Nicolas Nadisic

Arnaud Vandaele

Nicolas Gillis

Jeremy E Cohen

EXACT SPARSE NONNEGATIVE LEAST SQUARES

Keywords: nonnegative least squares, sparse coding, branch-and-bound

We propose a novel approach to solve exactly the sparse nonnegative least squares problem, under hard 0 sparsity constraints. This approach is based on a dedicated branch-and-bound algorithm. This simple strategy is able to compute the optimal solution even in complicated cases such as noisy or ill-conditioned data, where traditional approaches fail. We also show that our algorithm scales well, despite the combinatorial nature of the problem. We illustrate the advantages of the proposed technique on synthetic data sets, as well as a real-world hyperspectral image.

INTRODUCTION

Nonnegative least squares (NNLS) problems of the form min ||Ax -b|| 2 2 such that x ≥ 0,

where x ∈ R n , A ∈ R m×n , and b ∈ R m , are a variant of least squares (LS) problems where the solution is required to be entrywise nonnegative. Nonnegativity is useful for models where data are additive combinations of meaningful components [START_REF] Lee | Unsupervised learning by convex and conic coding[END_REF]. For example, in hyperspectral images, the spectra of pixels are nonnegative linear combinations of the pure components they contain [START_REF] José | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. NNLS is also one of the principal tools used in the so-called "alternating approaches" to solve nonnegative matrix factorization [START_REF] Gillis | The why and how of nonnegative matrix factorization[END_REF]. As a constraint, nonnegativity is known to naturally induce sparsity, that is, produce solutions with few non-zero components; see for example [START_REF] Foucart | Sparse recovery by means of nonnegative least squares[END_REF] and the references therein. Sparse solutions express data points as combinations of only a few atoms, thus improving the interpretability of the decomposition. For instance, in the task of identifying the materials present in the pixels of a hyperspectral image, sparsity means a pixel will be composed of only a few materials. However, there is no guarantee on the sparsity of the solution to a general NNLS problem, while controlling the sparsity level of solutions is important in many applications, such as hyperspectral imaging [START_REF] Wing-Kin | A signal processing perspective on hyperspectral unmixing: Insights from remote sensing[END_REF] and sparse NMF [START_REF] Hoyer | Non-negative matrix factorization with sparseness constraints[END_REF]. Hence comes the need to design sparsity-enhancing techniques. The sparsity of a vector x is typically measured by its 0-"norm", x 0 = |{i : xi = 0}|. It is equal to the number of nonzero components in x. However, as this "norm" is non-convex and non-smooth, it is hard to enforce 0 constraints. One way to overcome this issue is to use the 1-norm as a convex surrogate, via the well-known NN and NG acknowledge the support by the European Research Council (ERC starting grant No 679515), and by the Fonds de la Recherche Scientifique -FNRS and the Fonds Wetenschappelijk Onderzoek -Vlanderen (FWO) under EOS project O005318F-RG47.

LASSO approach [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. This approach implies a regularization parameter (usually denoted λ) that can be hard to tune, especially if one requires a specific level of sparsity. This regularization also introduces a bias: the optimized problem is different, therefore the solution and its support may change. Thus, in some cases, it is preferable to directly solve an optimization problem with 0 constraints, without the use of a convex surrogate. In this setting, we propose a technique for solving the sparse NNLS problem with an explicit level of sparsity via a hard constraint on the 0-"norm" of the solution.

Problem: Given A ∈ R m×n , b ∈ R m and k ∈ N, we wish to solve exactly the following sparse NNLS problem

x * = argmin Ax -b 2 2 such that x 0 ≤ k and x ≥ 0. (2)
This problem is also referred to as nonnegative sparse coding [START_REF] Hoyer | Non-negative sparse coding[END_REF].

Because of the discrete nature of the 0-"norm", Problem (2) is combinatorial, with n k possible supports for x. A brute-force algorithm would solve a NNLS subproblem for each possible support and select the solution with minimal error. This is the approach used by [START_REF] Cohen | Nonnegative Lowrank Sparse Component Analysis[END_REF] in the context of sparse NMF. However, the number of possible supports grows exponentially with n and k. To avoid computing all of them, the solution we propose can prune the search space using a branch-and-bound strategy. With this technique, the problem is still solved exactly, but far fewer NNLS subproblems are solved, leading to reasonable computing times even for large n and k.

In Section 2, we discuss competing algorithmic approaches to the nonnegative sparse coding problem. In Section 3, we present a novel branch-and-bound algorithm. Finally, in Section 4, we illustrate the effectiveness of the approach on synthetic data sets and on a practical application of hyperspectral unmixing.

RELATED WORK

Sparse coding is a well-studied problem, with many heuristic approaches available for solving large-scale problems [START_REF] Foucart | A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis[END_REF]. One of the most popular, the 1-regularized LASSO, solves the problem min x≥0 ||Ax -b|| 2 2 + λ||x||1 for some λ > 0. In this method, sparsity is encouraged through the regularization parameter λ. Selecting a value for this parameter that achieves a given level of sparsity is not straightforward. Moreover, existing theoretical guarantees for support recovery such as the Exact Recovery Condition [START_REF] Gribonval | Sparse representations in unions of bases[END_REF] are quite restrictive for some uses of sparse NNLS, in particular when used as a routine for solving sparse NMF [START_REF] Cohen | Nonnegative Lowrank Sparse Component Analysis[END_REF]. However, it benefits from the powerful properties of convex optimization, and efficient convex optimization algorithms exist that make use of optimality conditions to perform screening or design a stopping criterion [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF].

Greedy algorithms are another popular approach. Techniques of this type start with an empty support, and then select the atoms one by one to enrich the support, until the desired sparsity, k, is reached. The atom selection is done in a greedy way, selecting at each iteration the atom that maximizes the decrease of the residual error.

Orthogonal variants of these algorithms ensure an atom will not be selected more than once. Popular examples are orthogonal matching pursuit (OMP) [START_REF] Chandra Pati | Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[END_REF] and orthogonal least squares (OLS) [START_REF] Chen | Orthogonal least squares methods and their application to non-linear system identification[END_REF]. Nonnegative variants of these algorithms have been proposed; see [START_REF] Nguyen | Non-Negative Orthogonal Greedy Algorithms[END_REF] and the references therein. They aim to solve (2) heuristically, but theoretical recovery guarantees are similarly limited.

Bienstock proposed a branch-and-cut algorithm to solve a cardinality-constrained quadratic program (CCQP), a problem similar to (2) with different constraints, using continuous relaxation at every iteration [START_REF] Bienstock | Computational study of a family of mixedinteger quadratic programming problems[END_REF]. Bertsimas and Shioda extended it by proposing a new way to solve the continuous relaxation problems [START_REF] Bertsimas | Algorithm for cardinality-constrained quadratic optimization[END_REF]. Mhenni et. al generalized this CCQP and proposed a novel branch-and-bound algorithm to solve exactly the continuous relaxation problems using dedicated optimization methods [START_REF] Bourguignon | Exact sparse approximation problems via mixed-integer programming: Formulations and computational performance[END_REF][START_REF] Mhenni | Global optimization for sparse solution of least squares problems[END_REF].

THE ARBORESCENT ALGORITHM

We propose a novel technique to solve the sparse NNLS problem exactly via a branch-and-bound algorithm called arborescent1 . In this algorithm, the possible patterns of zeros (that is, the possible supports) in the solution vector are enumerated on a tree, as shown in Figure 1. Each node represents an over-support K of x. The entries of x indexed by K are those that are not constrained to be 0. The cardinality of K is equal to the current tree depth. Exploring a node means solving the following NNLS subproblem

f * (K) = min ||A(:, K)x(K) -b|| 2 2 such that x(K) ≥ 0, (3)
where x(K) is the subvector of x whose entries are specified by the subset K ⊆ {1, 2, . . . , n}. The value f * (K) is the error associated with the node corresponding to K. In arborescent, an activeset algorithm [START_REF] Luís | A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables[END_REF] is used as the NNLS solver. The key property of active-set methods is that they solve the NNLS problem exactly, without a need for parameter tuning. Note that active-set methods allow for a warm start, that is, the algorithm can be initialized at the current node with the solution from a previous node. This significantly speeds up the iterative process since it starts close to the optimal solution. Branch. The root of the tree represents the unconstrained problem. No component of x is constrained to zero, that is, K = {1, 2, . . . , n}. At this root node, the support of x is required to have cardinality at most k = n (unconstrained). From this root we generate one child node for each component of x, where the respective component is not in the support (and thus constrained to zero). The cardinality of the support of x in these children nodes is therefore at most k = n -1. The tree is constructed recursively, by constraining one additional component to be equal to zero per node. When the tree has reached the depth were the cardinality of the support set is k = k, the desired sparsity is obtained and the leaf nodes at this depth represent feasible solutions to (2). As described above, several nodes of the arborescent tree would correspond to the same over-support K. For example, in Figure 1 there would be a redundant node {0, 0, x3, x4, x5} as the child of both {0, x2, x3, x4, x5} and {x1, 0, x3, x4, x5}. To avoid this redundant computations, we first order the nodes in the root node in order of increasing magnitude of the entries of the unconstrained solution. Let x * be the optimal solution of (1), we reorder the entries of x * so that the

X = [x1 x2 x3 x4 x5] root node, unconstrained k ≤ n = 5 X = [0 x2 x3 x4 x5] X = [0 0 x3 x4 x5] X = [0 0 0 x4 x5] X = [0 0 x3 0 x5] X = [0 0 x3 x4 0] k ≤ 2 = k → stop X = [0 x2 0 x4 x5] X = [0 x2 x3 0 x5] ... k ≤ 3 X = [x1 0 x3 x4 x5] ... k ≤ 4
x * 1 ≤ x * 2 ≤ • • • ≤ x * n .
With this information, we can deduce if the node has already been explored. Bound. As an additional entry of x is constrained to be zero for each child node, the error of a given node will always be greater than or equal to the error of its parent, by construction. As soon as we reached a leaf of the tree, we obtain a feasible solution whose error is therefore an upper bound for [START_REF] José | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. Hence if a given node has an error greater than this upper bound, all the children of this node will also have a higher error, and it can be safely pruned. A key element of a branch-and-bound algorithm is the strategy used to explore the tree. A relevant exploration can quickly lead to a good admissible solution, and thus to a bound allowing the pruning of large parts of the search space. As described above, in arborescent, the solution x * to the unconstrained problem is computed in the root node and the components of x * are sorted in ascending order. Thereafter, the exploration is done depth-first, and "left-first". Among all children of a node, the node furthest left is explored first, that is, the components that are closest to zero in the unconstrained solution are constrained first. This is based on the hypothesis that if a component is close to zero in the solution of the unconstrained problem, it is more likely to be zero in the optimal solution of the constrained problem. We have observed empirically that this approach outperforms more complex strategies, including greedy node selection (that is, selecting the node with the lowest error). Pseudocode. arborescent is detailed in Algorithm 1. The set P is the pool of nodes. On line 5, it is initialized with the root node, that has a full support (no component is constrained). On line 6, a node is selected in P , following the strategy described above, and removed from P on line 8. On line 9, the NNLS subproblem defined by A and b limited to the corresponding over-support K is solved using the initialization x. If the error is larger that the current lowest error, no child node can be optimal, and the node is pruned (line 11). Otherwise, the exploration continues. If the desired sparsity level k is not reached, a new node is generated for every component of the over-support (lines 14 and 15). If the value of k is reached, the error of the current node is compared to the lowest error found so far (line 17), and if it is lower, it replaces it (line 18). Computational complexity. In the worst case, arborescent has to build and explore the whole tree, that is, to solve a number of NNLS subproblems equal to r l=k r l . In the best case, all nodes except the leftmost ones are pruned, so the number of NNLS subproblems to solve is r l=k l. In practice, the number or nodes explored is far from the worst case; see section 4.2.

EXPERIMENTS

The code of arborescent, along with test scripts, is provided on gitlab.com/nnadisic/sparse-nmf. All experiments were performed on a personal computer with an i5 processor, with a clock frequency of 2.30GHz. arborescent is implemented in C++ with a MEX interface, and its competitors are implemented in Matlab. All algorithms are monothreaded.

Algorithm 1: arborescent

Input: A ∈ R m×n + , b ∈ R m + , k ∈ {1,

Comparison on Synthetic Datasets

We compare arborescent to four algorithms:

• A 1-penalized coordinate descent, implemented by modifying the Matlab code from [START_REF] Gillis | Sparse and unique nonnegative matrix factorization through data preprocessing[END_REF]. This method uses a dynamic tuning of the regularization parameter λ to reach the desired sparsity. After a first run, the support of the solution is restricted to the k highest values, and a NNLS solver is run only for the values within the support so that the solution is guaranteed to be k-sparse while the bias of the 1 approximation is removed. We refer to this method as L1-CD.

• The interior-point method SDPT3 (version 4.0) [START_REF] Toh | Sdpt3a matlab software package for semidefinite programming, version 1.3[END_REF][START_REF] Reha | Solving semidefinite-quadratic-linear programs using SDPT3[END_REF] with CVX as a modeling system [START_REF] Inc | CVX: Matlab software for disciplined convex programming, version 2.0[END_REF][START_REF] Michael | Graph implementations for nonsmooth convex programs[END_REF] that solves the 1-penalized problem.

The regularization parameter λ is chosen as the final value of λ obtained by the previous method presented above, and the same postprocessing is used. We refer to this method as CVX.

• Nonnegative OMP (NNOMP) and Nonnegative OLS (NNOLS) [START_REF] Nguyen | Non-Negative Orthogonal Greedy Algorithms[END_REF] for which the Matlab codes are provided by the authors. Synthetic test cases are built by generating a random matrix A ∈ R m×n + and a random k-sparse vector xtrue ∈ R n + , computing b = Axtrue, and trying to find again xtrue with A, b and k as parameters of the sparse NNLS algorithm. We consider four cases: well-conditioned A and noiseless b, well-conditioned A and noisy b, ill-conditioned A and noiseless b, ill-conditioned A and noisy b. For well-conditioned A, each entry of A is generated using the uniform distribution in [0,1] (rand(m,n) in Matlab). For ill-conditioned A, we proceed in the same way, then compute the SVD of A = U ΣV T , replace Σ by values between 10 -6 and 1 equally spaced in a logscale (logspace(-6,0,n) in Matlab), and finally take A = U ΣV T . For b, we also use the uniform distribution in [0,1]. For the noise e added to b, we generate a vector where each entry is generated using the normal distribution of mean 0 and variance 1 (randn(m,1) in Matlab), then rescale e ← 0.05 e ||e|| 2 ||b||2 so that ||e||2 = 0.05||b||2 (the noise level is 5%). We generate such data sets for three values of m: 1000, 100, and 20, with fixed n = 20 and k = 10, for a total of 12 test settings. For each setting, 100 data sets are randomly generated, and processed by the 5 algorithms. For each algorithm, we measure the relative error ||Ax-b|| 2 ||b|| 2 averaged over these 100 runs, as well as the average computational time, and the number of successes (meaning the number of times the support of xtrue is recovered).

Tables 1 to 3 present the results of the experiments. As expected, arborescent always has an error of zero for noiseless data as it solves the problem exactly. This is particularly interesting when A is ill-conditioned, because then the competitors generally fail to identify the support. For noisy data, it always outperforms the competitors in terms of error, and of number of successes. It has a large majority of successes in all but the most difficult cases, when m = 20 and b is noisy. However, the superior performance of arborescent comes at the cost of an increase in running time.

Scalability of arborescent

To test the scalability of our solution, we run it with the same data model as in Section 4.1, in the well-conditioned and noiseless case, with the following parameters: m = 1000, n = {10, 12, ..., 60} and k = n 2 . Again 100 datasets are generated for each pair {n, k}, and processed by arborescent. The results are presented in table 4. We see that, despite the exponentially increasing size of the combinatorial problem (in the worst case scenario, arborescent would have to explore n l=k n l nodes; note that 60 30 > 10 17), most of the search space is pruned, and only a few nodes are explored. The running times does not increase exponentially, allowing the use of our solution in medium-scale problems. Note the computational time is not always monotonic as n increases (for example, n = 52). The reason is that the NNLS is sometimes significantly more difficult to solve (hence more nodes need to be explored) which increases the computational time. This happens very rarely.

Application on a Hyperspectral Image

In this section, arborescent is used to identify the materials present in the pixels of a hyperspectral image. The input data is the well-known Cuprite image [START_REF]USGS spectroscopy lab[END_REF]. It features 250 × 191 = 47750 pixels in m = 188 denoised spectral bands. We refer to this 188 × 47750 matrix as M . For the dictionary D, we use the output of the successive projection algorithm algorithm [START_REF] Gillis | Fast and robust recursive algorithms for separable nonnegative matrix factorization[END_REF] that selects a subset of the columns of M . The number of materials is n = 12, so D is a 188 × 12 matrix, and we want to find a 12 × 47750 matrix, V , representing the abundances of materials in each pixel such that M ≈ DV . Every column of this matrix represents a pixel, and an independent NNLS subproblem: V is computed by solving 47750 NNLS problems. As an additional constraint, we require the solution to be column-wise k-sparse with k = 5. We solve the problem first with a NNLS algorithm with no sparsity constraints (we refer to it as NNLS), then with arborescent and with L1-CD, using the same post-processing and settings as section 4.1. For each algorithm we report the running time, the relative reconstruction error ||M -DV || F ||M || F , and the average column-wise sparsity. Table 5 shows the results of the three considered algorithms. Although NNLS naturally produces a relatively sparse solution, it is higher than the sparsity target. L1-CD, on the contrary, produces a solution sparser than required (showing the difficulty to tune the parameter), at the cost of a high error (from 1.74% for NNLS to 4.21% for L1-CD). arborescent produces a solution with the required sparsity, and at the same time a low error, very close to the NNLS one (1.78%). Figure 2 shows the resulting material abundances for arborescent.

CONCLUSION

We proposed arborescent, a dedicated branch-and-bound algorithm to tackle the k-sparse nonnegative least squares problem exactly. It works in very general settings, where existing approaches such as LASSO or greedy algorithms fail to identify the support of the optimal solution. The branch-and-bound technique allows for substantial pruning of the search space, so this combinatorial problem can be solved exactly with a drastic reduction of computation time over brute-force methods. The combination of relative speed, scalability, and an exact solution provide a broadly applicable technique for medium-scale sparse nonnegative least squares problems.

Fig. 2. Material abundances in the Cuprite image. These correspond to true materials; for example the first row corresponds to Muscovite, Dumortierite, Alunite and Montmorillonite; see [START_REF] Ambikapathi | Chance-constrained robust minimumvolume enclosing simplex algorithm for hyperspectral unmixing[END_REF]. (Note that spatial coherence is strong while this is not explicitly enforced as the sparse NNLS are solved independently for each pixel. This indicates that the solution is meaningful.)

Fig. 1 .

 1 Fig. 1. Ex. of the arborescent search tree, for = 5 and k = 2.

 Well-cond A, Noiseless b Well-cond A, Noisy b Ill-cond A, Noiseless b Ill-cond A, Noisy b

 2, . . . , n} Output: x best = arg min

		x≥0	||Ax -b|| 2 2 s.t. ||x||0 ≤ k
	1 Init x0 ← NNLS(A, b)
	2 Sort the elements in x0 in increasing order
	3 Init K0 ← {1, ..., n}
	4 Init best error ← +∞
	5 Init P ← {(K0, x0)}
	6 while P = ∅ do
	7	(K, xparent) = P .select()
	8	P ← P \ {(K, xparent)}
	9	(error, x) ← NNLS(A(:, K), b, xparent(K))
	10	if error > best error then
	11	prune (do nothing)
	12	else
	13	if size(K) > k then
	14	foreach i ∈ K do
	16	else
	17	if error < best error then
	18	best error ← error

15

P ← P ∪ {(K \ {i}, x) } 19 x best ← x 20 return x best

Table 1 .

 1 Results for m = 1000. Relative error is in percent. Time is in milliseconds. Succ. is the number of successes, that is, the number of times the algorithm recovered the support of xtrue.

		Rel. Err. Time	Succ. Rel. Err. Time	Succ. Rel. Err. Time	Succ. Rel. Err. Time	Succ.
	L1-CD	0	6.83	100	5.01	3.13	97	3.50	8.61	16	6.28	4.12	9
	CVX	0	796.90 100	4.96	634.62	100	0.08	609.45 96	4.98	571.72	98
	NNOMP 0	5.60	100	4.96	3.73	100	2.79	4.14	3	5.83	3.63	3
	NNOLS	0	4.67	100	4.96	3.36	100	1.95	4.21	23	5.50	3.13	22
	arbo.	0	43.09	100	4.96	1369.30 100	0	29.80	100	4.96	1223.20 100
		Well-cond A, Noiseless b	Well-cond A, Noisy b		Ill-cond A, Noiseless b	Ill-cond A, Noisy b	
		Rel. Err. Time	Succ. Rel. Err. Time	Succ. Rel. Err. Time	Succ. Rel. Err. Time	Succ.
	L1-CD	0.27	1.93	93	4.97	2.48	84	3.65	2.22	11	6.02	1.97	7
	CVX	0	536.95 100	4.73	502.00	100	0.02	508.60 98	4.84	489.68	58
	NNOMP 0.48	2.83	89	4.98	2.79	83	3.09	2.83	3	5.50	2.80	2
	NNOLS	0.20	2.52	95	4.88	2.62	91	2.15	2.55	14	5.11	2.55	18
	arbo.	0	46.32	100	4.73	1145.10 100	0	29.39	100	4.71	1304.40 63

Table 2 .

 2 Results for m = 100. Measures are defined as in table1.

		Well-cond A, Noiseless b	Well-cond A, Noisy b		Ill-cond A, Noiseless b	Ill-cond A, Noisy b	
		Rel. Err. Time	Succ. Rel. Err. Time	Succ. Rel. Err. Time	Succ. Rel. Err. Time	Succ.
	L1-CD	2.88	1.39	23	4.29	1.31	15	3.41	1.44	5	4.66	1.53	1
	CVX	0.00	532.23 100	3.26	495.62	23	0.95	548.41 39	3.07	509.10	7
	NNOMP 3.02	2.85	12	3.85	2.74	6	2.07	2.96	2	3.57	2.88	0
	NNOLS	2.57	2.59	18	3.73	2.54	10	1.48	3.02	12	3.26	3.08	1
	arbo.	0	46.84	100	3.09	1472.20 30	0	34.20	100	2.83	1283.70 11

Table 3 .

 3 Results for m = 20. Measures are defined as in table1.

	n	Time (ms.) NNE	n	Time (ms.) NNE
	10 3.6504	9.24	36 678.09	60.62
	12 6.3706	11.02	38 667.68	48.9
	14 9.3337	15.41	40 1034.3	63.56
	16 16.386	18.16	42 3134.9	166.41
	18 24.837	23.15	44 2070.5	97.17
	20 42.344	29.37	46 2610.7	97.94
	22 83.267	41.06	48 8236.9	249.19
	24 97.774	35.82	50 1936.8	52.14
	26 137.17	38.1	52 39119	900.74
	28 277.33	59.06	54 6209.8	132.3
	30 268.09	48.33	56 9173.5	161.73
	32 392.77	54.57	58 8752.4	146.14
	34 601.7	67.74	60 14149	182.91

Table 4 .

 4 Results of the scalability test of arborescent. Time is the average over 100 instances (for k = n/2, m = 1000). NNE is the average number of nodes explored in the tree.

		NNLS L1-CD arbo
	Time (s.)	15.81	22.35	1053
	Rel. Error (%) 1.74	4.21	1.78
	Sparsity	6.61	4.34	4.77

Table 5 .

 5 Results of the regression on Cuprite image.

arborescent Realizes a Branch-and-bound Optimization to Require Explicit Sparsity Constraints to be Enforced in NNLS Tasks.