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ABSTRACT

Context. The data from the Euclid mission will enable the measurement of the angular positions and weak lensing shapes of over a billion galaxies,
with their photometric redshifts obtained together with ground-based observations. This large dataset, with well-controlled systematic effects, will
allow for cosmological analyses using the angular clustering of galaxies (GCph) and cosmic shear (WL). For Euclid, these two cosmological probes
will not be independent because they will probe the same volume of the Universe. The cross-correlation (XC) between these probes can tighten
constraints and is therefore important to quantify their impact for Euclid.
Aims. In this study, we therefore extend the recently published Euclid forecasts by carefully quantifying the impact of XC not only on the
final parameter constraints for different cosmological models, but also on the nuisance parameters. In particular, we aim to decipher the amount
of additional information that XC can provide for parameters encoding systematic effects, such as galaxy bias, intrinsic alignments (IAs), and
knowledge of the redshift distributions.
Methods. We follow the Fisher matrix formalism and make use of previously validated codes. We also investigate a different galaxy bias model,
which was obtained from the Flagship simulation, and additional photometric-redshift uncertainties; we also elucidate the impact of including the
XC terms on constraining these latter.
Results. Starting with a baseline model, we show that the XC terms reduce the uncertainties on galaxy bias by ∼17% and the uncertainties on IA
by a factor of about four. The XC terms also help in constraining the γ parameter for minimal modified gravity models. Concerning galaxy bias,
we observe that the role of the XC terms on the final parameter constraints is qualitatively the same irrespective of the specific galaxy-bias model
used. For IA, we show that the XC terms can help in distinguishing between different models, and that if IA terms are neglected then this can lead
to significant biases on the cosmological parameters. Finally, we show that the XC terms can lead to a better determination of the mean of the
photometric galaxy distributions.
Conclusions. We find that the XC between GCph and WL within the Euclid survey is necessary to extract the full information content from the data
in future analyses. These terms help in better constraining the cosmological model, and also lead to a better understanding of the systematic effects
that contaminate these probes. Furthermore, we find that XC significantly helps in constraining the mean of the photometric-redshift distributions,
but, at the same time, it requires more precise knowledge of this mean with respect to single probes in order not to degrade the final “figure of
merit”.

Key words. gravitational lensing: weak – large-scale structure of Universe – cosmological parameters

1. Introduction

To better understand the source of cosmic acceleration and the
physics of gravity on cosmological scales, large galaxy sur-
veys rely on two main probes: galaxy positions (including red-
shifts) and weak lensing shapes. Galaxy clustering probes the
fluctuations of the underlying dark matter density and velocity

? This paper is published on behalf of the Euclid Consortium.

fields using the angular and radial positions of galaxies. This
can be used for cosmological constraints as it encodes geomet-
ric information such as the baryon acoustic oscillations (BAOs;
Eisenstein et al. 2005; Aubourg et al. 2015), growth informa-
tion from redshift-space distortions (RSDs; Percival & White
2009), and more detailed and model-dependent cosmological
information encoded in the full shape of the power spectrum
(Sánchez et al. 2006; Reid et al. 2010). Similarly, the statistical
properties of large ensembles of galaxy shapes can be used to
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reveal the tiny signal of distortions in their images due to the
gravitational potential wells traversed by photons in their prop-
agation towards us – a weak gravitational lensing signal known
as “cosmic shear” (see e.g. Kilbinger 2015, for a recent review).
This is sensitive to the total amount of matter in the Universe and
to the amplitude of its fluctuations, as well as the physics of the
gravitational interaction.

Galaxy clustering and cosmic shear are the main probes
of the cosmological community’s scientific program for future
Stage-IV experiments (Albrecht et al. 2006). In this article we
are interested in forecasting the capability of one such future
survey: the upcoming European Space Agency (ESA) satel-
lite Euclid (Laureijs et al. 2011), whose characteristics are sum-
marised in Sect. 2. To extract the full information content from
Euclid, several systematic effects will have to be taken into
account. Some of the more important systematic effects that
may affect the cosmological analysis are: the modelling of
galaxy bias and redshift-space distortions, photometric-redshift
uncertainties and biases, and galaxy intrinsic alignments (IAs;
Joachimi et al. 2015).

Here we focus on quantifying the additional information that
can be obtained through the cross-correlation (XC) of the angu-
lar power spectra of the weak lensing cosmic shear (WL) and
galaxy clustering from the photometric sample (GCph) in Euclid.
In a previous study (Euclid Collaboration 2020a, hereafter
EC20a), it was shown that the combination of the information
from WL, GCph, and their XC can result in a significant
enhancement of the forecast figure of merit (FoM) on dark
energy. The importance of combining WL and GCph to test
cosmological models and modified gravity was also previ-
ously highlighted by several authors (e.g. Zhang et al. 2007;
Song & Percival 2009; Guzik et al. 2010; Reyes et al. 2010;
Gaztañaga et al. 2012; Eriksen & Gaztañaga 2015a,b,c, 2018;
Fonseca et al. 2015; Blake et al. 2016). Furthermore, as shown
by Camera et al. (2017) and Harrison et al. (2016), the XC terms
can greatly improve our understanding of systematic effects.

It is important to note that beyond the complementarity
between GCph and WL data, GCs measurements are particularly
useful when constraining cosmological models, as was shown in
EC20a, thanks to the added sensitivity to RSD. Moreover, adding
GCs data into the analysis can significantly improve the estima-
tion of the redshift distributions through the clustering-redshift
technique (van den Busch et al. 2020).

Other collaborations which have now released their first cos-
mological results from recent data, such as DES (Troxel et al.
2018; Abbott et al. 2018), KiDS+GAMA (Hildebrandt 2017;
Joudaki et al. 2018; van Uitert et al. 2018), and the Hyper-
Suprime-Cam (HSC; Hamana et al. 2020; Speagle et al. 2019),
also used the power of the joint analysis to improve their con-
straints. For instance, the DES Collaboration uses the auto- and
cross-correlations of two galaxy catalogues. The first catalogue
contains the positions of the lens galaxies used for galaxy–
galaxy lensing and GCph measurements, while the second cat-
alogue contains the positions and shape measurements of the
galaxies used in the WL analysis, which also serve as source
galaxies for galaxy–galaxy lensing. The DES Collaboration (see
details of the modelling in Krause et al. 2017) works with a data
vector that contains the different two-point correlation functions
in real space, which in the flat-sky approximation are spherical
Bessel integrals over the angular power spectra used in EC20a.
Since there are three two-point correlation functions (one for
GCph, one for WL, and one for galaxy–galaxy lensing), this
joint analysis is also known in the cosmological community as a
3 × 2 pt analysis. This kind of analysis can even be extended by

including information from the cosmic microwave background,
which leads to a 6×2 pt analysis (see e.g. Abbott et al. 2019). On
the other hand, the KiDS+GAMA Collaboration uses estimators
for the angular power spectra, which they claim to be cleaner
in terms of separation of scales (`-modes) than their real-space
counterparts (van Uitert et al. 2018). Also, they allow for a sepa-
ration of the lensing B-modes, which due to their vanishing prop-
erty can be used as a consistency check. These estimators contain
many terms that depend on the survey geometry and data system-
atic effects, while the angular power spectra used in this work
are simplified neglecting many of these survey-specific terms.
Apart from that, the differences from our approach lie mostly in
the treatment of galaxy bias terms and the intrinsic alignment
modelling.

Our goal in this work is to extend the analysis presented in
EC20a and assess the impact of including the XC terms when
constraining additional cosmological models, and on our under-
standing of systematic effects. In practice, we consider several
different prescriptions for the galaxy bias, photometric-redshift
uncertainties, and IAs so that we can determine whether or not
the impact of the XC terms on cosmological parameter inference
depends on the models used.

After briefly reviewing the Euclid survey in Sect. 2, we
present our two probes of choice (the WL and GCph angular
power spectra) and the approach we adopt to forecast parameter
constraints in Sect. 3. We then present the cosmological model
in Sect. 4, and systematic effects in Sect. 5. Finally, we present
our results in Sect. 6 and our conclusions in Sect. 7.

2. The Euclid survey

Euclid is an ESA M-class space mission due for launch
in 2022, whose near-infrared spectrophotometric instrument
(Costille et al. 2018) and visible imager (Cropper et al. 2018)
will carry out a spectroscopic and photometric galaxy survey
over an area Asurvey = 15 000 deg2 of the extra-galactic sky
(Laureijs et al. 2011). The main aims of Euclid are to measure
the geometry of the Universe and the growth of structures up to
redshift z ∼ 2 and beyond.

In this paper, we focus on the photometric observations
that will be used for both a weak gravitational lensing and
a galaxy clustering survey. Given the relatively large redshift
uncertainties associated with the photometric data –compared
to spectroscopy– the analysis of the aforementioned observ-
ables will be performed via a so-called tomographic approach.
This consists of binning galaxies according to their colour
(Kitching et al. 2019) or photometric redshift, which results in
tomographic bins that are treated as two-dimensional (projected)
data sets. A spherical harmonic decomposition can be per-
formed on the tomographically binned data to create angular (i.e.
spherical harmonic) power spectra. In contrast, the accuracy of
Euclid’s spectroscopy will allow us to perform galaxy cluster-
ing analyses for the spectroscopic sample in three dimensions.
It is important to mention that Euclid’s spectroscopy will target
objects at high redshift (0.9 < z < 1.8, EC20a), while photomet-
ric observations will start at much lower redshift. This motivates
the consideration of the complementary information brought by
photometric galaxy clustering. The Euclid cosmological probes
are therefore three: WL, GCph, and spectroscopic galaxy cluster-
ing (GCs).

The XC between WL and GCph is of particular interest
because they probe the same observed volume. In this work
we focus on this particular XCs, whilst a proper treatment of
the XCs between GCph and GCs and between GCs and the WL
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measurements are left for future work. The modelling of WL and
GCph and the recipe used to compute the forecasts for Euclid are
described in the following section.

3. Building forecasts for Euclid

In this work we follow for the most part the forecasting recipe
presented in great detail in EC20a. We adopt the same Fisher
matrix formalism for the computation of the forecasts, as well
as the forecasting codes validated therein. However, here we
include some important updates, which primarily concern sys-
tematic effects such as the implementation of a more realistic
galaxy bias model and the inclusion of additional uncertainties
on the mean redshift of the tomographic bins caused by potential
errors in the photometric redshift determination. These modifi-
cations are described in detail in Sects. 5.1 and 5.3 respectively.

For the redshift distribution of galaxies we use the same
setup as in EC20a. Galaxies are divided into Nz = 10 tomo-
graphic bins as a function of redshift; each bin is equi-populated
(i.e. contains the same total number of galaxies) with respect to
the true (spectroscopic) redshift:

ntrue(z) ∝
(

z
z0

)2

exp

− (
z
z0

)3/2 , (1)

where z0 = 0.9/
√

2 and the surface density of galaxies is n̄ = 30
galaxies per arcmin2. The true (spectroscopic) redshift distribu-
tion is then convolved with a sum of two Gaussian distributions
(see Eq. (115) in EC20a), in order to provide the observed galaxy
distributions in each tomographic photo-z bin, accounting for
photometric-redshift errors and the fraction of outliers.

Our observables are the tomographically binned projected
angular power spectrum, Ci j(`), where ` is the angular mul-
tipole, and i, j labels redshift pairs of tomographic bins. This
formalism is the same for WL, GCph, and the XC terms, with
the three cases differing only by the kernels used in the projec-
tion from the power spectrum of matter perturbations, Pδδ, to
the spherical harmonic-space observable, as detailed in EC20a.
Under the Limber, flat-sky, and spatially flat approximations
(Kitching et al. 2017; Kilbinger et al. 2017; Taylor et al. 2018),
these projections can be expressed as

CAB
i j (`) = c

∫
dz

WA
i (z)WB

j (z)

H(z)r2(z)
Pδδ

[
` + 1/2

r(z)
, z

]
, (2)

where A and B stand for WL and GCph, r denotes the comoving
distance, and H the Hubble parameter. We also ignore reduced
shear and magnification effects (Deshpande et al. 2020).

The WL power spectrum contains contributions from cos-
mic shear and intrinsic galaxy alignments. We assume the latter
is caused by a change in galaxy ellipticity, which is linear in the
density field. Within this framework, the density-intrinsic and
intrinsic-intrinsic 3D power spectra, PδI and PII, respectively,
are defined. These depend linearly on the density power spec-
trum Pδδ, with PδI = −A(z)Pδδ, and PII = [−A(z)]2Pδδ. For the
redshift-dependent amplitude parameter A(z), we use the model
specified in Sect. 5.2.

One of the primary sources of uncertainty for galaxy cluster-
ing is galaxy bias, that is, the relation between the galaxy dis-
tribution and the underlying total matter distribution. Our bias
models are discussed in Sect. 5.1.

We use the same redshift bins and number density for both
WL and GCph analyses. In practice, this is an over-simplification,
because lensing and clustering will apply different probe-specific

selection criteria and cuts resulting in different samples. How-
ever, for the present Fisher-matrix analysis, we limit ourselves
to the same sample for both probes.

In the following we use two different combinations of this
observable: WL+GCph where we consider the two to be com-
pletely independent and we simply sum the respective Fisher
matrices, and WL+GCph+XC. In the latter case, we include
the XC terms, that is, we consider the full Gaussian covariance
matrix, accounting for all correlations between angular scales,
redshift combinations, and correlations between the different
observables, thus also including the cross-covariance:

Cov
[
CAB

i j (`),CA′B′
kl (`′)

]
=

δK
``′

(2` + 1) fsky∆`

{[
CAA′

ik (`) + NAA′
ik (`)

] [
CBB′

jl (`′) + NBB′
jl (`′)

]
+

[
CAB′

il (`) + NAB′
il (`)

] [
CBA′

jk (`′) + NBA′
jk (`′)

]}
, (3)

where A, B, A′, B′ stand for WL and GCph, i, j, k, l run over all
tomographic bins, δK

``′ denotes the Kronecker delta of ` and `′,
fsky represents the fraction of the sky observed by Euclid, and
∆` the width of the multipole bins. The noise terms NAB

i j (`) take
the form σ2

εδ
K
i j/n̄i for WL, where the variance of observed ellip-

ticities is σ2
ε = 0.32, and δK

i j/n̄i for GCph. We assume that the
Poisson errors on WL and GCph are uncorrelated, which yields
a vanishing noise for XC. More details are laid out in EC20a.

Throughout this study we consider two possible scenarios:
an optimistic case and a pessimistic one. Following EC20a,
where multipole cuts were introduced to mimic non-Gaussian
contribution to the covariances, we define the optimistic case as
the analysis where these effects are neglected, including all mul-
tipoles from ` = 10 to ` = 5000 for WL and the multipoles from
` = 10 to ` = 3000 for GCph and XC. In the pessimistic case, we
limit the maximum multipole to 1500 for WL and 750 for GCph
and XC, where the limiting multipoles are those for which we
reach the maximum information content that one would obtain
by including these non-Gaussian contributions.

It is important to mention that a joint analysis of several
probes implies a large data vector, which requires a large covari-
ance matrix. In this work we follow EC20a in using a theo-
retical Gaussian covariance matrix for the observables, which
simplifies the estimation of the covariance matrix. However, we
must be aware that estimating the joint covariance for analyses
with real measurements may become much more difficult than
for single-probe analyses; in particular when the covariance is
estimated from simulations. In these cases we must ensure that
the constraining power brought by the different elements of the
data vector is large enough to compensate for the added diffi-
culty on the estimation of the covariance. A simple approach
that could be followed is to use only the galaxies that provide
the highest signal-to-noise for each probe, that is, use only the
sources located at high redshift for WL and the lenses located
at low redshift (better photometric redshift estimates) for GCph.
Such selection could significantly reduce the dimensionality of
the data vector and the covariance and still keep nearly the same
constraining power. This was the approach used by Abbott et al.
(2018). In this work we want to study the maximum impact
of the XC terms. Therefore, we consider the best-case scenario
where we can include all the information from all probes without
considering the additional difficulty in estimating the covariance
matrix. A detailed analysis will need to be done in the future to
determine which fraction of the information from each probe can
enter into the data vector in order to still be able to accurately
estimate the covariance matrix, or to devise data-compression

A70, page 3 of 17



A&A 643, A70 (2020)

techniques which would allow us to use the full information.
However, such analysis is beyond the scope of this work.

4. Cosmological models

We investigate the impact of the XC terms using the cosmologi-
cal models discussed in EC20a. As baseline, we consider a spa-
tially flat Universe filled with cold dark matter and dark energy.
We approximate the dark energy equation of state parameter
following the popular parameterisation (Chevallier & Polarski
2001; Linder 2005)

w(z) = w0 + wa
z

1 + z
· (4)

In addition to the two dark energy parameters, w0 and wa,
the cosmological model is fully described at the background
level by the total matter density at present time, Ωm,0, and the
dimensionless Hubble constant, h, for which we have H0 =
100 h km s−1 Mpc−1; where our notation is that if no time-
dependence is specified for a given parameter, we consider this
parameter as computed at z = 0.

In addition, the parameters needed to describe the regime
of linear perturbations are: the baryon density, Ωb,0; the slope
of the primordial spectrum, ns; and the rms of matter fluc-
tuations on spheres of 8 h−1 Mpc radius, σ8. Concerning the
impact of dark energy on matter perturbations, we consider
a dynamically evolving, minimally coupled scalar field called
Quintessence, where we assume its sound speed is equal to
the speed of light, and that it has vanishing anisotropic stress.
This implies that we can neglect any fluctuations in the dark
energy fluid in our analysis. For the description of linear pertur-
bations we adopt here the parameterised post-Friedmann (PPF)
framework of Hu & Sawicki (2007), which allows the equation-
of-state parameter to cross w(z) = −1 without developing
instabilities in the perturbation sector.

In addition to this baseline cosmological model, we also
explore two extensions, as done in EC20a:

– non-flat models, where the curvature parameter ΩK,0 is
non-zero. In this case we relax the flatness assumption and add
the dark energy density ΩDE,0 as an additional free parameter;

– a modified gravity model with deviations in the standard
growth with respect to ΛCDM. We parameterise the growth rate
f (z) of linear density perturbations in terms of the growth index
γ (Lahav et al. 1991), defined as

γ =
ln f (z)

ln Ωm(z)
, (5)

with Ωm(z) ≡ Ωm,0(1 + z)3H2
0/H

2(z). The growth rate f is the
solution of the equation

f ′(z) −
f 2(z)
1 + z

−

[
2

1 + z
−

H′(z)
H(z)

]
f (z) +

3
2

Ωm(z)
1 + z

= 0, (6)

where prime refers to the derivative with respect to z, and in
general relativity we have γ ≈ 0.55.

Such a modification was implemented in EC20a via a rescal-
ing of the power spectrum P(k, z) in the following way:

PMG(k, z) = P(k, z)
[

DMG(z; γ)
D(z)

]2

, (7)

where DMG(z; γ) is the growth factor for modified gravity
obtained by integrating Eq. (5) for a given γ, keeping in mind
that f (z) ≡ −d ln D(z)/d ln(1 + z).

The fiducial values for the cosmological parameters vector p
also follow EC20a, with

p = {Ωm,0, Ωb,0, w0, wa, h, ns, σ8, ΩDE,0, γ}

= {0.32, 0.05, −1.0, 0.0, 0.67, 0.96, 0.816, 0.68, 0.55} , (8)

where the last two parameters are considered only in the
extended models discussed above. In addition, we fix the sum
of the neutrino masses to

∑
mν = 0.06 eV. It is important to note

that the linear growth factor depends on both redshift and scale
in the presence of massive neutrinos. However, we follow EC20a
in neglecting this small effect, given the neutrino masses con-
sidered in this analysis, and instead compute the linear growth
factor in the massless limit. All fiducial values correspond to the
ones provided in Planck Collaboration XIII (2016).

5. Systematic effects

While the link between the primary Euclid probes and cos-
mology is well defined, we necessarily have to account for
known systematic effects that can bias our results if not con-
sidered properly. In this section we focus on three systematic
effects: the galaxy bias, the intrinsic alignment of galaxies, and
the uncertainties in the mean of the photometric galaxy distri-
butions in each tomographic bin1. We model each of these in
terms of parameterised functions where the additional parame-
ters are known as “nuisance parameters”. This will allow us to
marginalise these effects out of our analysis.

In addition to these three mentioned effects, other sources
of systematic uncertainties could be considered, but we do not
account for these in this paper. As an example, we neglect mag-
nification (Krause & Hirata 2010; Liu et al. 2014; Zitrin et al.
2015; Garcia-Fernandez et al. 2018) and relativistic effects
(Yoo & Zaldarriaga 2014; Bonvin 2014; Adamek et al. 2016;
Alam et al. 2017a). We note that relativistic effects become rele-
vant at large scales, especially for GCph. To minimise the impact
of neglecting these effects on our results, we exclude the largest
scales from our analysis, limiting our photometric probes to
` ≥ 10.

It is important to mention that in this work we refer to sys-
tematic effects as (astro)physical systematic uncertaintites; that
is, we only consider systematic effects originating from physi-
cal processes. In order for Euclid to reach its expectations, we
will have to overcome many observational systematic effects
(e.g. Cropper et al. 2013; Euclid Collaboration 2020b), like the
removal of foregrounds or the image processing. One major
observational challenge for the Euclid photometric survey will
be the use of anisotropic ground-based optical data to obtain the
photometric redshift estimates of the galaxies detected by the
Euclid imager. However, in this work we focus on the system-
atic effects with a physical origin, because they are intrinsically
linked to the signal, while the analysis of observational system-
atic effects and how we can minimize their impact is left for
future work.

5.1. Bias modelling

Weak lensing observations directly trace the underlying matter
distribution δm, but the same does not apply for galaxy clus-
tering. This is because galaxy clustering relies on observations

1 We highlight the fact that also an inaccurate modelling of the shape of
these distributions might introduce a systematic effect on the analysis.
We neglect such a possibility in this paper, leaving this investigation to
future work.
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of the light from galaxies, which is only a biased proxy of δm
(Kaiser 1987). Therefore, in order to obtain theoretical predic-
tions for galaxy clustering observations, the galaxy distribution
δg needs to be related to the matter distribution via a bias func-
tion, b. This is in general given by

δg(z) = b(z)δm(z), (9)

where we neglect the possible dependence of the bias on the
scale k, and we assume a linear relation between the matter
and galaxy distributions. We note that a linear bias approx-
imation is sufficiently accurate for large scales (Abbott et al.
2018). However, when adding very small scales into the anal-
ysis, or using for instance spectroscopic galaxy clustering, a
more detailed modelling of the galaxy bias is required (see e.g.
Sánchez et al. 2017). One of the approaches to this modelling is
through perturbation theory, which introduces a non-linear and
non-local galaxy bias (Lazeyras et al. 2016; Chan et al. 2012;
Sheth et al. 2013; Desjacques et al. 2018; see also Pandey et al.
2020; Sugiyama et al. 2020 for galaxy bias modelling with DES
and HSC mock catalogues, respectively).

Constraints coming from galaxy clustering alone will be
affected by the marginalisation over nuisance parameter con-
straints used to model b(z), as these will be degenerate with cos-
mological parameters. However the inclusion of weak lensing
information (which does not depend on galaxy bias) and the XC
between these two probes breaks these degeneracies and there-
fore improves the constraints on cosmological parameters, while
also providing information on the galaxy bias itself.

In this paper we are interested in quantifying the increase in
information stemming from inclusion of the XC terms, and deci-
phering whether or not the use of this additional information will
allow us to improve our knowledge on b(z) within the context of
different possible bias models. To achieve this, we investigate the
impact of XCs on two different parameterisations of b(z):

– Baseline (binned) bias (EC20a), where the bias is assumed
to be constant within each of the redshift bins in true redshift,
that is,

b(zi ≤ z ≤ zi+1) = bi, (10)

with zi and zi+1 being the boundaries of the ith redshift bin in true
redshift.

– Flagship bias, where we use a fitting function in agreement
with the measurements obtained from the Flagship simulation of
the Euclid survey2:

b(z) = A +
B

1 + exp [−(z − D)C]
, (11)

where A, B,C, and D are nuisance parameters.
In the first case, we choose a fiducial for our nuisance param-

eters corresponding to the choice

b(z) =
√

1 + z. (12)

Therefore, the fiducial values of the nuisance parameters are

bi =
√

1 + z̄i, (13)

with z̄i the mean redshift value of each redshift bin in true red-
shift.

For the Flagship galaxy bias model we use fiducial parame-
ters measured directly from the simulation, which are: A = 1.0,
B = 2.5, C = 2.8, and D = 1.6. These values were obtained by

2 Euclid Collaboration (in prep.).

Flagship bias

Baseline bias

Flagship measurements

0.0 0.5 1.0 1.5 2.0 2.5
1.0

1.5

2.0

2.5

3.0

3.5

z

b(
z)

Fig. 1. Different bias parameterisations used in the paper: the binned
bias (orange line) and the Flagship bias (red line), for the fiducial val-
ues of their respective parameters. Also shown are the measurements of
the galaxy bias in the Flagship simulation (black dots). For illustrative
purposes, a further 25 lines for each case are represented alongside the
fiducials, showing how the galaxy bias changes when we allow for a
Gaussian dispersion of 5% on the bias nuisance parameters.

selecting all galaxies from the Flagship simulation with a magni-
tude in the Euclid VIS band of less than 24.5, which corresponds
to the magnitude cut where extended sources will be detected at
10σ in four exposures lasting 565 s each (Cropper et al. 2018).
Once the galaxies from the simulation have been selected, we
measure their galaxy clustering projected angular power spectra
at different redshifts. We then obtain the galaxy bias by comput-
ing the ratio of these spectra to the theoretical matter predictions.

It is important to note that in the Flagship case we make the
assumption that we will be able to parameterise the redshift evo-
lution of the galaxy bias. In the binned case, on the other hand,
we consider several free parameters (one for each redshift bin)
without attempting to model the redshift evolution within each
bin. Therefore, we are not only considering two different fiducial
functions for our galaxy bias evolution, but are also testing the
role of XC when our ability to parameterise the redshift evolu-
tion of galaxy bias is different.

In Fig. 1 we show the fiducial galaxy bias for both param-
eterisations. For illustrative purposes we also show the trend in
redshift of the binned and Flagship models with respect to their
fiducial values when the bias nuisance parameters are varied,
with a random Gaussian dispersion of 5%. It is important to men-
tion that the trend of the Flagship galaxy bias beyond z = 2 is
caused by the extrapolation of the analytic parameterisation used
to fit the measurements to the simulation. However, the number
density of galaxies in this region is very low, which implies that
the extrapolation used will have a negligible impact on the final
results.

Although our baseline modelling for galaxy bias assumes a
linear approximation, we further consider a simple non-linear
extension to check the dependence of the XC terms on the linear
bias assumption. We follow Baldauf et al. (2010) in assuming a
local, non-linear galaxy bias relation via a Taylor expansion of
the galaxy density field as a function of the matter overdensity.
We note that we are setting the non-local terms (McDonald 2006;
McDonald & Roy 2009) to zero for simplicity, but this local non-
linear model is adequate for our purposes. We can in this case
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Table 1. Summary of nuisance parameters considered in this analysis together with their fiducial values.

Galaxy bias Intrinsic alignment Photometric redshifts

Parameter b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 A B C D AIA ηIA βIA ∆zi, i ∈ [1, 10]
Fiducial value 1.10 1.22 1.27 1.32 1.36 1.40 1.44 1.50 1.57 1.74 1.0 2.5 2.8 1.6 1.72 −0.41 2.17 0.0

rewrite Eq. (9) as

δg(z) = bL(z)δm(z) +
1
2

bNL(z)δ2
m(z) + . . . , (14)

where bL stands for the linear galaxy bias and bNL represents its
non-linear contribution.

The galaxy–galaxy and galaxy–matter power spectra are
then given by

Pgg(k) = b2
LPNL(k) + 2bLbNLPA(k) +

1
2

b2
NLPB(k) + N, (15)

Pgm(k) = bLPNL(k) + bNLPA(k), (16)

where N is the renormalised shot noise, PNL represents the non-
linear matter power spectrum, and PA and PB are given by

PA(k) =

∫
d3q

(2π)3 PL(q)PL(|k − q|)F2(q, k − q), (17)

PB(k) =

∫
d3q

(2π)3 PL(|q|)[PL(|k − q|) − PL(q)], (18)

with PL being the linear matter power spectrum and

F2(k1, k2) =
5
7

+
1
2

k1 · k2

k1k2

(
k1

k2
+

k2

k1

)
+

2
7

(
k1 · k2

k1k2

)2

(19)

being the second-order standard mode coupling kernel. Follow-
ing Baldauf et al. (2010), we set our bNL fiducial such that the
ratio bNL/bL is equal to 0.26. We note that the specific fiducial
value does not have a relevant role when trying to determine the
role of XC beyond the linear galaxy bias approximation. How-
ever, a fixed ratio of bNL/bL = 0.26 is also in agreement with
the results obtained in Pandey et al. (2020) for the range of bL
baseline values considered in this work. We further set the renor-
malised shot noise N = 0.

5.2. Intrinsic alignment

In Sect. 3, we defined the IA amplitude parameter A. In our
approach, this parameter takes the form given in EC20a:

A(z) =
AIACIAΩm,0FIA(z)

D(z)
, (20)

where CIA is a normalisation parameter which we set as CIA =
0.0134, D(z) is the growth factor, and AIA is a nuisance param-
eter fixing the overall amplitude of the IA contribution. The
function FIA sets the redshift dependence of the IA contribution
which can be conveniently modelled as

FIA(z) = (1 + z)ηIA

[
〈L〉(z)
L?(z)

]βIA

, (21)

with 〈L〉(z)/L?(z) being the redshift-dependent ratio between
the average source luminosity and the characteristic scale of
the luminosity function. Equations (20) and (21) reduce to the

non-linear alignment model (Hirata et al. 2007; Bridle & King
2007) for ηIA = βIA = 0 (i.e. FIA = 1), while the addi-
tional scaling with z and the luminosity has been introduced to
improve the fit to both low-redshift data and numerical simula-
tions (Joachimi et al. 2015). We refer to this model as eNLA in
the following, setting the nuisance parameters to the following
fiducial values

{AIA, ηIA, βIA} = {1.72, −0.41, 2.17}, (22)

in accordance with the recent fit to the IA measured in the
Horizon-AGN simulation (Chisari et al. 2015). It is important to
mention that we expect the amplitude of IA, AIA, to be smaller
in practice (see Fortuna et al. 2020, for a detailed discussion on
the amplitude of IA for different types of galaxies), but we keep
a higher value in this analysis to study the role of XCs when IA
are important.

5.3. Photometric redshifts

The accuracy of photometric redshifts is crucial to the exploita-
tion of the galaxy clustering and weak lensing power spectra.
To mitigate the effect of potential unknown biases in the photo-
z algorithms, we follow Troxel et al. (2018) and Abbott et al.
(2018) who introduced nuisance parameters for the biases and/or
shifts of the mean redshifts of each photo-z bin, that is,

ntrue
i (z) = ni(z − ∆zi), (23)

where ∆zi is a nuisance parameter for each redshift bin, and
ntrue

i is the true galaxy distribution. This change of the galaxy
redshift distribution is going to impact galaxy clustering and
weak lensing predictions through their kernels. ∆zi > 0 will
generally lead to a higher amplitude for clustering and a lower
amplitude for weak lensing, as the galaxies are shifted to lower
redshifts. Because the XC terms increase the number of spec-
tra used in a likelihood analysis with respect to the number of
redshift bins (and thus the number of nuisance parameters), it
may be expected that including these terms will improve the
constraints on these nuisance parameters. Before moving to the
results section we summarise all the nuisance parameters con-
sidered in this analysis in Table 1 together with their fiducial
values.

6. Results

In this section, we present the main results of our analysis,
namely the improvement in parameter constraints using the
Euclid WL and GCph probes when also including their XC terms,
instead of simply considering the two probes as independent.
The effect of XC on cosmological parameter constraints was
briefly discussed in EC20a; here instead we focus in particular
on the importance of the XC terms in constraining the nuisance
parameters, as they also contain astrophysical information, for
example in testing galaxy formation scenarios. In this section,
unless otherwise stated, all the plots refer to the “optimistic”
case.
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6.1. Baseline specifications

Let us start by considering the baseline specifications described
above. In this work we follow the definition of FoM used in
EC20a: FoM =

√
det

(
F̃w0wa

)
, with F̃w0wa being the marginalised

Fisher submatrix for w0 and wa. Our baseline specifications
are the same as those adopted in EC20a, where the impact
of XC terms on cosmological parameter constraints was dis-
cussed, finding an improvement in the FoM of a factor 5.7
(4.4) for the pessimistic (optimistic) case when a flat cosmol-
ogy is assumed, a result that is confirmed by the analysis per-
formed in this work. Here we focus instead on the impact of
the XC terms on both the cosmological and nuisance parame-
ters. In the top panel of Fig. 2 we show the ratio on the forecast
uncertainties for the bias parameters with and without XC, that
is, σ(bi,WL+GCph)/σ(bi,WL+GCph+XC). We also report the
marginalised constraints on the ten bias parameters in Table A.1.
Comparing the results with and without XC immediately shows
the power of this additional information in reducing the error on
the bias parameters. On average over the ten parameters, we find
an error reduction of ∼9% (∼25%) in the pessimistic (optimistic)
scenario when XC is included.

It is interesting to note that there is a qualitative trend of
σ(bi,WL+GCph)/σ(bi,WL+GCph+XC) with the bin redshift. In
particular, we find that the above ratio increases with z in the
pessimistic case (going from 1.09 to 1.21), while the trend is
reversed in the optimistic case (the ratio decreasing from 1.54 to
1.20). Moreover, the improvement brought by the XC is signifi-
cantly larger for the optimistic case than for the pessimistic one.
In order to understand these effects, we investigated the ratio
of the unmarginalised constraints on the galaxy bias nuisance
parameters, instead of marginalising over the cosmological and
IA parameters, which is shown in the bottom panel of Fig. 2.
In the unmarginalised case we observe that both the optimistic
and pessimistic scenarios show a similar trend as a function of
redshift. Moreover, the improvement on the constraints given the
addition of XCs is larger in the pessimistic case. This is due to
the addition of more scales in the optimistic case, which helps
in constraining the parameters and therefore slightly decreases
the additional constraining power of the XC. Therefore, the dif-
ferent behaviour in the top panel of Fig. 2 is entirely due to the
correlations between the cosmological and nuisance parameters.

It is worth investigating whether or not the reduction in error
caused by the inclusion of the XC is model independent. To
this end, we consider the case of non-flat models, that is, we
still leave the fiducial model unchanged, but relax the flatness
assumption adding the fractional density of dark energy, ΩDE,0 as
an additional parameter to constrain; we note that we still assume
flatness in the Limber approximated power spectra (Taylor et al.
2018). We refer again to Fig. 2 for the ratio of the constraining
power with and without XC, while we show the marginalised
errors on the bias parameters for both pessimistic and optimistic
assumptions in Table A.2. As expected, adding one more param-
eter weakens the overall constraints due to the increased vol-
ume in parameter space and degeneracies among the full set
of cosmological and nuisance parameters. This increase in the
marginalised errors occurs whether XC is included or not. With
respect to the flat case, we find, on average, a 35% increase of
the errors for WL+GCph compared to a 32% increase when XC
is added in the pessimistic case, while these numbers become
7% and 17% in the optimistic case. When comparing WL+GCph
with WL+GCph+XC constraints for non-flat models, we again
find that XC reduces the marginalised errors on the bias param-
eters. We also find the same trend with redsfhit for the impact
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Fig. 2. Ratio of the marginalised (top panel) and unmarginalised (bot-
tom panel) forecast uncertainties on the bi bias parameters between
WL+GCph and WL+GCph+XC, in the pessimistic (red lines) and opti-
mistic (yellow lines) cases. We show in this plot results for both the flat
Universe model (solid lines) and the non-flat case (dashed lines).

of XC: larger impact at low redshift and smaller impact at high
redshift for the optimistic case, while the impact as a function of
redshift increases for the pessmistic case. In the non-flat case we
observe a smaller effect than in the flat case for the optimistic
assumption with an average improvement due to the addition
of XC of 15% instead of 25%. The opposite is true in the pes-
simistic case, where the average improvement is of 12% instead
of 9%. Given the different range in multipoles between the opti-
mistic and pessimistic cases, the degeneracies introduced by the
additional parameter ΩDE,0 are lifted in the optimistic case by
the use of small scales, while in the pessimistic case XC plays
a more important role, thus increasing its relevance with respect
to the flat cosmology.

We now discuss the constraints on the IA parameters for the
eNLA model, which we summarise in Table 2 in both the flat
and non-flat cases under both pessimistic and optimistic assump-
tions. We find that the marginalised errors of the IA parameters
are of the same order of magnitude as (if not larger than) the
fiducial values. However, this is not unexpected when consider-
ing that they only enter through their combination inAIAFIA(z),
meaning that large degeneracies are present in the amplitude
terms. Indeed, we find that the correlation coefficient of for
example AIA with (ηIA, βIA) is almost unity. In addition, the
GCph probe is totally independent of IAs and therefore does not
constrain the IA parameters at all. As a consequence, adding
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Table 2. Constraint on the IA nuisance parameters for flat and non-flat cases for both the pessimistic and optimistic assumptions.

IA parameters: flat cosmology, baseline

Probe Case σ(AIA) σ(ηIA) σ(βIA) σ(AIA) σ(ηIA) σ(βIA)

Pessimistic Optimistic
Flat 3.85 2.45 1.03 3.35 2.13 0.90

WL+GCph
Non-flat 3.86 2.46 1.04 3.35 2.13 0.90

Flat 1.39 0.90 0.34 0.92 0.60 0.22
WL+GCph+XC

Non-flat 1.40 0.91 0.34 0.92 0.60 0.22
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Fig. 3. 1σ and 2σ confidence contours on the optimistic, flat GR base-
line case for GCph+WL (orange) vs. GCph+WL+XC (green) for the
three intrinsic alignment parameters compared to the Ωm,0 parameter.
While the IA parmeters are clearly highly degenerate among them-
selves, Ωm,0 shows little degeneracy with them, especially when XC
is included.

WL and GCph has only an indirect impact on the IA constraints.
To understand how this works, let us focus on the correlation
between AIA and Ωm,0 which is one of the closest correlations
in the optimistic case. When using WL alone, we find a corre-
lation coefficient of −0.27 which reduces to −0.12 when using
WL+GCph because of the better constraint on Ωm,0. However,
the error onAIA is not particularly affected by this with σ(AIA)
reducing from 3.47 to 3.35, that is, a 4% reduction only. Instead,
when XC is included, the degeneracy between Ωm,0 and AIA is
almost totally lifted with the correlation coefficient going down
to −0.007, thus allowing an improvement of almost a factor of
3.5. We show the impact of XC on IA parameter constraints in
Fig. 3 for the optimistic case. The inclusion of XC improves
the constraints on {AIA, ηIA, βIA}, but the expected errors are
smaller than the corresponding fiducial value only in the opti-
mistic scenario. It is also worth noting that relaxing the flatness
assumption does not degrade the constraints on the IA param-
eters. This is just a consequence of the IA parameters being
almost uncorrelated with ΩDE,0 and means that there are no fur-
ther degeneracies introduced. For this same reason, the impact
of XC works in the same way as for the flat case, because the
same qualitative argument still holds in the non-flat case.

To conclude this section, which focuses on the specifications
and models under investigation in EC20a, extending the investi-
gation to the effects of XC on nuisance parameters, we want to
quantify the impact of the XC terms on modified gravity con-
straints. Here we use the phenomenological approach described
in Sect. 4, that is, we consider the growth index γ. In the ΛCDM
concordance model, γ ≈ 0.55, with gravity described by gen-
eral relativity. A deviation from this value could be indicative
of phenomena associated with modified gravity. To forecast how
accurately Euclid photometric probes can constrain this param-
eter, we add γ as a new parameter in the Fisher matrix by the
simple extension of the general relativity recipe from Sect. 4. In
this case, we find a significant weakening of the constraints as a
consequence of including this additional parameter, as expected.
More interestingly, we also find that XC is highly efficient in
improving the constraints on each cosmological parameter com-
pared with WL+GCph only. This is consistent with the findings
of EC20a for the general relativity model considered, and we
now extend this result to the modified gravity case. In particular,
the error on γ reduces by a factor of 1.5 in the pessimistic case
showing that XC helps to constrain deviations from general rel-
ativity. The impact is less pronounced when one includes larger
`, with XC reducing the error in the optimistic case by only 10%
which is due to the fact that in the optimistic case the constraints
are now driven by the non-linear part of the power spectrum. In
this work we model the non-linearities following the same pre-
scriptions of EC20a, which are obtained in the ΛCDM regime.
However, an adapted recipe for non-linearities should be applied
for each modified gravity theoretical model, which could change
the quantitative impact of XC depending on the modified gravity
model considered.

We show the effect of XC on γ constraints in Fig. 4. We
report the 68% errors on this and the other cosmological param-
eters in Table A.3, while we show the constraints on the bias
parameters in Table A.4.

In contrast with the cosmological parameters, the
marginalised errors on the IA parameters are not affected
by the presence of the γ parameter, and therefore the effect of
XC on these is unchanged. This is a consequence of the inter-
play among the degeneracy of IA and cosmological parameters
which is now changed with respect to the general relativity case.
As a result, the weakening of the constraints on cosmological
parameters does not lead to a corresponding increase in the
errors for the IA parameters.

We also investigated the case where the flatness assump-
tion is relaxed, leaving ΩDE,0 free to vary. We do not find any
remarkable difference on the impact of XC, apart from the
expected degradation of the constraints due to having one more
parameter.
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Fig. 4. 1σ and 2σ confidence contours on the optimistic, flat, modi-
fied gravity baseline case for GCph+WL (orange) vs. GCph+WL+XC
(green). The modified gravity parameter γ is not significantly better
constrained when including XC, but its inclusion helps to break some
degeneracies, especially with w0, wa, and σ8.

Finally, we re-computed the baseline forecasts including pri-
ors on the cosmological parameters coming from the spectro-
scopic galaxy clustering analysis of Euclid from EC20a and
from the final BOSS data release (Alam et al. 2017b); therefore
neglecting the XC terms that might appear between GCs and the
photometric probes. Both for the baseline flat model and for the
non-flat modified gravity case, we see that the effect of XC (on
the constraints of both the cosmological and nuisance param-
eters) is equally significant when we add priors coming from
BOSS. When adding priors coming from the GCs Euclid analy-
sis, the effect of the XC terms is slightly weaker, given the sig-
nificant increase in constraining power by the additional probe.
However, the XCs are still a vital addition when constraining the
cosmological and nuisance parameters.

6.2. Dependence on the galaxy bias model

Galaxy bias enters both the GCph and XC terms, and therefore
it is worth considering how the cosmological constraints depend
on the bias model. In the baseline specifications, b(z) was mod-
elled as a piecewise constant function with independent ampli-
tudes in the ten redshift bins. However, N-body simulations
coupled with reliable models for galaxy distributions and halo
occupation statistics can provide a physically motivated prior on
the redshift dependence of the bias function. Using this infor-
mation, we model b(z) using Eq. (11), with the four parameters
{A, B, C, D} as the new nuisance parameters free to vary in our
Fisher analysis.

As we reduce the number of nuisance bias parameters from
10 to 4, or in other words we assume we can parameterise the
redshift evolution of the galaxy bias even within each redshift
bin, we expect an improvement of the constraints on the cos-
mological parameters. In Table A.5 we report the marginalised
errors for the flat general relativity case3 which can be compared

3 Here we only discuss the results for the flat model because the effects
of changing the bias and the impact of XC are qualitatively the same for
flat and non-flat models.

with the corresponding table from EC20a. Averaging over the
full set of parameters, we indeed find a 17% (14%) reduction
of the WL+GCph (WL+GCph+XC) errors for the pessimistic
case, which is due to the more rigid bias modelling; this fac-
tor reduces to 4% (6%) in the optimistic case. We also find
that reducing the number of bias parameters reduces the corre-
lation between parameters, as can be seen when looking at the
FoM. The WL+GCph FoM indeed increases by 37% (15%) for
the pessimistic (optimistic) case, while the WL+GCph+XC FoM
improves by 54% (30%). Although not unexpected, this signifi-
cant boost of the FoM highlights the importance of constraining
the galaxy bias in the GCph sample.

Regardless of the bias model used, adding XC to WL and
GCph still stands out as the most efficient way to strengthen the
constraints on the cosmological parameters, and also increase
the FoM. In detail, the impact of XC for the pessimistic case
is large, with FoM(WL+GCph+XC)/FoM(WL+GCph) = 5.7
for the binned bias modelling. This factor reduces somewhat to
FoM(WL+GCph+XC)/FoM(WL+GCph) = 4.8 when the Flag-
ship bias modelling is adopted. For the optimistic case, these
ratios are 4.4 and 3.7, respectively. This reduction of the impact
of XC when moving from binned bias to Flagship bias is related
to the Flagship bias already removing part of the degener-
acy between cosmological and nuisance quantities thanks to its
smaller number of parameters. The numbers are nevertheless
still large enough that the impact of XC is of paramount impor-
tance.

Let us now discuss the constraints on the bias and IA
nuisance parameters reported in Table 3. Concerning the bias
parameters, a direct comparison with the baseline case of
Table A.1 is not possible as we use different parameterisations.
We nevertheless note that the impact of XC on the constraints is
comparable to the binned bias case. Indeed, we find that adding
XC reduces the errors on average by 8% (27%) in the pessimistic
(optimistic) case which is roughly the same as what we found for
the binned bias case. Again, this is consistent with expectations,
because the effect of XC is to reduce the correlation among the
bias and the cosmology, and this happens no matter which bias
model is used.

Moreover, we find that the constraints on the IA nuisance
parameters are not modified with respect to the binned bias case.
This happens because bias and IA are two different phenomena
affecting only GCph and WL, respectively, but not both of them.
Therefore, the bias model has no impact on IA constraints and
the effect of XC on those is similar to what was found in the
baseline case.

In addition, we investigated the effect of the change in the
bias modelling on constraints on the modified gravity param-
eter γ. We find σ(γ) = 0.046 (0.017) for the pessimistic (opti-
mistic) case using only WL+GCph, while adding XC reduces the
error to σ(γ) = 0.036 (0.014), which is a 27% (21%) improve-
ment. Cross-correlation has a different impact on γ with respect
to the binned bias case, where the improvement was of 50% in
the pessimistic case and of 10% in the optimistic one. The dif-
ferent relevance of XC in this case is connected to the significant
improvement that a change in the bias modelling brings on σ(γ).
Replacing the binned bias with the Flagship one improves the
constraints on γ by a factor of ∼1.5 for both the pessimistic and
optimistic cases when WL+GCph+XC is used. We can therefore
conclude that a reliable modelling of the galaxy bias is of signif-
icant value when discriminating general relativity and modified
gravity models based on the growth of structures.

Before finishing this section, we study the impact of the XC
terms when we go beyond the linear galaxy bias approximation.
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Table 3. 68% errors, without and with the XC contribution, on the nuisance parameters (both bias and IA) when the Flagship bias model is
considered.

Nuisance parameters: flat cosmology, Flagship bias

Probe Case σ(A) σ(B) σ(C) σ(D) σ(AIA) σ(ηIA) σ(βIA)
Pessimistic 0.0086 0.0710 0.0546 0.0133 3.83 2.43 1.02

WL+GCph
Optimistic 0.0045 0.0341 0.0257 0.0053 3.34 2.13 0.90
Pessimistic 0.0081 0.0618 0.0505 0.0128 1.38 0.89 0.34

WL+GCph+XC
Optimistic 0.0028 0.0280 0.0214 0.0049 0.91 0.59 0.22

Notes. We consider a flat general relativity model, and set {`max(WL), `max(GCph)} according to the pessimistic and optimistic assumptions.

We consider, for simplicity, the baseline specifications with ten
tomographic bins and a constant bL per bin with fiducial

√
1 + z̄,

where z̄ denotes the mean of the bin in true redshift. We fur-
ther consider a constant bNL per tomographic bin with fiducial
bNL = 0.26bL, as described in Sect. 5.1, which leads to a total
of 20 nuisance parameters for the galaxy bias. Looking first at
the cosmological parameter constraints, we find that adding the
XC terms when using a non-linear galaxy bias model improves
the constraints by between a factor of 1.5 and 3.4 for the pes-
simistic case, and between a factor of 1.3 and 2.5 for the opti-
mistic case (compared to the constraints with a non-linear galaxy
bias model and without the XC terms). This improvement should
be compared to a factor of between 1 and 3.5 (1.1 and 2.6) for
the pessimistic (optimistic) case when using a linear galaxy bias
model. Therefore, we can confirm that the additional constrain-
ing power on the cosmological parameters from the XC between
GCph and WL is still present when we consider a more complex
galaxy bias model. Moreover, in the case of a non-linear galaxy
bias model, the addition of the XC terms allows us to improve
the constraints on bL by a factor of between 1.4 and 2 (1.6 and
2.4) for the pessimistic (optimistic) case. This can be compared
to the improvement on the galaxy bias constraints (using the lin-
ear model) when adding the XC terms, which corresponds to
an improvement by a factor of between 1 and 1.2 (1.2 and 1.5)
for the pessimistic (optimistic) case, as shown in Fig. 2. Thus,
the XC between GCph and WL is even more helpful when con-
straining more complex galaxy bias models.

6.3. Shift in cosmological parameter best fit from
neglecting IA

In Sect. 5.2 we describe how we include the IA contribution in
the theoretical predictions for cosmic shear, while in Sect. 6.1
we estimate the improvement brought by XC on the constraints
of the parameters modelling this effect. Given the constraining
power brought by GCph and XC in addition to the WL probe,
it is worth exploring whether or not such a combination can be
used to distinguish different assumptions pertaining to this con-
tribution.

To estimate whether or not one can distinguish between dif-
ferent models of a physical mechanism, the shift in the best fit
of the cosmological parameters with the ‘wrong’ model can be
tested. In an MCMC (of nested sampling) analysis this could
be estimated by generating mock data with a given fiducial cos-
mology and fitting these with theoretical predictions from a dif-
ferent one; the cosmological parameters will be shifted from
the assumed fiducial values in order to compensate the different
effects of the two cosmologies.

However, this investigation can also be performed within the
Fisher matrix formalism if we deal with “nested models”, where
the parameter space of one of the two cosmologies is contained
within that of the other (Heavens et al. 2007). In this framework,
the former cosmology is described by a set of parameters {θα},
while the latter by {θα} ∪ {ψa}, and we note that in this treatment
we label the nested model parameters by indexes α, β, and so
on, and the extra parameters by indexes a, b, and so on. This
leads us to question what happens to the best-fit estimates of the
parameter set θ if we do not properly model ψ in our analysis.
For instance, if reality is described by the parameter ψtrue

a and we
wrongly assume ψfid

a as the fiducial cosmology, this will imply
a shift in the θ parameters due to a compensation that has to
account for ψ being kept fixed to an incorrect value. In a Fisher
matrix analysis, such a shift δ on a parameter θα can be computed
via (see Camera et al. 2017, Appendix A)

δ(θα) =
(
F−1

)
αβ

Fβa

(
ψfid

a − ψ
true
a

)
, (24)

where it is worth emphasising that F is the full Fisher matrix
containing both parameter sets θ and ψ, whereas Fβa are the ele-
ments of the rectangular sub-matrix mixing θ and ψ parameters,
and summation over equal indexes is assumed.

We apply such a methodology to investigate whether or not
the combination of GCph, WL, and their XC is able to distin-
guish different amplitudes AIA of the IA contribution. To this
end, we keep the fiducial of βIA and ηIA to our baseline, but we
use Eq. (24) to compute the shift on the cosmological parame-
ters caused by an incorrect assumption of AIA. The results for
Ωm,0, w0, and wa are shown in Fig. 5, where we highlight the
significance of this shift whenAIA is changed from the baseline
fiducial4. We see that completely neglecting the IA contribution
(AIA = 0) leads to shifts of ≈40σ on Ωm,0, ≈20σ on w0 and
≈10σ on wa when the full combination WL+GCph+XC is con-
sidered. If we do not include XC, such shifts reduce to ≈3σ,
≈5σ, and ≈5σ, respectively, which demonstrates how the addi-
tion of XC is relevant not only to improve the constraining power
of the survey, but also to test the assumptions made in the mod-
elling of nuisance effects. It is important to point out here that the
huge values of the shifts on the parameters when XC is included
should not be taken literally; when the shift with respect to the
fiducial values becomes large, the Gaussian approximation on
which the Fisher matrix analysis relies breaks down. Therefore,
the Fisher approximation can no longer capture the true shape of
the likelihood. We consider the value of 3σ as a safe threshold,
meaning that any shift beyond this limit should be interpreted as

4 We do not show the results for the other parameters because there are
no significant differences.
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Fig. 5. Shifts in units of standard deviations for Ωm,0 (left panel), w0 (middle panel), and wa (right panel) due to an incorrect assumption on the IA
amplitude. Results are shown for the optimistic case with WL+GCph (orange) vs. WL+GCph+XC (green). Solid (dashed) lines represent positive
(negative) shifts with respect to the fiducial. The vertical grey line shows the case in which we assume no contribution from IA (AIA = 0). The
grey-shaded region denotes the shifts larger than 3σ, for which the Gaussian approximation breaks down and the corresponding shifts should be
interpreted with caution (see the text for details).

simply a very large shift. We represent this region in Fig. 5 with
a grey-shaded area.

It is worth mentioning before concluding this section that
we have also considered applying this extended Fisher formal-
ism to quantify the shift in the cosmological parameter best fit
from assuming a “wrong” fiducial galaxy bias. In more detail,
we first assumed that our galaxy bias could be modelled by a
piecewise constant function5. We then used Eq. (24) to com-
pute the shift in cosmological parameters when we consider the
fiducial b(z) =

√
1 + z but the “truth” is given by the Flagship

fiducial described in Sect. 5.1. We obtained even larger shifts
than for the IA case, which go from 4σ for ns up to very biased
(more than 40σ) for w0 and wa when we consider the optimistic
WL+GCph+XC case. Since XC partially removes the degener-
acy between the cosmological and galaxy bias parameters, the
shifts become even larger when XC is not included. It is impor-
tant to recall that given the large shifts these values should only
be interpreted qualitatively, since they are significantly beyond
the 3σ safe threshold. These results show that our knowledge
on the galaxy bias has a significant impact on the cosmological
conclusions derived from the observations.

6.4. Impact of XC on photo-z self-calibration

In the above sections we implicitly assume that photometric red-
shifts have been measured with perfect average accuracy, that is,
that the mean true redshift of a bin is indeed equal to the mean
measured redshift. However, as pointed out in Sect. 5.3, we can
consider the possibility of an error ∆zi systematically shifting the
redshift of all the sources in the ith bin. Allowing for an arbitrary
deviation, we can include ten additional nuisance parameters ∆zi.
We can then investigate both how well these quantities must be

5 We note that the extended Fisher formalism used in this work can
only accommodate nested models. Because of this we cannot compute
the shift when changing the fiducial and the parameterisation of the
galaxy bias at the same time, as is done in Sect. 5.1.

known so as not to degrade the FoM, and which constraints can
be put on them by the XC terms.

To this end, we recomputed the Fisher matrices for the base-
line case of general relativity, adding the ten ∆zi nuisance param-
eters and fixing their fiducial values to zero6. We add the same
Gaussian prior on each one of these nuisance parameters, and
we compute the FoM as a function of the width of the prior. We
finally compare the output to the case when all ∆zi are consid-
ered known (FoMref , equivalent to a Dirac delta prior around the
fiducial value).

Figure 6 shows the difference between the FoM and the cor-
responding reference FoMref as a function of the width of the
Gaussian prior added, σPrior. This provides the FoM degradation
for different combinations of cosmological probes both in the
optimistic and pessimistic scenarios. We find that a strong prior
is needed if one does not want to degrade the FoM by a large
amount. Let us first consider the optimistic case. Starting with
the full combination of WL+GCph+XC, we require a prior on
the mean of the photometric galaxy distributions smaller than
0.43 × 10−3 so as not to degrade the final FoM of 1034 by more
than 20%. This threshold is represented in Fig. 6 with a black
dot. We note that the prior requirement coming from the other
probes may be more stringent if we require a degradation smaller
than 20% with respect to the corresponding reference FoM;
for instance, we need a prior smaller than 0.31 × 10−3 for the
WL+GCph combination if we consider the reference WL+GCph

FoM, while we only need a prior smaller than 1.60 × 10−3 for
WL alone (we note that this value is similar to the one provided
in Kitching et al. 2008, and the small discrepancies might be due
to the different IA modelling and forecasting recipe). However,
the combination driving the requirement on the prior is the full
combination of WL+GCph+XC, because it is the one providing
the highest FoM.

6 We do not expect the results to qualitatively change for other assump-
tions on either the cosmological model or the galaxy bias.
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Fig. 6. Difference between the FoM and the reference one obtained in
the case where all shifts in the mean of the photometric-redshift dis-
tributions are perfectly known and equal to zero (∆zi = σ(∆zi) = 0),
for a changing value of the prior added. The results refer to GCph
(red), WL (purple), WL+GCph (orange), and WL+GCph+XC (green),
under pessimistic (dashed) and optimistic (solid) assumptions. The
black dot denotes the prior threshold for which the final FoM of the full
WL+GCph+XC combination in the optimistic case is degraded by 20%.
The black triangle represents the same threshold in the pessimistic case
(see the text for details). We note that the reference FoM is larger for the
optimistic case in comparison to the pessimistic case, and it increases
when the XC terms are included. However, the different lines are nor-
malised to their corresponding reference FoMs for illustrative purposes.

Focussing now on the pessimistic case, we require a prior
smaller than 0.48 × 10−3 so as not to degrade the final
WL+GCph+XC FoM of 367 by more than 20%. This threshold
is represented by a black triangle in Fig. 6.

It is also important to compare the degradation of the FoM as
a function of the prior for the different combinations of probes.
We can see in Fig. 6 that for the optimistic case the degradation
appears earlier (we need a smaller prior) in the full combination
of WL+GCph+XC than in the combination WL+GCph. In turn,
WL+GCph degrades earlier than GCph alone, which degrades
earlier than WL. This is consistent with the values of the FoM for
the different combinations of probes, as GCph provides a larger
FoM than WL alone, and WL+GCph provides a larger FoM than
GCph but smaller than the full combination. Concerning the pes-
simistic case, we can now observe that we need a more stringent
prior for WL than for GCph, which is consistent with the fact that
in the pessimistic case the FoM of WL is much larger than the
FoM of GCph.

Although reducing ∆zi will be achieved by improving pho-
tometric redshifts, or by including the clustering-redshift infor-
mation brought by overlapping spectroscopic surveys of Euclid
(see Gatti et al. 2018, for a detailed analysis on how clustering
information could help in better determining ∆zi), it is never-
theless worth investigating whether or not one can use the data
themselves to self-calibrate or constrain ∆zi. From this point of
view, it is interesting to look at how the constraints change when
XC is added to WL+GCph. The result is shown in Fig. 7 for both
pessimistic and optimistic scenarios. In this case, XC is indeed
of great help in reducing the error on ∆zi by a factor 2.2−3.1
as a consequence of both the increased number of observables
and the information carried by the correlation among different
bins. It is worth noting that the improvement of constraints due
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Fig. 7. Ratio of the errors on ∆zi with and without the inclusion of XC.
Yellow and red lines refer to the pessimistic and optimistic scenario.

to XC is smaller for the optimistic scenario. This is due to the
information brought by the additional multipoles included with
respect to the pessimistic case, which already add information
to constrain these nuisance parameters and reduce the impact of
XC.

7. Conclusions

In this paper, we extensively scrutinise the impact on both
cosmological and nuisance parameter estimation of the cross-
correlations (XC) between two probes of the Euclid satellite mis-
sion: weak lensing cosmic shear (WL) and the clustering of the
photometric galaxy sample (GCph).

Let us first emphasise that the XC terms must necessarily be
included in the data vector because both WL and GCph trace the
same underlying cosmic structure and are therefore not indepen-
dent from one another. This implies that a failure to include the
XC terms will lead to an incorrect estimation of the constrain-
ing power, with associated consequences for model testing. The
scope of this paper is to assess the impact of such XC.

In EC20a it was demonstrated that rather than being a
nuisance, XC encodes valuable cosmological information. In
that paper, we found that the best cosmological constraints are
obtained when XC is taken into account, leading to an increase
of the FoM by more than a factor of three for a flat Universe.
Here we focus on showing that XC is crucial also to constrain
nuisance parameters.

Our main findings can be summarised as follows:
– On average, the uncertainty on the galaxy bias amplitude nui-

sance parameters is reduced by ∼9% and ∼25% when XC is
included, for the pessimistic and optimistic scenario, respec-
tively.

– The inclusion of XC makes IA parameters detectable (in the
optimistic scenario), and this result is not affected by the
assumptions of flatness and the validity of general relativity.

– A different bias model does not directly impact the effect of
XC on cosmological and nuisance parameters. However, the
lower number of parameters needed to describe the galaxy
bias significantly affects the constraints on deviations from
general relativistic growth of structures, parameterised by γ.
This in turns also changes the impact of XC on this same
parameter.
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– Given the tighter constraints allowed by XC, the interplay
between different parameters becomes more important, and
incorrect assumptions on systematic-effect parameters such
as IA may lead to significant degradation of the survey accu-
racy in cosmological parameter estimation.

– The addition of XC significantly helps in constraining the
mean of the photometric-redshift distributions. However, the
requirement on the knowledge of the mean is much more
stringent than for WL alone in order not to degrade the final
FoM.

We can conclude that the addition of XC between cosmic shear
and galaxy clustering for the photometric Euclid survey is neces-
sary for the analyses of the future data. Not only do XCs improve
our knowledge of the cosmological model, but they also provide
information about galaxy bias, IAs, and help in self-calibrating
the photometric galaxy distributions.
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Appendix A: Complementary results

Here, we show additional results on which we only comment
in Sect. 6. In Tables A.1 and A.2 we show the 68% error on
the galaxy bias parameters in our baseline modelling (binned
bias), for the flat and non-flat cases, respectively. Tables A.3
and A.4 show instead the constraints on cosmological and galaxy
bias parameters, respectively, in the binned bias case, when we
allow for deviations from general relativity in a flat Universe.

We do not report results on the IA parameters as these
are unchanged with respect to the general relativity case of
Table 2.

Table A.5 contains the 68% forecast uncertainties on the cos-
mological parameters when the bias is described following the
Flagship parameterisation. Figure A.1 shows the improvement
brought by XC, in the optimistic case, for the Flagship bias on
cosmological parameters (left panel) and on the galaxy bias and
IA parameters constraints (right panel).

Table A.1. 68% errors on the ten bias parameters of the binned bias model with and without the XC contribution.

Bias parameters: flat cosmology, baseline

Probe Case σ(b1) σ(b2) σ(b3) σ(b4) σ(b5) σ(b6) σ(b7) σ(b8) σ(b9) σ(b10)
Pessimistic 0.0075 0.0092 0.0097 0.0104 0.0112 0.0119 0.0127 0.0136 0.0152 0.0184

WL+GCph
Optimistic 0.0037 0.0045 0.0046 0.0049 0.0054 0.0057 0.0061 0.0065 0.0071 0.0082
Pessimistic 0.0074 0.0085 0.0091 0.0099 0.0105 0.0111 0.0116 0.0123 0.0131 0.0151

WL+GCph+XC
Optimistic 0.0024 0.0032 0.0036 0.0041 0.0045 0.0049 0.0053 0.0055 0.0060 0.0068

Notes. We consider a flat general relativity model, and set {`max(WL), `max(GCph)} according to the pessimistic and optimistic assumptions.

Table A.2. 68% errors on the ten bias parameters of the binned bias model with and without the XC contribution.

Bias parameters: non-flat cosmology, baseline

Probe Case σ(b1) σ(b2) σ(b3) σ(b4) σ(b5) σ(b6) σ(b7) σ(b8) σ(b9) σ(b10)
Pessimistic 0.0127 0.0106 0.0098 0.0108 0.0125 0.0146 0.0173 0.0202 0.0246 0.0329

WL+GCph
Optimistic 0.0041 0.0047 0.0047 0.0049 0.0055 0.0059 0.0066 0.0071 0.0081 0.0099
Pessimistic 0.0118 0.0097 0.0092 0.0101 0.0115 0.0131 0.0151 0.0173 0.0208 0.0274

WL+GCph+XC
Optimistic 0.0034 0.0036 0.0037 0.0041 0.0047 0.0053 0.0061 0.0065 0.0077 0.0095

Notes. We consider a general relativity model, where we relax the flatness assumption. We set {`max(WL), `max(GCph)} according to the pessimistic
and optimistic assumptions.

Table A.3. 68% errors on the cosmological parameters of the binned bias model with and without the XC contribution.

Cosmological parameters: flat modified gravity cosmology, baseline

Probe Case σ(Ωm,0) σ(Ωb,0) σ(w0) σ(wa) σ(h) σ(ns) σ(σ8) σ(γ)
Pessimistic 0.0114 0.0034 0.157 0.621 0.0217 0.0127 0.0121 0.078

WL+GCph
Optimistic 0.0051 0.0024 0.068 0.246 0.0145 0.0043 0.0040 0.024
Pessimistic 0.0035 0.0027 0.064 0.333 0.0199 0.0108 0.0055 0.050

WL+GCph+XC
Optimistic 0.0020 0.0023 0.035 0.169 0.0137 0.0038 0.0020 0.021

Notes. We consider a flat modified gravity model, with departures from general relativity given by the γ parameterisation. We set
{`max(WL), `max(GCph)} according to the pessimistic and optimistic assumptions.
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Fig. A.1. Top panel: 1σ and 2σ confidence contours on the optimistic, flat GR case for GCph+WL (blue) vs. GCph+WL+XC (red) for the seven
cosmological parameters, using the Flagship bias as a fiducial galaxy bias model. Bottom panel: 1σ and 2σ confidence contours on the optimistic,
flat GR case for GCph+WL (blue) vs. GCph+WL+XC (red) for the IA parameters and the four bias parameters, using the same galaxy bias model
as above.
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Table A.4. 68% errors on the ten bias parameters of the binned bias model with and without the XC contribution.

Bias parameters: flat modified gravity cosmology, baseline

Probe Case σ(b1) σ(b2) σ(b3) σ(b4) σ(b5) σ(b6) σ(b7) σ(b8) σ(b9) σ(b10)
Pessimistic 0.0087 0.0109 0.0159 0.0206 0.0249 0.0290 0.0334 0.0378 0.0436 0.0542

WL+GCph
Optimistic 0.0038 0.0060 0.0076 0.0092 0.0107 0.0120 0.0136 0.0147 0.0168 0.0202
Pessimistic 0.0079 0.0091 0.0120 0.0149 0.0177 0.0203 0.0230 0.0258 0.0295 0.0363

WL+GCph+XC
Optimistic 0.0024 0.0045 0.0064 0.0081 0.0096 0.0109 0.0125 0.0136 0.0156 0.0188

Notes. We consider a flat modified gravity model, with departures from general relativity given by the γ parameterisation. We set
{`max(WL), `max(GCph)} according to the pessimistic and optimistic assumptions.

Table A.5. 68% errors on the cosmological parameters, with and without the XC contribution, when the bias is modeled following the Flagship
simulation.

Cosmological parameters: flat cosmology, Flagship bias
Probe Case σ(Ωm,0) σ(Ωb,0) σ(w0) σ(wa) σ(h) σ(ns) σ(σ8)

Pessimistic 0.0089 0.0030 0.1178 0.4060 0.0206 0.0095 0.0082
WL+GCph

Optimistic 0.0040 0.0023 0.0519 0.1754 0.0133 0.0038 0.0034
Pessimistic 0.0034 0.0026 0.0400 0.1604 0.0189 0.0090 0.0039

WL+GCph+XC
Optimistic 0.0018 0.0022 0.0253 0.0934 0.0130 0.0036 0.0017

Notes. We consider a flat general relativity model, and we set {`max(WL), `max(GCph)} according to the pessimistic and optimistic assumptions.
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