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ABSTRACT

Context. The key probes of the growth of a large-scale structure are its rate f and amplitude σ8. Redshift space distortions in the
galaxy power spectrum allow us to measure only the combination fσ8, which can be used to constrain the standard cosmological
model or alternatives. By using measurements of the galaxy-galaxy lensing cross-correlation spectrum or of the galaxy bispectrum, it
is possible to break the fσ8 degeneracy and obtain separate estimates of f and σ8 from the same galaxy sample. Currently there are
very few such separate measurements, but even this allows for improved constraints on cosmological models.
Aims. We explore how having a larger and more precise sample of such measurements in the future could constrain further cosmo-
logical models.
Methods. We considered what can be achieved by a future nominal sample that delivers an ∼1% constraint on f and σ8 separately,
compared to the case with a similar precision on the combination fσ8.
Results. For the six cosmological parameters of ΛCDM, we find improvements of ∼5–50% on their constraints. For modified gravity
models in the Horndeski class, the improvements on these standard parameters are ∼0–15%. However, the precision on the sum of
neutrino masses improves by 65% and there is a significant increase in the precision on the background and perturbation Horndeski
parameters.

Key words. dark energy – large-scale structure of Universe

1. Introduction

The growth of a large-scale structure is sensitive to the theory of
gravity and its measurement is a powerful test of the standard and
alternative models of cosmology. It is characterised at the most
basic level by the rate of growth f = −d ln D/d ln(1 + z), where
D(z) is the growth function of the linear matter density contrast,
δ(z, k) = D(z)δ(zin, k)/D(zin), given an initial redshift zin. This
rate governs the evolution of peculiar velocities, whose impact
on the observed galaxy power spectrum is to introduce a red-
shift space distortion (RSD). The measurement of this anisotropy
at redshift z delivers an estimate of f (z)σ8(z), where σ8 fixes
the amplitude of the matter density fluctuations. The degener-
acy between f and σ8 echoes the degeneracy between the linear
galaxy bias andσ8, and it cannot be broken via RSD power spec-
trum measurements alone.

The degeneracy can be broken by using an alternative
observable in the galaxy sample that involves σ8 or f . For
example, combining RSD power spectrum measurements with
galaxy-galaxy lensing measurements has produced separate esti-
mates of f and σ8 (de la Torre et al. 2017; Shi et al. 2018; Jullo
et al. 2019). There are currently only a handful of such esti-
mates, but even with only three separated data pairs, constraints
on cosmological models improve noticeably (Perenon et al.
2019). Another way to break the degeneracy is by combining

RSD measurements in the power spectrum and bispectrum (Gil-
Marín et al. 2017).

Breaking the growth degeneracy is expected to break degen-
eracies between certain cosmological and modified gravity
parameters. Here we confirm this expectation by computing the
improvement in precision when using future separated measure-
ments of f and σ8 as compared to using the usual combined
measurements fσ8. We make forecasts for the standard Λ cold
dark matter (CDM) model and for scalar-tensor theories in the
Horndeski class (Horndeski 1974), using the effective field the-
ory (EFT) of dark energy (DE; Gubitosi et al. 2013; Bloomfield
et al. 2013), see Frusciante & Perenon (2020) for a recent review
and Gleyzes et al. (2016), Alonso et al. (2017), Leung & Huang
(2017), Abazajian et al. (2016), Reischke et al. (2019), Spurio
Mancini et al. (2018), Frusciante et al. (2019), Ballardini et al.
(2019) for more general Horndeski forecasts).

2. Models

We consider two models to assess the constraining power of the
different growth of structure quantities. The first is the standard
cosmological model ΛCDM, whose free parameters are (Planck
Collaboration V 2020){
Ωbh2,Ωch2,H0, τ, As, ns,Σmν

}
, (1)
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where the total neutrino mass
∑

mν is equally shared by the three
degenerate species. For the second, we chose the popular bench-
mark for studies of alternative gravitational models (Frusciante
& Perenon 2020) that are Horndeski theories (Horndeski 1974).
They are the most general covariant scalar-tensor theories with
direct second-order equations of motion. We use in particular
their description of linear perturbations provided by the α-EFT
basis Bellini & Sawicki (2014). Bellini & Sawicki (2014) pro-
vide complete details of the construction of the action.

Observations suggest that the speed of gravitational waves is
equal to that of light (Abbott et al. 2017a,b). This reduces the
number of redshift-dependent functions in the effective descrip-
tion that govern how modifications of gravity affect perturbations
to three:

αM(z) − evolution of the effective Planck mass;
αB(z) −mixing between the metric and DE field;
αK(z) − kinetic energy of scalar perturbations.

Although αK has virtually no effect on constraints from cur-
rent data (Bellini et al. 2016; Frusciante et al. 2019), it needs to
be included as a free parameter, since it regulates the propaga-
tion speed of DE perturbations. Setting it arbitrarily to zero could
restrict the space of stable models and thus bias the constraints
(Kreisch & Komatsu 2018; Frusciante et al. 2019).

The functional forms of αI(z), I = M, B,K, are not given
by the effective description. For simplicity, we use the effective
DE parametrisation (Piazza et al. 2014; Bellini & Sawicki 2014)
common in the literature,

αI(z) = aI
Ωx(z)
Ωx,0

· (2)

We also allow for deviations from a ΛCDM background
by using the Chevallier-Polarski-Linder (CPL; Chevallier &
Polarski 2001; Linder 2003) parametrisation for the effective DE
equation of state of the Horndeski models:

wx(z) = w0 + wa
z

1 + z
· (3)

In summary, the Horndeki model we consider contains five
additional free parameters with respect to ΛCDM:{
Ωbh2,Ωch2,H0, τ, As, ns,Σmν,w0,wa, aM , aB, aK

}
. (4)

The ΛCDM model is recovered for w0 = −1 and wa = aM =
aB = aK = 0.

3. Methodology

The cosmological evolution of the models was computed using
the Boltzmann code1 CLASS (Blas et al. 2011), and its mod-
ified version2 hi_class (Zumalacarregui et al. 2017; Bellini
et al. 2020). The cosmological data – hereafter referred to as
the “baseline” – contain the SDSS-II/SNLS3 Joint Light-curve
Analysis (JLA) sample of type Ia supernova (SNIa; Betoule et al.
2014), the Baryon Oscillation Spectroscopic Survey (BOSS)
baryon acoustic oscillation (BAO) measurements (Beutler et al.
2011; Anderson et al. 2014; Ross et al. 2015), and the low- and
high-multipole temperature and polarisation of Planck 2018 cos-
mic microwave background (CMB) data (Planck Collaboration

1 www.class-code.net
2 www.hiclass-code.net

V 2020). We chose not to include CMB lensing data to avoid
inconsistencies related to potential ΛCDM-dependent assump-
tions made during the lensing reconstruction.

Our aim was to focus on the gain from breaking growth
degeneracy, rather than making realistic mocks and forecasts.
In order to compare the constraining power of separated mea-
surements of f and σ8 with the combined measurements fσ8,
we simulated data for a nominal future galaxy sample that
delivered a one percent precision for f , σ8, and fσ8. We
assumed a redshift range containing ten measurements at z =
0.1, 0.2, . . . , 1. The effects of extending the redshift range are
studied in Sect. 4.3. We anticipate that a Stage IV experiment
conducting a spectroscopic galaxy count survey together with
a weak lensing survey, such as Euclid (Amendola et al. 2018),
should be able to achieve close to 1% precision on fσ8, f , and
σ8, using Planck priors on standard cosmological parameters.

Whenever needed, the growth quantities are computed with
CLASS or hi_class. In order to compare the constraints on the
same footing and avoid non-linear model dependencies, we com-
puted the growth quantities with the linear power spectrum only.
The values of σ8 were obtained via the usual weighted integral
of the linear power spectrum and f was computed as the log
derivative f = −(1 + z)d lnσ8/d ln z for simplicity.

As fiducial parameters we used the best-fit values obtained
from the baseline constraints for the ΛCDM and Horndeski
models. Then we created three sets of mocks for both models
(for f , σ8, and fσ8), each exactly centred on their fiducial,
meaning no random variance added to the data. The ΛCDM
model has been shown to lie in a corner of the parameter
space of stable Horndeski models (Piazza et al. 2014), which
are ghost- and gradient-free models. When performing forecasts
using Markov chain Monte Carlo (MCMC) methods, the stabil-
ity priors can lead to a disfavouring of models lying close to the
corner, purely due to volume effects and independently of their
actual likelihood. Such considerations may have a significant
effect on our results. This is hinted at for example by the highly
irregular posteriors in the baseline case in Fig. 3 (grey contours)
and the mismatch between their maximum and the best-fit model
(dotted lines), characteristic of non-negligible prior effects. We
can however expect those effects to be mitigated when additional
data is added to the analysis, due to the fact that our Horndeski
fiducial model (derived from the baseline best fit and used to
produce our mocks) lies noticeably away from the “ΛCDM cor-
ner”. Even if our MCMC explorations were impacted by such
priors, this should not affect our conclusions since we always
make statements regarding relative improvements.

4. Constraints

The sampling of all the considered likelihoods, as well as the
computation of best-fit parameters, are performed using the pub-
licly available3 suite of codes ECLAIR (Ilić et al. 2020). It
uses as its main sampling algorithm the affine-invariant ensem-
ble method of Foreman-Mackey et al. (2013) and contains a
novel and robust maximiser with reliable convergence towards
the global maximum of the posterior.

4.1. ΛCDM

Marginalised posterior distributions are shown in Fig. 1. The
corresponding means and 68% confidence intervals are given in
Table 1, while Table 2 shows the gain in precision relative to the

3 https://github.com/s-ilic/ECLAIR
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Fig. 1. One-dimensional and two-
dimensional marginalised posterior dis-
tributions for ΛCDM parameters derived
from the baseline only (grey), baseline
with mock on fσ8 (blue), and baseline
with mocks on f and σ8 (red). The dotted
lines indicate the parameter values for
the fiducial model (corresponding to the
baseline best fit) used when generating
mocks.

Table 1. Mean and 68% confidence interval for ΛCDM parameters.

fσ8 f + σ8

Ωbh2 0.022440.00013
−0.00013 0.022450.00012

−0.00012
Ωch2 0.119180.00062

−0.00063 0.119040.00048
−0.00048

H0 68.100.32
−0.32 68.170.22

−0.22
τ 0.05810.0058

−0.0066 0.05890.0044
−0.0056

ln(1010As) 3.05090.0106
−0.0121 3.05240.0075

−0.0104
ns 0.96710.0034

−0.0034 0.96730.0031
−0.0031

Σmν 0.02630.0062
−0.0263 0.02480.0058

−0.0248

Notes. The constraints are obtained by combining the baseline with the
fσ8 mock (middle column) and f and σ8 mocks (right column).

baseline (first two columns) and for the separated growth mea-
surements f +σ8 relative to the standard fσ8 measurements (last
column). We define the precision as the inverse width of the 68%
marginalised confidence interval rather than using relative errors,
since the latter can become misleading when the mean values are
close to zero (e.g., in the case of Σmν). In addition, comparing
relative errors would also be biased when the mean values shift,
as happens for the Horndeski models (see below).

Next-generation surveys are forecast to deliver improved
constraints from high-precision RSD fσ8 data (see e.g.
Amendola et al. 2018; Bacon et al. 2020). The triangle plots and
the tables confirm this. Table 2 (first column) shows that the

Table 2. Precision ratios for ΛCDM parameters.

Baseline Baseline Baseline
+ fσ8 + f + σ8 + f + σ8

/baseline /baseline /baseline + fσ8

Ωbh2 1.08 1.15 1.06
Ωch2 1.66 2.16 1.30
H0 1.55 2.26 1.46
τ 1.25 1.54 1.22
ln(1010As) 1.40 1.77 1.26
ns 1.16 1.27 1.09
Σmν 1.48 1.57 1.13

Notes. Section 4.1 gives details.

gain in precision ranges from ∼10% for Ωbh2 up to more than
∼50% for Ωch2,H0 and Σmν, when considering the addition of
the mock data on fσ8, with 1% relative error combined to cur-
rent cosmological data sets.

As expected the constraints improve further with the split
mock data on f and σ8, each with a 1% relative error. This com-
bination performs from 6% to almost 50% better. In particular,
the precision on Ωch2 and H0 is more than doubled relative to
the baseline data alone.

The improvement obtained from the split f and σ8 data over
fσ8 (as quantified by the third column of Table 2) does not lead
to an equal increase in precision on all the parameters that were
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Fig. 2. One-dimensional marginalised posterior distributions (top row) for ΛCDM parameters, from baseline only (grey), baseline + mock on f
(green), and baseline + mock on σ8 (purple). Rows below show 2D posteriors of cosmological parameters against derived parameters f , σ8, and
fσ8 at z = 0.1.

already well constrained with fσ8 RSD data. As an example,
we can compare Σmν and H0. Adding fσ8 data yields almost a
50% gain on Σmν, while the split f + σ8 data further increases
the precision by 13%. By contrast, H0 precision first increases
by 55% followed by another 46% with the splitting.

The growth probes f , σ8, and fσ8 have different sensitiv-
ities to each cosmological parameter, which explains the range
of changes in precision. One way to examine those sensitivities
is to start with the baseline-only constraints. Figure 2 shows the
posterior distributions of f , σ8, and fσ8 at redshift z = 0.1 as
derived parameters versus the cosmological parameters4. Each
posterior thus illustrates how a change in a given cosmological
parameter impacts the values of the derived growth quantities,
taking into account (i.e. marginalising over) the remaining cos-
mological parameters and how their values need to change to
keep a decent fit to the data.

On the other hand, adding constraints on the growth quanti-
ties amounts to convolving their posteriors with a Gaussian dis-
tribution (with a width equal to 1% of the central value). This
in turn may reduce the width of the posterior on cosmological
parameters, depending on the amount of correlation between the
two. It is thus expected that cosmological parameters that are
highly correlated (i.e. thin tilted ellipses) with a given growth
quantity in the baseline case, will show the best improvements
after including measurements of that growth quantity.

From Fig. 2 we find that Ωb, Ωc, H0, and ns are better con-
strained by adding the f mock (green) to the baseline, while
τ, As, and Σmν are better constrained by adding the σ8 mock
(purple). This may appear counter to the common expectation
that σ8 is more sensitive to parameters affecting the power spec-
trum amplitude, while f is more sensitive to parameters affecting
its shape. It is the correlations induced by the baseline constraints
that are the decisive factor.

Let us consider an illustrative example from Fig. 2: the 2D
posterior of { f (0.1),H0} exhibits a high correlation (thin tilted

4 We find the orientations of these posteriors (i.e. correlation factors
between parameters) to change very little with redshift. Therefore we
consider only z = 0.1 for illustration, but our discussion applies to the
other z.

ellipse), while that of {σ8(0.1),H0} is relatively irregular and
close to an uncorrelated case. As a result, the addition of the
f mock improves the H0 constraint significantly more relative to
the baseline (see the 1D posterior of H0 in the top row of Fig. 2).

These correlations can even lead to improved constraints on
parameters that f and σ8 should not depend on. An example
is the tight constraint on the reionisation parameter τ produced
by the mock on σ8, which originates in the tight constraint on As
fromσ8, combined with the underlying high correlation between
As and τ, as shown in Fig. 1. A tight constraint on τ is obtained
even though it does not play a role in the value of σ8.

4.2. Horndeski

The Horndeski parameter space is extended to include modi-
fications in the background (w0,wa) and in the perturbations
(αM , αK , αB). Marginalised posterior distributions with the base-
line and mock data sets are displayed in Fig. 3, with the cor-
responding means and 68% confidence intervals in Table 3.
We observe that the maximum of the posterior distribution for
the extension parameters shifts significantly towards the best-fit
model (dotted lines), while the contours assume a much more
regular, ellipsoidal shape compared to the baseline case. This is
expected in a transition from a regime where priors still play a
significant role (as discussed at the end of Sect. 3), to a situation
where data dominate the posterior. Interestingly, these results
also show that if the true underlying cosmology is indeed close to
the Horndeski best-fit fiducial, then growth data with 1% relative
precision (over the redshift range considered) could lead to the
detection of this deviation from ΛCDM with strong significance
(more than 5σ).

Table 4 shows the gain in precision relative to the baseline
(first two columns) and for the separated growth measurements
f +σ8 relative to the standard fσ8 measurements (last column).
As pointed out earlier, the kineticity coupling αK is not con-
strained by the data and is therefore not included in the figure
and tables, but aK is included as a free parameter in the analy-
sis. The accuracy that was gained on the cosmological param-
eters in ΛCDM is largely lost. Adding the mock on fσ8 only
delivers a precision gain of up to ∼20% (see Table 4). This can
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Table 3. Mean and 68% confidence interval for Horndeski parameters.

fσ8 f + σ8

Ωbh2 0.022590.00015
−0.00014 0.022580.00015

−0.00015

Ωch2 0.118010.00122
−0.00122 0.118190.00122

−0.00122

H0 68.440.96
−0.96 68.690.85

−0.85

τ 0.05080.0075
−0.0075 0.05260.0070

−0.0068

ln(1010As) 3.03240.0157
−0.0155 3.03660.0140

−0.0136

ns 0.97040.0042
−0.0042 0.97020.0042

−0.0042

Σmν 0.09530.0261
−0.0953 0.07420.0206

−0.0742

w0 −0.96360.0862
−0.0797 −0.97700.0813

−0.0814

wa −0.19010.2632
−0.2636 −0.15430.2984

−0.2494

aB 1.94930.1801
−0.2058 1.92620.1791

−0.2003

aM 3.34730.4411
−0.5943 3.04850.2630

−0.3799

Notes. The constraints are obtained by combining the baseline with the
fσ8 mock (middle column) and f and σ8 mocks (right column).

Table 4. Precision ratios for Horndeski parameters.

Baseline Baseline Baseline
+ fσ8 + f + σ8 + f + σ8

/baseline /baseline /baseline + fσ8

Ωbh2 1.11 1.10 0.99
Ωch2 1.20 1.20 1.00
H0 1.19 1.35 1.12
τ 0.96 1.04 1.05
ln(1010As) 0.98 1.11 1.13
ns 1.10 1.10 1.00
Σmν 1.49 1.91 1.65
w0 1.29 1.32 1.01
wa 1.65 1.59 1.18
aB 2.83 2.87 1.03
aM 3.30 5.32 1.77

Notes. Section 4.2 gives details.

be attributed to the addition of new, poorly constrained degrees
of freedom, which naturally leads to larger errors on all the orig-
inal parameters via correlations, as both sets may have similar
and degenerate effects on the growth of structure. For example,
Fig. 3 shows how aM and aB are relatively degenerate with other
parameters when using the baseline data only.

However, there is significant improvement for the extension
parameters: adding future fσ8 data yields a 230% improvement
for the running of the effective Planck mass αM and a remarkable
∼50% gain for Σmν. Even though fσ8 is a probe of the pertur-
bations, adding its mock to the baseline achieves a surprising
∼30% and ∼60% gain in precision for w0 and wa respectively.

The additional gain from disentangling f and σ8 measure-
ments is also subject to the effects of opening up the parameter
space. The standard parameters see little improvement (<15%)
over the fσ8 case. By contrast, wa,Σmν, and αM precisions jump
by a further ∼20%,∼65%, and ∼80% respectively.

The underlying reason why growth data provide such an
enhancement in precision for the Horndeski parameters is rooted
in the modification of gravitational dynamics (e.g. the Poisson
equation) by αI . As discussed in Perenon et al. (2019), these

modifications produce two opposing contributions:
∗ a fifth force, enhancing growth;
∗ a higher effective Planck mass, suppressing growth.

The effective Planck mass is controlled solely by αM for the
models we consider. As a result, growth data strongly constrains
aM and also aB. Table 4 shows that the splitting of fσ8 into f
and σ8 is very effective to further constrain aM , thereby disen-
tangling the fifth force and effective Planck mass contributions.
This feature was seen even with current split data in Perenon
et al. (2019).

The modified background parameters w0 and wa also con-
tribute to the growth of structure through Hubble friction. Their
effects on growth are therefore degenerate with those of αI . We
see in Fig. 4 that w0, wa, aB, and aM display some degeneracies
in their 2D marginalised posteriors.

Following the arguments for ΛCDM, we can understand the
separate improvements from f and σ8 by analysing their pos-
terior distributions versus cosmological parameters, shown in
Fig. 4. We note that the stability requirements for the Horn-
deski models induce highly non-Gaussian posterior distribu-
tions, which makes the analysis more subtle. Figure 4 shows
that f correlates more strongly with aB and aM than σ8, so
that adding f measurements results in a larger increase in pre-
cision for these parameters. Since these two parameters control
the strength of the fifth force, this could be expected, given that
σ8 is an integrated function of f , which tends to wash out the
effects of the fifth force. The fifth force is an effect occurring at
low redshifts as opposed to the effect of Hubble friction or neu-
trinos. A chain of correlations – seen in the baseline constraints –
shows that σ8 brings a larger gain in precision for w0, wa, and
Σmν. This signals therefore a higher sensitivity of σ8 to modifi-
cations of gravity spanning longer periods.

It is in fact expected that the effect of neutrinos is partially
degenerate with that of modified gravity (see e.g. Wright et al.
2019; Ballardini et al. 2020). Massive neutrinos suppress the
growth of structure on small scales, which can either oppose or
reinforce modified gravity, depending on whether the fifth force
or the Planck mass running is favoured. Horndeski models com-
patible with current RSD fσ8 constraints produce a suppression
of growth at late times (Perenon et al. 2019).

The baseline constraints in Fig. 3 show that the 2D posteri-
ors of Σmν with aB and aM have a fairly irregular shape, while
those with w0 and wa are more correlated. More surprisingly, as
noted above, Σmν has almost a 50% gain with the addition of the
fσ8 mock data, as in the case of ΛCDM. The splitting improves
constraints by a further 70% as opposed to 7% in ΛCDM. It
is therefore clear that these growth mocks break the neutrino-
modified gravity degeneracy by efficiently constraining Σmν and
the extension parameters. Figure 4 tells us that this is rooted in
the correlation of Σmν with σ8 in the baseline.

On the other hand, we also see that all the intricate degen-
eracies between the extension parameters and standard model
parameters render the baseline constraints for the latter much
less correlated than in the case of ΛCDM. This explains why the
improvements from the splitting are not as great in the case of
Horndeski for the other standard parameters. We note that when
the background evolution is fixed to that of ΛCDM, Σmν displays
a correlation with αB (Bellomo et al. 2017). Here, the freedom
that arises from varying w0 and wa lessens that correlation.

4.3. Extending the redshift range

Having understood better the influence of each mock data set
on the constraints, we now assess the effect of extending the
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Fig. 3. One-dimensional and two-dimensional marginalised posterior distributions for Horndeski parameters derived from the baseline only (grey),
baseline with mock on fσ8 (blue), and baseline with mocks on f and σ8 (red). The dotted lines indicate the parameter values for the fiducial model
(corresponding to the baseline best fit) used when generating mocks.

redshift coverage of the mocks. More specifically, we examine
the respective merits of adding fσ8 or f + σ8 measurements,
when extending the maximum redshift of each mock. Table 5
shows that the combined data fσ8 with zmax = 2 (first column)
performs no better than f + σ8 data with half the redshift range
(zmax = 1, see Tables 1 and 3). We find that extending the redshift
range further improves the precision up to 30% with respect to
zmax = 1 in the case of the combined mock fσ8 for ΛCDM and
Horndeski models, and respectively 20% and 15% in the case of
f and σ8 mocks.

5. Conclusion

Upcoming galaxy surveys such as Euclid (Amendola et al. 2018)
and Square Kilometre Array (SKA; Bacon et al. 2020) with their
unprecedented precision is a call to sharpen our tools for con-
straining gravity. One cosmological probe well suited for that

task is the growth of structure. This toolbox is further comple-
mented by the releases of measurements on f and σ8 (de la Torre
et al. 2017; Shi et al. 2018; Jullo et al. 2019; Gil-Marín et al.
2017).

In this paper, we considered the performance that a future
nominal galaxy sample can deliver with a ∼1% relative error on
f and σ8 separately and on the combination fσ8. We compared
the constraints from the separated data with those from the com-
bination data. We assumed ten measurements per growth quan-
tity equally spread over the redshift range z = 0.1, 0.2, . . . , 1.0.
For the case of ΛCDM, the improvements in precision range
over ∼5–50%. For modified gravity described by Horndeski
models, the improvements on these standard model parameters
reduce to ∼0–15%.

However, the splitting of f andσ8 stands out as very effective
in breaking the neutrino – modified gravity degeneracy, with the
sum of neutrino masses enjoying an improvement of 65% over
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Fig. 4. One-dimensional marginalised posterior distributions (top row) for Horndeski parameters, from baseline only (grey), baseline + mock on f
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Table 5. Mean and 68% confidence interval for ΛCDM (top) and Horn-
deski (bottom) parameters with the redshift of the mocks extended to
z = 0.1, 0.2, . . . , 2.0.

fσ8 (zmax = 2) f + σ8 (zmax = 2)

Ωbh2 0.022450.00012
−0.00012 0.022440.00012

−0.00012
Ωch2 0.119100.00055

−0.00054 0.119070.00046
−0.00046

H0 68.170.25
−0.25 68.170.21

−0.21

τ 0.05880.0045
−0.0056 0.05870.0038

−0.0048

ln(1010As) 3.05240.0075
−0.0102 3.05210.0062

−0.0089
ns 0.96730.0032

−0.0033 0.96730.0031
−0.0031

Σmν 0.02340.0055
−0.0234 0.02340.0055

−0.0234
Ωbh2 0.022590.00015

−0.00015 0.022580.00015
−0.00015

Ωch2 0.118130.00123
−0.00123 0.118240.00117

−0.00117
H0 68.600.88

−0.88 68.630.82
−0.81

τ 0.05230.0071
−0.0072 0.05240.0071

−0.0071
ln(1010As) 3.03570.0144

−0.0143 3.03650.0141
−0.0143

ns 0.97020.0042
−0.0042 0.97010.0041

−0.0041

Σmν 0.06560.0181
−0.0656 0.06930.0185

−0.0693

w0 −0.97610.0840
−0.0850 −0.97640.0705

−0.0710

wa −0.13280.2831
−0.2542 −0.14520.2666

−0.2167

aB 1.94940.1710
−0.1939 1.92660.1594

−0.1857

aM 3.12740.3142
−0.4618 3.05520.2409

−0.3672

Notes. The constraints are obtained by combining the baseline with the
fσ8 mock (middle column) and f and σ8 mocks (right column).

the case with only fσ8 data. We also find a significant increase
in the precision on the background and perturbation Horndeski
parameters, with an additional gain of ∼20% for the varying
effective DE equation of state parameter wa and ∼80% for the
evolution of the effective Planck mass aM . Extending the redshift
of the mocks up to zmax = 2 shows that the constraints provided
by the combined fσ8 data are already matched by the split data
f and σ8 with zmax = 1.

Our results highlight that growth data, whether split or com-
bined and with 1% relative error could lead to the detection of
deviations from ΛCDM with strong significance (more than 5σ),
should the underlying cosmology be close to the current Horn-
deski best-fit fiducial. The splitting of growth data on fσ8 into
data on f and σ8 with galaxy-galaxy lensing (de la Torre et al.
2017; Shi et al. 2018; Jullo et al. 2019) or by combinations with
the bispectrum (Gil-Marín et al. 2017) emerges clearly from this
work as both a powerful complementary probe for the standard
model and a stringent probe to detect departures from it. The
latter could prove crucial in the era of future surveys, given the
current tensions within the standard model and the emergence
of alternative models of gravity favoured by Bayesian evidence
(Peirone et al. 2019; Solà Peracaula et al. 2019).
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