workshop On Neural Networks for Signal
Processing., 2002, pp. 557–565.

[9] Jeremy E. Cohen and Nicolas Gillis, “Nonnegative Low-
rank Sparse Component Analysis,” in 2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 8226–8230.

[10] Simon Foucart and Holger Rauhut, A Mathematical Introduc-
tion to Compressive Sensing, Applied and Numerical Har-
monic Analysis. Springer New York, 2013.

[11] Rmi Gribonval and Morten Nielsen, “Sparse representations
in unions of bases,” IEEE transactions on Information theory,
vol. 49, no. 12, pp. 3320–3325, 2003.

[12] Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani, “Safe
feature elimination in sparse supervised learning,” CoRR, vol.
abs/1009.4219, 2010.

[13] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinku-
lam Sambamurthy Krishnaprasad, “Orthogonal matching pur-
suit: Recursive function approximation with applications to
wavelet decomposition,” in Proceedings of 27th Asilomar Con-
ference on Signals, Systems and Computers. IEEE, 1993, pp.
40–44.

[14] Sheng Chen, Stephen A. Billings, and Wan Luo, “Orthogonal
least squares methods and their application to non-linear sys-
tem identification,” International Journal of control, vol. 50,
no. 5, pp. 1873–1896, 1989.

[15] Thanh T. Nguyen, Jerome Idier, Charles Soussen, and El-Hadi
Djermoune, “Non-Negative Orthogonal Greedy Algorithms,”
IEEE Transactions on Signal Processing, 2019.

[16] Daniel Bienstock, “Computational study of a family of mixed-
integer quadratic programming problems,” Mathematical pro-
gramming, vol. 74, no. 2, pp. 121–140, 1996.

[17] Dimitris Bertsimas and Romy Shioda, “Algorithm for
cardinality-constrained quadratic optimization,” Computa-
tional Optimization and Applications, vol. 43, no. 1, pp. 1–22,
2009.

[18] Sébastien Bourguignon, Jordan Ninin, Hervé Carfantan, and
Marcel Mongeau, “Exact sparse approximation problems via
mixed-integer programming: Formulations and computational
performance,” IEEE Transactions on Signal Processing, vol.
64, no. 6, pp. 1405–1419, 2015.

[19] Ramzi Mhenni, Sébastien Bourguignon, and Jordan Ninin,
“Global optimization for sparse solution of least squares prob-
lems,” 2019, https://hal.archives-ouvertes.
fr/hal-02066368/.

[20] Luı́s F. Portugal, Joaquim J. Judice, and Luı́s N. Vicente,
“A comparison of block pivoting and interior-point algorithms
for linear least squares problems with nonnegative variables,”
Mathematics of Computation, vol. 63, no. 208, pp. 625–643,
1994.

[21] Nicolas Gillis, “Sparse and unique nonnegative matrix fac-
torization through data preprocessing,” Journal of Machine
Learning Research, vol. 13, no. Nov, pp. 3349–3386, 2012.

[22] Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü,
“Sdpt3a matlab software package for semidefinite program-
ming, version 1.3,” Optimization methods and software, vol.
11, no. 1-4, pp. 545–581, 1999.

[23] Reha H. Tütüncü, Kim-Chuan Toh, and Michael J.
Todd, “Solving semidefinite-quadratic-linear programs using
SDPT3,” Mathematical programming, vol. 95, no. 2, pp. 189–
217, 2003.

[24] Inc. CVX Research, “CVX: Matlab software for disciplined
convex programming, version 2.0,” http://cvxr.com/
cvx, 2012.

[25] Michael C. Grant and Stephen P. Boyd, “Graph implementa-
tions for nonsmooth convex programs,” in Recent advances in
learning and control, pp. 95–110. Springer, 2008.

[26] “USGS spectroscopy lab,” https://www.usgs.gov/
labs/spec-lab, Accessed: 2019-10-21.

[27] Nicolas Gillis and Stephen A. Vavasis, “Fast and robust re-
cursive algorithms for separable nonnegative matrix factoriza-
tion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 36, no. 4, pp. 698–714, 2014.

[28] ArulMurugan Ambikapathi, Tsung-Han Chan, Wing-Kin Ma,
and Chong-Yung Chi, “Chance-constrained robust minimum-
volume enclosing simplex algorithm for hyperspectral unmix-
ing,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 49, no. 11, pp. 4194–4209, 2011.

