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For a long time, the predictive limits of perturbative quantum field theory have been limited by our
inability to carry out loop calculations to an arbitrarily high order, which become increasingly complex as
the order of perturbation theory is increased. This problem is exacerbated by the fact that perturbation series
derived from loop diagram (Feynman diagram) calculations represent asymptotic (divergent) series which
limits the predictive power of perturbative quantum field theory. Here, we discuss an ansatz that could
overcome these limits, based on the observations that (i) for many phenomenologically relevant field
theories, one can derive dispersion relations which relate the large-order growth (the asymptotic limit of
“infinite loop order”) with the imaginary part of arbitrary correlation functions, for negative coupling
(“unstable vacuum”), and (ii) one can analyze the imaginary part for negative coupling in terms of classical
field configurations (instantons). Unfortunately, the perturbation theory around instantons, which could
lead to much more accurate predictions for the large-order behavior of Feynman diagrams, poses a number
of technical as well as computational difficulties. Here, we study, to further the above-mentioned ansatz,
correlation functions in a one-dimensional (1D) field theory with a quartic self-interaction and an OðNÞ
internal symmetry group, otherwise known as the 1D N-vector model. Our focus is on corrections to the
large-order growth of perturbative coefficients, i.e., the limit of a large number of loops in the Feynman
diagram expansion. We evaluate, in momentum space, the two-loop corrections for the two-point
correlation function, and its derivative with respect to the momentum, as well as the two-point correlation
function with a wigglet insertion. Also, we study the four-point function. These quantities, computed at
zero momentum transfer, enter the renormalization-group functions (Callan-Symanzik equation) of the
model. Our calculations pave the way for further development of related methods in field theory and for a
better understanding of field-theoretical expansions at large order.

DOI: 10.1103/PhysRevD.101.125001

I. INTRODUCTION

A. Orientation

We here lay the groundwork for the detailed analysis of
the large-order behavior of perturbation theory for corre-
lation functions in field-theoretical models, pertaining to

phase transitions. Over the past decades, several steps have
been made in the analysis of larger orders of perturbation
theory, for both quantum mechanical problems as well as
field theory. Indeed, it was Dyson who argued that, because
of vacuum instabilities induced for a fictitiously negative
value of the fine-structure constant, the quantum electro-
dynamic (QED) perturbation series could at best constitute
an asymptotic series [1]. Later, this conjecture was sub-
stantiated, and the (factorial) divergence of perturbation
theory, for both quantum mechanical oscillators [2–4] as
well as field theory [5–8], was quantified both in terms of
the power-law coefficients as well as in terms of the
additive constants in the factorial growth of perturbation
theory at large orders. Information regarding the leading
terms in the perturbative expansion of perturbation theory
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has been instrumental in the determination of critical
exponents for the N-vector model, which is a ϕ4 theory
with an internal OðNÞ symmetry group [9–12].
For anharmonic oscillators, one has been able to write

down generalized Bohr-Sommerfeld quantization condi-
tions that characterize the eigenvalues, including instanton
contributions, to all orders [13–18]. From these conditions,
one was able to infer the leading factorial divergence of
perturbation theory, as well as subleading corrections, for
large perturbation theory order. Calculations were, how-
ever, restricted to the partition function (i.e., to the ground-
state energy of the quantum system).
However, a decisive step that has not been fully clarified

in the literature so far is the extension of the large-order
analysis beyond leading order to quantities of interest other
than the partition function. Correlation functions are of
interest in the calculation of critical exponents. First steps
in this direction have been taken recently [19], with an
emphasis on a scalar ϕ4 theory in two and three dimen-
sions. Here, we report on essential progress in the latter
endeavor, for a theory with an internal symmetry group
OðNÞ, in one dimension. First, we use a formulation
of the functional determinant [18], which allows us to
separate the path integral around the nontrivial (instanton)
saddle point into integrals over the collective coordinates
(the start point of the instanton and the variables character-
izing the internal space of the theory), as well as integrals
over the transverse fluctuations around the nontrivial
saddle point, in the internal symmetry group. The func-
tional determinant does not factorize into longitudinal
and transverse fluctuations (the latter being relevant to
the internal space). Second, the application of the Wick
theorem allows us to express the two-loop corrections
around the classical extremum of the action, in terms
of the longitudinal, and transverse, propagators of the
(perpendicular) fluctuations, where “perpendicular” here
refers to the exclusion of the zero mode, which is an
eigenstate of the fluctuation operator with zero eigenvalue,
corresponding to an invariance under a collective coor-
dinate. Third, the final integrations are carried out and lead
to expressions involving Riemann zeta functions of even
and odd integer arguments. Eventually, we are able to carry
out all integrations analytically. In the course of the
calculations, we find the PSLQ algorithm useful in the
very final analytic steps [20–23].
Here, we restrict the discussion to the one-dimensional

case. We put special emphasis on the partition function, on
the two-point correlation function, on its derivative with
respect to the momentum, on the two-point correlation
function with a wigglet insertion, and on the four-point
correlation function. All the correlation functions are
computed at zero momentum transfer, as is required for
an input into the Callan-Symanzik equation. While, in one
dimension, the field fluctuations are not strong enough to
induce a phase transition, we clarify the connection of our

calculations to the quantities entering the renormalization-
group (RG) equations in Appendix A.
This paper is organized as follows. We derive the func-

tional determinant for the transformation into collective
coordinates and field fluctuations, for the quartic OðNÞ
theory, in Sec. II. The formalism is applied to the calculation
of the imaginary part of the ground-state resonance energy
(i.e., to the partition function in the large-β limit). We use a
normalization that makes the field equation for the instanton
(classical) field configuration assume a particularly simple
form [see Eq. (2.1) below]. The path integral Jacobian is
derivedwith a particular emphasis on the nonfactorization of
the longitudinal and transverse fluctuations. In Sec. III, we
continuewith the calculation of the two-point and four-point
functions as well as the derivative of the two-point function
at zero momentum transfer and the wigglet insertion. All of
these functions enter the Callan-Symanzik [24,25] RG
equations. Three appendixes complement our investiga-
tions. In Appendix A, we supply an integral table that is
useful for the calculation of the propagator integrals.
Appendix B is devoted to the connection of the correlation
functions at zero momentum, investigated here, and the
Callan-Symanzik equation.

B. Large-order behavior and analyticity

A central point of our investigations is the connection
between the low-order behavior of the imaginary part of a
n-point correlation function GðgÞ and the large-order
behavior of its real part. Let us consider a generic Green
function GðgÞ that is analytic in all the complex plane
except on the negative real axis. We can apply the Cauchy
theorem as follows:

GðgÞ ¼ 1

2πi

I
D
dz

GðzÞ
z − g

; ð1:1Þ

where D is the path in the complex plane encircling the
branch cut on the negative real axis and g is the reference
argument where the function GðgÞ is to be evaluated. The
path D can be decomposed into four contributions (see
Fig. 1),

D ¼ DR þDϵ þDþ þD−: ð1:2Þ

The contributions over the paths DR and Dϵ vanish
identically, and the only remaining contributions come
from the paths Dþ and D−. We can then write

GðgÞ ¼ 1

2πi

Z
0

−∞
dz

discGðzÞ
z − g

; ð1:3Þ

discGðzÞ ¼ lim
ϵ→0

½Gðzþ iϵÞ −Gðz − iϵÞ� ð1:4Þ

¼ −2i ImGðz − iϵÞ; ð1:5Þ
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where the discontinuity of GðzÞ on the cut is given by
discGðzÞ. In the following, we will understand GðzÞ for
z < 0 (on the cut) as the value of GðzÞ obtained when z
acquires an infinitesimal negative imaginary part.
Expanding the relation (1.3) in z, we obtain

GðgÞ ¼
X∞
K¼0

GKgK ¼ −
1

π

Z
0

−∞
dz

ImGðz − iϵÞ
z − g

¼ −
1

π

X∞
K¼0

gK
Z

0

−∞
dz

ImGðz − iϵÞ
zKþ1

: ð1:6Þ

So, we find an integral representation for the perturbative
coefficient of order K, of the n-point correlation function.
The minus sign is consistent with Eq. (10) of Ref. [16] and
with Eq. (2.31b) of Ref. [17]; note that, however, the
resonance energy in the cited publications was identified
with an infinitesimal positive imaginary part of the coupling.
We refer to the perturbative coefficient of order K as GK

and write

GK ¼ −
1

π

Z
0

−∞
dg

ImGðg − iϵÞ
gKþ1

¼ ð−1ÞK
π

Z
∞

0

dg
ImGð−g − iϵÞ

gKþ1
: ð1:7Þ

From this equation, we can understand the importance of
knowing the value of the imaginary part of the correlation
function for small and negative values of the coupling
parameter g. In fact, the large order behavior of the series,
i.e., GK for K large, is dominated by the values of ImGðgÞ
at small and negative values of g.

In the following, we will find that the imaginary part
of a generic n-point function GðgÞ involves, in leading
order, a factor ð−gÞð−N−1þDÞ=2 from the leading-order
Jacobian, given in Eq. (2.20). We anticipate that a factor
ð−gÞð−N−1Þ=2 will be obtained from the N − 1 collective
coordinates inside the OðNÞ symmetry group, which
give rise to the (N − 1)th power of the classical field
configuration in the Jacobian. In D dimensions, one has D
additional collective coordinates describing translation
invariance of the instanton in the D spatial directions
[8]. (For the current investigation, one has D ¼ 1.)
A further factor ð−gÞ−n=2 stems from the n classical field

configurations in the n-point function. However, additional
classical field configurations can be introduced into the
leading-order expressions by mass derivatives, as is evident
from the discussion of the wigglet insertion into the two-
point function (see Sec. III I). In general, our expressions
for the imaginary part of a generic correlation function
ImGðgÞ have the following structure:

ImGðgÞ ¼ cðN;DÞð−gÞ−ðnþNþD−1Þ=2 exp
�
A
g

�
× ½1þ dðN;DÞgþOðg2Þ�; g < 0; ð1:8Þ

where cðN;DÞ and dðN;DÞ are constants and n is the
number of coordinates entering the Green function. We
here concentrate on the Fourier transform. In one dimen-
sion, we find that A ¼ 4=3 in our conventions of the
Euclidean action (2.1). Inserting Eq. (1.8) in Eq. (1.7),
we get

GK ¼ cðN;DÞð−1Þ
K

π

Z
∞

0

dg
e−A=g

gKþðnþNþDþ1Þ=2 ½1−gdðN;DÞ�

¼ cðN;DÞ
π

ΓðKþbÞ
�
1

A

�ðnþNþD−1Þ=2�
−
1

A

�
K

×

�
1−

AdðN;DÞ
Kþb−1

�
; b¼ nþNþD−1

2
: ð1:9Þ

For large K, we can replace K − 1þ b → K in the
denominator of the second term and identify the 1=K
correction. We also note the asymptotic expansion

ΓðK þ bÞ
ΓðK þ 1Þ ¼ Kb−1

�
1þ bðb − 1Þ

2K
þOð1=K2Þ

�
; ð1:10Þ

which can be used in order to bring the leading term in the
expression (1.9) into the familiar form CKb−1BKΓðK þ 1Þ,
with suitable coefficients C and B.
For our calculations as reported below, it is absolutely

decisive to observe the connection of the perturbative
correction about the instanton of relative order g, given
by Eq. (1.8), and the subleading 1=K correction to the
leading factorial growth of the perturbative coefficients,

FIG. 1. The complex integration path D encircling the branch
cut of the Green function.
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given in Eq. (1.9). We shall evaluate the coefficients
dðN;DÞ by two-loop perturbation theory about the instan-
ton configurations.

II. QUARTIC THEORY WITH OðNÞ SYMMETRY

A. Euclidean action

We here follow Ref. [18] in the derivation of the OðNÞ
functional determinant, using a field normalization that
allows us to express the field equations in a particularly
simple analytic form. For the OðNÞ one-dimensional field
theory, we use the action in the form

S½qðtÞ� ¼
Z

dt

�
1

2

�∂qðtÞ
∂t

�
2

þ 1

2
q2ðtÞ þ g

4
q4ðtÞ

�
;

qðtÞ ¼ fq1ðtÞ;…; qNðtÞg ¼ qαðtÞeα; ð2:1Þ

where an N vector in the internal space is denoted by
underlining and, for completeness, we remark that q4ðtÞ is a
shorthand notation for ½q2ðtÞ�2. By group symmetry, for the
classical field configuration, we can pick a specific direc-
tion u in the internal space, for the reference instanton
configuration (note, however, that an averaging over the
possible orientations of u is necessary at the end of the
calculation, as discussed in the following). The classical
field configuration is found as

q
cl
ðtÞ ¼ u

ffiffiffiffiffiffiffi
−
1

g

s
ξclðtÞ; ξclðtÞ ¼

ffiffiffi
2

p

coshðtÞ ; ð2:2Þ

which implies the existence of N collective coordinates,
namely, one time translation parametrized by t0, and N − 1
rotations in the internal space, leading to displacements
orthogonal to the reference vector u.

B. Fluctuation operator

By definition, the first functional derivative of the action
with respect to qβðtÞ,

δS
δqβðtÞ

				
q¼q

cl

¼
�
−
∂2

∂t2 þ 1þ g qγðtÞqγðtÞ
�
qβðtÞ

				
q¼q

cl

;

ð2:3Þ

vanishes at the classical path. This resulting equation is
solved by Eq. (2.2), in view of the identity

�
−

∂2

∂t2 þ 1 − ξclðtÞ2
�
ξclðtÞ ¼ 0: ð2:4Þ

The second functional derivative at the classical path
gives the fluctuation operator, for which we give a number
of useful equivalent representations,

Mαβðt; t0Þ ¼
δS

δqβðtÞδqαðt0Þ
				
q¼q

cl

¼ δðt − t0Þ
�
uαuβ

�
−

∂2

∂t2 þ 1 − 3ξ2clðtÞ
�

þδT;αβ

�
−

∂2

∂t2 þ 1 − ξ2clðtÞ
��

¼ δðt − t0Þ½uαuβMLðtÞ þ δT;αβMTðtÞ�
¼ δðt − t0ÞMαβðtÞ: ð2:5Þ

Here, the transverse δ function is given as

δT;αβ ¼ δαβ − uαuβ; ð2:6Þ

and we have defined the longitudinal (L) and transverse (T)
fluctuation operators as

MLðtÞ ¼ −
∂2

∂t2 þ 1 −
6

cosh2ðtÞ ; ð2:7aÞ

MTðtÞ ¼ −
∂2

∂t2 þ 1 −
2

cosh2ðtÞ : ð2:7bÞ

The fluctuation operator ML ¼ M parametrizes the
longitudinal fluctuations (in the initially chosen direction
u of the instanton), whereas MT describes the transverse
fluctuations (transverse to the initially chosen direction of
the instanton). An illustrative remark is in order. We define
the domain of the operators ML and MT so that respective
zero modes are excluded. Thus, in our notation, the
operators ML and MT are invertible. To denote the
exclusion of the zero mode, the symbols M⊥

L and M⊥
T

have been used in Ref. [18]. Because the longitudinal
fluctuation operator fulfills ML ¼ M, where M is the
fluctuation operator for the scalar theory, we have
ΔL ¼ Δ. The inverse of Mαβ is Δαβ, with

Δαβ ¼ uαuβΔL þ δT;αβΔT: ð2:8Þ

The longitudinal and the transverse propagators ΔL and ΔT
can be calculated analytically [18],

ΔLðt1; t2Þ ¼
1

4
Θðt1 − t2Þ

sinh t1 sinh t2
cosh2t1cosh2t2

fðt1; t2Þ

þ ðt1 ↔ t2Þ; ð2:9Þ

fðt1; t2Þ ¼ 3t2 − 3t1 − 1þ et2
3 sinh t2 − 2 cosh t2

tanh t2

þ e−t1
3 sinh t1 þ 2 cosh t1

tanh t1
; ð2:10Þ

ΔTðt1; t2Þ ¼
1

4
Θðt1 − t2Þgðt1; t2Þ þ ðt1 ↔ t2Þ; ð2:11Þ
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gðt1; t2Þ ¼
�

t2 − t1 − 1

cosh t1 cosh t2
þ e−t1

cosh t2
þ et2

cosh t1

�
: ð2:12Þ

A remark is in order. Namely, a comparison of Eqs. (2.3) to
(2.7) reveals that the scalar instanton configuration ξclðtÞ
constitutes a zero mode of the transverse part of the
fluctuation operator. The instanton path ξclðtÞ has no zero.
Therefore, when interpreted as a quantum mechanical wave
function (eigenfunction of the fluctuation operator), it is
clear that the instanton path represents the ground state of
the transverse fluctuation operator. Thus, the ground state
of the transverse fluctuation operator has zero eigenvalue,
which implies that all other eigenvalues are manifestly
greater than zero. The spectral determinant of the transverse
fluctuation operator therefore is positive.

C. Path integral Jacobian

Even though the problem of the calculation of the
functional determinant has been outlined in Ref. [18],
we here revisit the derivation, with an emphasis on those
aspects of the path integral Jacobian that are important for
the calculation of correlation functions. The appropriate
decomposition of the path reads as follows:

qðtÞ ¼ u½qclðt − t0Þ þ χLðt − t0Þ� þ χ
T
ðt − t0Þ; ð2:13Þ

where u is a time-independent unit vector, u2 ¼ 1, chosen
to point into a specific direction of the (N − 1)-dimensional
unit sphere SN−1 embedded in N-dimensional space.
Furthermore, the longitudinal and transverse variations
χLðtÞ and χTðtÞ are assumed to be orthogonal to their
respective zero modes, i.e., u · χ

T
ðt − t0Þ ¼ 0. The variable

t0 takes the role of a collective coordinate. Throughout this
paper, we denote vectors in the internal symmetry space by
underlining.
To carry out the calculation (see Sec. 5 of Ref. [18]), one

has to observe that the path decomposition (2.13), under the
shift t → t − t0, breaks both time translation and OðNÞ
invariance, by singling out a specific direction u in the
internal space as well as a start time t0 for the instanton. The
collective coordinates are the N − 1 coordinates τi which
parametrize the sphere SN−1, as well as the time parameter
t0. One findsZ

½dqðtÞ�F½qðtÞ�

¼
�

1ffiffiffiffiffiffi
2π

p
�

N
Z

dt0
YN−1

i¼1

Z
dτi

×
Z

½dχLðtÞ�
Z

½dχ
T
ðtÞ�J ½qðtÞ�

×F½u½qclðt− t0ÞþχLðt− t0Þ�þχ
T
ðt− t0Þ�; ð2:14Þ

where the Jacobian J ðqÞ ¼ J ½qðtÞ� has the representation

J ðqÞ ¼ JðqÞffiffiffiffiffiffiffiffiffiffiffiffi
Jðq

cl
Þ

q ;

JðqÞ ¼ det

�Z
dt

∂q
∂ci ·

∂q
cl

∂cj
�
; ci ¼ ðt0; τiÞ: ð2:15Þ

The collective coordinates for time translations t0 and the
collective coordinates for rotations that parametrize SN−1,
which are denoted as τi (i ¼ 1;…; N − 1), are summarized
in the vector ci. It is crucial to carefully analyze the
dependence on the collective coordinate t0, for the path
as well as the Jacobian, in the calculation of correlation
functions. Furthermore, the identification of the path in
terms of the argument t − t0 (rather than tþ t0, as in Sec. 5
of Ref. [18]) serves to illustrate the role of t0 as the
“reference start point” of the classical path.
The rationale behind the transformation (2.14) is as

follows. We start from the path integral over closed pathsH ½dqðtÞ�. There are N − 1 collective coordinates in the
internal space of the OðNÞ theory, and one collective
coordinate describing the time translation of the longi-
tudinal instanton. This means that there are N collective
coordinates in total; the exclusion of these from the
remaining path integral leads to a factor ð2πÞ−N=2. In
the remaining integral over the fluctuations

H ½dχLðtÞ�,
the longitudinal zero mode corresponding to the instanton
path is excluded, leading to convergent expressions for the
Gaussian path integral expectation values. The same
applies to the integration over the transverse fluctuationsH ½dχ

T
ðtÞ�, where we exclude the transverse zero mode, to

be discussed below, in all directions perpendicular to the
fixed vector u in the internal space.
The path qðtÞ is the sum of the classical path uqclðt − t0Þ

and two sums over longitudinal fluctuations (L), and
transverse fluctuations (T). The transverse fluctuations
may point in any of the N − 1 available directions. The
N − 1 vectors e2;…; eN parametrize the transverse fluctu-
ations, orthogonal to u (where u can point into any
direction in the internal space). We also set

qðtÞ ¼ q
L
ðt − t0Þ þ q

T
ðt − t0Þ; ð2:16Þ

with self-explanatory definitions for the longitudinal com-
ponent q

L
ðt − t0Þ ¼ uqLðt − t0Þ and the transverse com-

ponent q
T
ðt − t0Þ. The function _qclðtÞ is the zero mode of

the longitudinal fluctuation operator, whereas qclðtÞ is the
zero mode of the transverse fluctuation operator. The
conditions that the zero modes should be omitted therefore
read

Z
dt _qclðtÞðqLðtÞ − qclðtÞÞ ¼ 0;

Z
dt qclðtÞqTðtÞ ¼ 0;

ð2:17Þ
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where the first condition comes from translations and the
second from OðNÞ rotations. The next step is to calculate
the matrix elements relevant for the expression (2.15),

Jðq⃗Þ ¼ det

�
A BT

C D

�

¼ ðA − BTD−1CÞ detðDÞ; ð2:18aÞ

A ¼
Z

dt
∂qðt − t0Þ

∂t0 ·
∂q

cl
ðt − t0Þ
∂t0

¼
Z

dt _qLðtÞ _qclðtÞ; ð2:18bÞ

BT
j ¼

Z
dt
∂qðt − t0Þ

∂t0 ·
∂q

cl
ðt − t0Þ
∂τj

¼ −
∂u
∂τj ·

Z
dt _q

T
ðtÞqclðtÞ; ð2:18cÞ

Ci ¼
Z

dt
∂q

cl
ðt − t0Þ
∂t0 ·

∂qðt − t0Þ
∂τi

¼ −u ·
Z

dt _qclðtÞ
∂q

T
ðtÞ

∂τi ; ð2:18dÞ

Dij ¼
Z

dt
∂qðt − t0Þ

∂τi ·
∂q

cl
ðt − t0Þ
∂τj

¼ gij

Z
dtqLðtÞqclðtÞ: ð2:18eÞ

Here, BT is a row vector, C is a column vector, A is a
number, while D is an ðN − 1Þ × ðN − 1Þ matrix. We have
introduced the metric

gij ¼
∂u
∂τi ·

∂u
∂τj ð2:19Þ

on the sphere SN−1. We can write in the leading order,

J ½qðtÞ� ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J½q

cl
ðtÞ�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
jjq

cl
jjN−1jj _q

cl
jj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q �
−
3A
g

�ðN−1Þ=2�
−
A
g

�
1=2

; ð2:20Þ

where jjfjj is the norm
R
∞
−∞ dtfðtÞ. A very useful repre-

sentation is obtained upon division by the square root of the
determinant of the metric in the internal space, which in
view of Eq. (2.18a) is contained in the term detðDÞ. One
finds

J ½qðtÞ�
ðdetgijÞ1=2

¼
�
J½q

cl
ðtÞ�

detgij

�
1=2 J½qðtÞ�

J½q
cl
ðtÞ�

¼
�
−
3A
g

�ðN−1Þ=2�
−
A
g

�
1=2 J½qðtÞ�

J½q
cl
ðtÞ� ; ð2:21aÞ

J½qðtÞ�
J½q

cl
ðtÞ� ¼

ðR dtqðtÞ · q
cl
ðtÞÞN−2

jjqclðtÞjj2ðN−2Þ
K

jj _qclðtÞjj2jjqclðtÞjj2
;

K ¼
Z

dt dt0½ _qðtÞ · _q
cl
ðtÞqðt0Þ · q

cl
ðt0Þ

− _qclðtÞ _qclðt0ÞqTðtÞ · qTðt0Þ�: ð2:21bÞ

With the help of Eq. (2.14), we are now in the position to
write the following identity:

Z
½dqðtÞ�F½qðtÞ�¼

�
1ffiffiffiffiffiffi
2π

p
�

N
σN

Z
dt0

Z
½dχLðtÞ�

×
Z

½dχ
T
ðtÞ�


�
J ½QðtÞ�
ðdetgijÞ1=2

�
FðQðtÞÞ

�
SN−1

;

ð2:22aÞ

QðtÞ ¼ uðqclðt − t0Þ þ χLðt − t0ÞÞ þ χ
T
ðt − t0Þ; ð2:22bÞ

σN ¼
YN−1

i¼1

Z
dτiðdet gijÞ1=2 ¼

2πN=2

ΓðN=2Þ ; ð2:22cÞ

hfðuÞiSN−1
¼ 1

σN

YN−1

i¼1

Z
dτiðdet gijÞ1=2fðuÞ: ð2:22dÞ

Here, σN is the surface of SN−1, and the expression
hfðuÞiSN−1

indicates the averaging of the test function
fðuÞ over the SN−1 sphere. As an example for the averaging
process, we indicate the formula huαuβiSN−1

¼ δαβ=N. One
important observation is that the path J ½qðtÞ� in the
Jacobian can be taken with a start time t0 ¼ 0 of the path.
This is because all integrals contributing to the Jacobian are
independent of t0. However, the decomposition (2.13) is
still valid; the path qðtÞ depends on the start time t0, and
this dependence has to be figured into the integrand.

D. OðNÞ quartic oscillator

Let us briefly review the calculation of the perturbative
expansion of the ground-state energy for the OðNÞ case,
from the path integral representation. We write the
Euclidean action as

S½qðtÞ� ¼
Z

β=2

−β=2
dt1

Z
β=2

−β=2
dt2qðt1ÞM0ðt1; t2Þqðt2Þ

þ 1

4
g
Z

β=2

−β=2
dtqðtÞ4; ð2:23Þ
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where the free fluctuation operator M0 and its inverse Δ0

are given by

M0ðt1; t2Þ ¼ δðt1 − t2ÞM0ðt2Þ; M0ðtÞ ¼ −
∂2

∂t2 þ 1;

ð2:24aÞ

Δ0 ·M0 ¼ 1; Δ0ðt1; t2Þ ¼
1

2
expð−jt1 − t2jÞ: ð2:24bÞ

One writes

E0ðgÞ ¼ lim
β→∞

�
−
1

β
ln

�
Z0ðβÞ
Z0ðβÞj0

��
þ N

2
; ð2:25Þ

where Z0ðβÞ is the saddle-point expansion of the partition
function ZðβÞ, redefined for the OðNÞ oscillator, about the
Gaussian saddle point, and Z0ðβÞj0 is obtained from Z0ðβÞ
by setting g ¼ 0. The partition function can be written as
follows:

Z0ðβÞj0 ¼
I

½dqðtÞ�exp
�
−
1

2

Z
dt
Z

dt0qðtÞM0ðt; t0Þqðt0Þ
�
;

ð2:26Þ

where I
½dqðtÞ�≡

Z
∞

−∞
dq0

Z
qðβ=2Þ¼q0

qð−β=2Þ¼q0

ð2:27Þ

is a path integral over all periodic paths. We define a
normalization factor

N ¼
Z

½dqðtÞ� exp
�
−
1

2

Z
dt
Z

dt0qðtÞM0ðt; t0Þqðt0Þ
�

¼ 1

ðdetM0ÞN=2 : ð2:28Þ

A perturbative expansion up to the order g2 leads to the
result

Z0ðgÞ
Z0ðβÞj0

¼ 1 −
g

4N

Z
β=2

−β=2
dt
Z

½dqðtÞ�½qðtÞ�4E½qðtÞ�

þ g2

32N

Z
β=2

−β=2
dt
Z

β=2

−β=2
dt0

×
Z

½dqðtÞ�qðtÞ4qðt0Þ4E½qðtÞ�; ð2:29Þ

where

E½qðtÞ� ¼ exp

�
−
1

2

Z
dt1

Z
dt2qðt1ÞM0ðt1; t2Þqðt2Þ

�
:

ð2:30Þ

We define the path integral expectation value hYi0 as

hYi0 ¼ ðdetM0ÞN=2

Z
½dqðtÞ�YE½qðtÞ�: ð2:31Þ

Application of the Wick theorem leads to

hq4ðtÞi
0
¼ NðN þ 2Þ½Δ0ð0Þ�2 ¼

1

4
NðN þ 2Þ; ð2:32Þ

while the generalization to hq4ðtÞqðt0Þ4i
0
is straightfor-

ward. Finally, one obtains

ln

�
Z0ðβÞ
Z0ðβÞj0

�
¼ −

βg
16

NðNþ 2Þ þ βg2

128
NðN þ 2Þð2N þ 5Þ;

ð2:33Þ

E0ðgÞ¼
N
2
þ g
16

NðNþ2Þ− g2

128
NðNþ2Þð2Nþ5Þ; ð2:34Þ

where we ignore terms of order g3 and higher and confirm
the cancellation of β in the expression for E0ðgÞ.

E. Decay width and instanton

We are now in the position to present the analogous
derivation of the leading-order result for the imaginary part
of the ground-state resonance. The action (2.1), expressed
in terms of the classical action plus fluctuations about the
instanton configuration, becomes

S½χðtÞ�¼−
4

3g
þ1

2

Z
dt1

Z
dt2χαðt1ÞMαβðt1;t2Þχβðt2Þ

−
ffiffiffiffiffiffi
−g

p Z
dtξclðtÞ ·χðtÞχ2ðtÞþ

g
4

Z
dtχ4ðtÞ: ð2:35Þ

For the calculation of the leading-order term in the decay
width, we need the second term on the right-hand side,
which is the term involving the fluctuation operator. We use
Eqs. (2.14), as well as Eqs. (2.22a), (2.22c), and (2.22d).
Observe that, for the partition function, we can simply
integrate out the collective coordinate

R
dt0 ¼ β. The

leading contribution to the imaginary part ImE0ðgÞ for
the ground-state energy of the OðNÞ quartic oscillator is
obtained as

ImE0ðgÞ≈ lim
β→∞

�
−
1

β

ImZ1ðβÞ
Z0ðβÞ

�

¼−
1

ΓðN=2Þ
1

2N=2

�
−
4

g

�
N=2 1ffiffiffi

3
p exp

�
4

3g

�

×
�
−det

�
1

M0

ML

��
−1=2

�
det

�
1

M0

MT

��
−1
2
ðN−1Þ

¼−
1

ΓðN=2Þ
�
−
8

g

�
N=2

exp

�
4

3g

�
: ð2:36Þ
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We resolve the ambiguity in taking the square root so that
the imaginary part of the energy comes out as negative. The
derivation in Eq. (2.36) implicitly supposes that g is
negative. As we saw in Sec. I B, the particular sign of
the imaginary part chosen in Eq. (2.36) corresponds to
values of g with an infinitesimal negative imaginary part. In
the derivation, we have used the results [18]

det

�
1

M0

ML

�
¼ −

1

12
; det

�
1

M0

MT

�
¼ 1

4
: ð2:37Þ

F. Corrected OðNÞ decay width

The key to the calculation of the corrections to the
partition function, and (later on) to the corrections to the
correlation functions, lies in the inclusion of corrections
from three sources: (i) perturbative corrections from the
expansion of the action (2.35), which enters the exponential
expð−S½ χðtÞ�Þ, (ii) perturbative corrections from the
expansion of the Jacobian J½qðtÞ�=J½q

cl
ðtÞ�, and (iii) per-

turbative corrections from the denominator Z0ðβÞ, in the
expression ð−1=βÞIm½Z1ðβÞ=Z0ðβÞ�, in the limit of large β.
An expansion of the exponential exp ð−S½ χðtÞ�Þ, according
to Eq. (2.35), leads to the correction factor F1,

F1 ¼
e−S½χðtÞ�

e−S½χðtÞ�j0
¼ 1þ ffiffiffiffiffiffi

−g
p Z

dtξclðtÞ · χðtÞχ2ðtÞ

−
g
4

Z
dtχ4ðtÞ − g

2

�Z
dtξclðtÞ · χðtÞχ2ðtÞ

�

×

�Z
dt0ξclðt0Þ · χðt0Þχ2ðt0Þ

�
; ð2:38Þ

where S½ χðtÞ�j
0
¼R

dt1
R
dt2χαðt1ÞMαβðt1;t2Þχβðt2Þ, which

has to be inserted inside the path integral. The second factor
F2 is from the OðNÞ Jacobian,

F2 ¼
J½qðtÞ�
J½q

cl
ðtÞ� ¼ 1þ 3

4

ffiffiffiffiffiffi
−g

p Z
dt_χðtÞ · _ξclðtÞ

þ ðN − 1Þ
ffiffiffiffiffiffi−gp
4

Z
dtχðtÞ · ξclðtÞ

−
3

16
ðN − 1Þg

Z
dt
Z

dt0 _χðtÞ · _ξclðtÞχðt0Þ · ξclðt0Þ

−
g
32

ðN − 1ÞðN − 2Þ
Z

dt
Z

dt0χðtÞ · ξclðtÞχðt0Þ · ξclðt0Þ

þ 3

16
g
Z

dt
Z

dt0 _ξclðtÞχTðtÞ · χTðt0Þ_ξclðt0Þ: ð2:39Þ

Furthermore, there is a factor from the perturbative expan-
sion of the denominator, which originates from the
Gaussian saddle point (see Sec. II D),

F3¼
Z0ðβÞj0
Z0ðβÞ

¼1þg
4

Z
dtNðNþ2Þ½Δ0ð0Þ�2

¼1þg
4

Z
dt½3þ2ðN−1ÞþðN2−1Þ�½Δ0ðt;tÞ�2: ð2:40Þ

The latter form is very handy when it comes to subtracting
infinities. The final result can be written as

ImE0ðgÞ ≈ −
1

ΓðN=2Þ
�
−
8

g

�
N=2

exp

�
4

3g

�
× ð1þAþ B þ CÞ; ð2:41Þ

where the terms A, B, and C are of order g, given by

A ¼
X3
i¼1

Ai; B ¼
X2
j¼1

Bj; C ¼
X3
k¼1

Ck; ð2:42Þ

as defined in the following. (These are, of course, different
from the submatrices A, B, and C used in Sec. II C; we
redefine the symbols A, B, and C accordingly.) We
distinguish the terms into A, B, and C as follows. The
A originate from the effective action, i.e., from F1, while
infinities are removed by F3. They correspond to the first
three diagrams in Fig. 2. The B terms contain the mixed
contributions from the product F1 × F2, expanded to order
ð ffiffiffiffiffiffi−gp Þ2 ¼ −g (see the fourth and fifth diagrams in Fig. 2).
Terms of order g in F2 give rise to C (Jacobian terms; see
the sixth, seventh, and eighth diagrams in Fig. 2).
We start with the A term,

A ¼ −
g
4

Z
dtðhχ4ðtÞi − hχ4ðtÞi

0
Þ − g

2

Z
dt
Z

dt0

× hξclðtÞ · χðtÞχ2ðtÞξclðt0Þ · χðt0Þχ2ðt0Þi: ð2:43Þ

We define h·i for the OðNÞ theory as

hXi ¼ ðdetMLÞ1=2ðdetMTÞN=2

I
½dχLðtÞ�

I
½dχ

T
ðtÞ�X

× exp

�
−
1

2

Z
dt1

Z
dt2χαðt1ÞMαβðt1; t2Þχβðt2Þ

�
:

ð2:44Þ

The term A1 is easy,

A1 ¼ −
g
4

Z
dtðhχ4LðtÞi þ 2hχ2LðtÞχ2TðtÞi þ hχ4

T
ðtÞiÞ

þ g
4

Z
dthχ4ðtÞi

0
: ð2:45Þ

Applying the Wick theorem, we obtain the result
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A1 ¼ −
g
4

Z
dtð3½Δ2

Lðt; tÞ − Δ2
0ðt; tÞ�

þ 2ðN − 1Þ½ΔLðt; tÞΔTðt; tÞ − Δ2
0ðt; tÞ�

þ ðN2 − 1Þ½Δ2
Tðt; tÞ − Δ2

0ðt; tÞ�Þ

¼ g

�
5

48
N2 þ 13

40
N þ 59

420

�
: ð2:46Þ

For the second term in Eq. (2.43), one has

hξclðtÞ · χðtÞχ2ðtÞξclðt0Þ · χðt0Þχ2ðt0Þi ¼ T1 þ T2; ð2:47Þ
where

T1 ¼ ξclðtÞ½3ΔLðt; tÞ þ ðN − 1ÞΔTðt; tÞ�ΔLðt; t0Þ
× ½3ΔLðt0; t0Þ þ ðN − 1ÞΔTðt0; t0Þ�ξclðt0Þ; ð2:48aÞ

T2 ¼ 2ξclðtÞΔLðt; t0Þð3Δ2
Lðt; t0Þ

þ ðN − 1ÞΔ2
Tðt; t0ÞÞξclðt0Þ: ð2:48bÞ

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 2. Diagrammatic representation of several terms in a ϕ4 theory with an OðNÞ internal symmetry, contributing to the partition
function in the infinite-β limit and thus, to the ground-state energy. The contribution of the diagrams is written beside each contribution.
The total result of order g is of the form given in Eq. (2.55).
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The expression T1 generates the term A2 [see the diagram
in Fig. 2(b)], while the expression T2 generates the termA3

[see the diagram in Fig. 2(c)],

A2 ¼ g

�
1

48
N2 −

11

60
N −

13

70

�
; ð2:49Þ

A3 ¼ g

�
−

13

480
N þ 223

1680

�
: ð2:50Þ

We now turn our attention to the B terms, which are
generated by mixed contributions from F1 and F2. In fact,
there are two terms in F2 proportional to

ffiffiffiffiffiffi−gp
, one of them

being proportional to (N − 1). When multiplied by the term
of order

ffiffiffiffiffiffi−gp
from F1, these generate two mixed Feynman

diagrams. The corresponding expression for the diagram in
Fig. 2(d) reads

B1 ¼
3g
4

Z
dt
Z

dt0h_χðtÞ · _ξclðtÞξclðt0Þ · χðt0Þχ2ðt0Þi

¼ g

�
5

16
N þ 7

20

�
: ð2:51Þ

Furthermore, we have the expression for the diagram in
Fig. 2(e),

B2 ¼ ðN − 1Þ g
4

Z
dt
Z

dt0hχðtÞ · ξclðtÞξclðt0Þ · χðtÞχ2ðt0Þi

¼ g

�
1

16
N2 −

7

48
N þ 1

12

�
: ð2:52Þ

There are three more terms generated by the terms of
order g in the OðNÞ Jacobian. The first of these is given in
Fig. 2(f) and reads

C1 ¼ −
3ðN − 1Þg

16

Z
dt
Z

dt0h_χðtÞ · _ξclðtÞχðt0Þ · ξclðt0Þi

¼ g

�
3

16
N −

3

16

�
: ð2:53Þ

The diagram given in Fig. 2(g) gives rise to

C2¼−
g
32

ðN−1ÞðN−2Þ
Z

dt
Z

dt0hχðtÞ ·ξclðtÞχðt0Þ ·ξclðt0Þi

¼g

�
1

32
N2−

3

32
Nþ 1

16

�
: ð2:54Þ

To complete the list, we analyze the diagram in Fig. 2(h),

C3 ¼
3g
16

Z
dt
Z

dt0h_ξclðtÞχTðtÞ · χTðt0Þ_ξclðt0Þi

¼ g

�
3

16
N −

3

16

�
:

The result for the imaginary part of the OðNÞ ground state
resonance finally is obtained as

ImE0ðgÞ ¼ −
1

ΓðN=2Þ
�
−
8

g

�
N=2

exp

�
4

3g

�

×

�
1þ

X3
i¼1

Ai þ
X2
j¼1

Bj þ
X3
k¼1

Ck

�

¼ −
1

ΓðN=2Þ
�
−
8

g

�
N=2

exp
�
4

3g

�

×

�
1þ g

�
7

32
N2 þ 9

16
N þ 5

24

��
: ð2:55Þ

This result is relevant for g < 0.

III. CORRELATION FUNCTIONS

A. Leading-order contribution

We turn to the evaluation of higher-order corrections to
the imaginary part of correlation functions for negative g
and, thus, to the calculation of subleading corrections to the
factorial growth of perturbative coefficients. The perturba-
tive contribution exists for positive and negative coupling g;
the cut across the negative g axis is dominated by the
instanton solution. The generating functional ZðJÞ of the
correlation functions is given by

ZðJÞ ¼ 1

N

Z
½dqðtÞ� exp

�
−S½qðtÞ� þ

Z
dtJðtÞ · qðtÞ

�
;

ð3:1Þ
where both JðtÞ as well as qðtÞ are N vectors. Note that
ZðJÞ is not to be confused with the partition functionZðβÞ.
It is normalized so that, in leading order in g, and expanded
about the Gaussian saddle point, one has Zð0Þ → 1, i.e.,

N ¼
Z

½dqðtÞ� exp ½−S0½qðtÞ��; ð3:2aÞ

S0½qðtÞ� ¼
Z

dt

�
1

2

�∂qðtÞ
∂t

�
2

þ 1

2
q2ðtÞ

�
: ð3:2bÞ

At leading order in the instanton contribution, the
generating functional ZðJÞ is the sum of a perturbative
expansion Z0 (about the Gaussian saddle point) and an
imaginary, exponentially small contribution Z1 for g → 0,
which consists of the instanton contribution proportional to
eA=g, for g → 0−,

ZðJÞ ¼ Z0ðJÞ þ Z1ðJÞ; ð3:3aÞ

WðJÞ ¼ lnZðJÞ ¼ lnZ0ðJÞ þ
Z1ðJÞ
Z0ðJÞ

¼ W0ðJÞ þW1ðJÞ; ð3:3bÞ
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where we note that Z1ðJÞ is exponentially suppressed for
g → 0−. We note the implicit definitionsW0ðJÞ ¼ lnZ0ðJÞ
and W1ðJÞ ¼ Z1ðJÞ=Z0ðJÞ. The perturbative expansion
defines Z0ðJÞ and holds irrespective of the sign of
the coupling g. By contrast, the instanton contribution
Z1ðJÞ is present only for negative g, and this is the
implicit assumption on which all considerations reported
in the current section are based. We investigate the

connected n-point correlation functions WðnÞ
A;fαigni¼1

and

the complete n-point correlation functions ZðnÞ
A;fαigni¼1

for

A ¼ 0 (perturbative contributions) and A ¼ 1 (nonpertur-
bative terms),

WðnÞ
A;fαigni¼1

ðt1;…; tnÞ¼
�Yn

i¼1

δ

δJαiðtiÞ
�
WAðJÞ

				
J¼0

; ð3:4aÞ

ZðnÞ
A;fαigni¼1

ðt1;…; tnÞ ¼
�Yn

i¼1

δ

δJαiðtiÞ
�
ZAðJÞ

				
J¼0

: ð3:4bÞ

To simplify the explicit expressions, we now assume
that SðqÞ ¼ Sð−qÞ and, thus, that correlation functions
with n odd vanish, which is certainly the case for our q4

model. Then, one finds, for example, for the zero-point
function,

W1ðJ¼ 0Þ¼Z1ð0Þ
Z0ð0Þ

; ImW1ðJ¼ 0Þ¼ ImZ1ð0Þ
Z0ð0Þ

: ð3:5Þ

For the two-point function, one finds

Wð2Þ
1;α1α2

ðt1; t2Þ ¼
δ2

δJα1ðt1ÞδJα2ðt2Þ
W1ðJÞ

				
J¼0

¼ Zð2Þ
1;α1α2

ðt1; t2Þ
Z0ð0Þ

−
Zð2Þ

0;α1α2
ðt1; t2ÞZ1ð0Þ
Z2

0ð0Þ
;

ð3:6Þ
and the imaginary part of the two-point function is obtained
as follows:

ImWð2Þ
1;α1α2

ðt1; t2Þ ¼
ImZð2Þ

1;α1α2
ðt1; t2Þ

Z0ð0Þ

−
Zð2Þ

0;α1α2
ðt1; t2ÞImZ1ð0Þ
Z2

0ð0Þ
: ð3:7Þ

Furthermore, we can express the imaginary part of the four-
point function as a sum of four terms Ki (i ¼ 1;…; 4),

ImWð4Þ
1;α1α2α3α4

ðt1; t2; t3; t4Þ ¼
X4
i¼1

Ki: ð3:8Þ

The first term involves the imaginary part of the four-point

instanton contribution ImZð4Þ
1;α1α2α3α4

,

K1 ¼
ImZð4Þ

1;α1α2α3α4
ðt1; t2; t3; t4Þ

Z0ð0Þ
: ð3:9Þ

The second term is a mixed term, involving two-point
perturbative and two-point instanton correlation functions,

K2 ¼ −
Zð2Þ

0;α1α2
ðt1; t2ÞImZð2Þ

1;α3α4
ðt3; t4Þ

Z2
0ð0Þ

−
Zð2Þ

0;α1α3
ðt1; t3ÞImZð2Þ

1;α2α4
ðt2; t4Þ

Z2
0ð0Þ

−
Zð2Þ

0;α1α4
ðt1; t4ÞImZð2Þ

1;α2α3
ðt2; t3Þ

Z2
0ð0Þ

−
Zð2Þ

0;α3α4
ðt3; t4ÞImZð2Þ

1;α1α2
ðt1; t2Þ

Z2
0ð0Þ

−
Zð2Þ

0;α2α4
ðt2; t4ÞImZð2Þ

1;α1α3
ðt1; t4Þ

Z2
0ð0Þ

−
Zð2Þ

0;α2α3
ðt2; t3ÞImZð2Þ

1;α1α4
ðt1; t4Þ

Z2
0ð0Þ

: ð3:10Þ

The third term combines the four-point perturbative corre-
lation function with the imaginary part of the zero-point
function,

K3 ¼ −
Zð4Þ

0;α1α2α3α4
ðt1; t2; t3; t4ÞImZ1ð0Þ
Z2

0ð0Þ
: ð3:11Þ

Note that ImZ1ð0Þ is equal to the imaginary part
of the partition function, up to a factor β. Finally,
the fourth term involves two perturbative two-point
functions,

K4 ¼
2Zð2Þ

0;α1α2
ðt1; t2ÞZð2Þ

0;α3α4
ðt3; t4Þ

Z3
0ð0Þ

ImZ1ð0Þ

þ 2Zð2Þ
0;α1α3

ðt1; t3ÞZð2Þ
0;α2α4

ðt2; t4Þ
Z3

0ð0Þ
ImZ1ð0Þ

þ 2Zð2Þ
0;α1α4

ðt1; t4ÞZð2Þ
0;α2α3

ðt2; t3Þ
Z3

0ð0Þ
ImZ1ð0Þ: ð3:12Þ

At leading order, ImZðnÞ
1 is proportional to ðqclÞn. The

classical path qcl is of order 1=
ffiffiffiffiffiffi−gp

. So, the imaginary part

ImZðnÞ
1 of the n-point function is of order ð−gÞ−n=2ImZ1ð0Þ.
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This implies the inequality ImZð4Þ
1 ≫ ImZð2Þ

1 ≫ ImZ1, and
thus, at leading order, the disconnected parts are suppressed.
Finally, a generic expression for the connected n-point Green
function is given by

GðnÞ
fαigni¼1

ðt1;…; tnÞ ¼
�Yn

i¼1

δ

δJαiðtiÞ
�
WðJÞ

				
J¼0

¼ WðnÞ
0;fαigni¼1

ðt1;…; tnÞ
þWðnÞ

1;fαigni¼1

ðt1;…; tnÞ; ð3:13Þ

where W is the sum of W0 and W1. The definition
encompasses both the real and the imaginary parts of the
n-point correlation function [see Eq. (3.3a)]. For the imagi-
nary part, we define

GðnÞ
fαigni¼1

ðt1;…; tnÞ ¼ ImGðnÞ
fαigni¼1

ðt1;…; tnÞ
¼ ImWðnÞ

1;fαigni¼1

ðt1;…; tnÞ: ð3:14Þ

B. Two-point correlation function

We investigate the (imaginary part of the) two-point
Green function Gαβðt1; t2Þ, according to Eq. (3.14), as
follows:

Gαβðt1; t2Þ ¼
ImZð2Þ

1;αβðt1; t2Þ
Z0ð0Þ

−
Zð2Þ

0;αβðt1; t2ÞImZ1ð0Þ
Z2

0ð0Þ
¼ ½Gαβðt1; t2Þ�1 þ ½Gαβðt1; t2Þ�2
≈ ½Gαβðt1; t2Þ�1: ð3:15Þ

Note that in the last step of the previous expression, we
have reported only the leading term in g; however,
½Gαβðt1; t2Þ�2 will be important when we will consider
the first subleading order.
It is useful to remark that all Z quantities are now

understood in the sense of Eq. (3.1), i.e., without
R
dq0.

We need to evaluate an integral of the form
H ½dqðtÞ�F½qðtÞ�

with the help ofEq. (2.22),where in leadingorder in g, one has

F½qðtÞ� ¼ qcl;αðt1Þqcl;βðt2Þ

≈ −
1

g
uαuβξclðt1 − t0Þξclðt2 − t0Þ; ð3:16Þ

hF½qðtÞ�i
SN−1

≈ −
1

g
huαuβiSN−1

ξclðt1 − t0Þξclðt2 − t0Þ

¼ −
1

g

δαβ
N

ξclðt1 − t0Þξclðt2 − t0Þ: ð3:17Þ

We recall that, according to the remarks surrounding
Eq. (2.22c), we need to supplement the collective coordinate
t0 in the actual path. Hence, we can approximate, in lead-
ing order,

Gαβðt1; t2Þ ≈
�

1ffiffiffiffiffiffi
2π

p
�

N 2πN=2

ΓðN=2Þ
�
1

2

��
−
4

g

�ðN−1Þ=2�
−

4

3g

�
1=2

exp

�
4

3g

��
− det

�
1

M0

ML

��
−1=2

�
det

�
1

M0

MT

��
−N=2

×

�
−
1

g

δαβ
N

Z
dt0ξclðt1 − t2 − t0Þξclð−t0Þ

�

¼ −
1

g
1

ΓðN=2Þ
δαβ
N

�
−
8

g

�
N=2

exp

�
4

3g

�
4ðt1 − t2Þ

sinhðt1 − t2Þ
: ð3:18Þ

This imaginary part Gαβðt1; t2Þ is positive for negative g,
in contrast to the negative imaginary part of the ground-
state resonance energy. [We recall that, according to
Eq. (3.15), the imaginary part of the Green function
itself, not the entire Green function, is denoted as
Gαβðt1; t2Þ.]

C. Some observations

Before we go in medias res, four observations should
be made.

(i) We are interested in the corrections to the result
(3.18) of relative order g. One of these corrections
can be obtained almost automatically, by observing

that the derivation of the leading term given in
Eq. (3.18) does not entail path integrals except in
leading order; the product of the two classical field
configurations

R
dt0ξclðt1 − t2 − t0Þξclð−t0Þ simply

drops out as a prefactor of the integral. Hence, the
two-point correlation function receives the same
relative correction as the partition function itself;
i.e., it has to be multiplied by [see Eq. (2.55)]

FZ ¼
�
1

β

ImZðβÞ
Z0ðβÞ

���
1

β

ImZðβÞ
Z0ðβÞ

�				
0

�
−1

¼ 1þ g

�
7

32
N2 þ 9

16
N þ 5

24

�
; ð3:19Þ
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where, with the subscript zero, we denote the leading
contribution to the imaginary part of the ground-
state energy. We note that in the two-point correla-
tion function, the integration over the collective
coordinate

R
dt0 is carried out over the arguments

of the classical field configuration; in the derivation
of the partition function, by contrast, it leads to a
factor

R
dt ¼ β, which is later divided out in calcu-

lating the energy. We note that the leading term in
the two-point correlation function can be written as
follows,

Gαβðt1;t2Þ≈
�
1

β

ImZ1ðβÞ
Z0ðβÞ

�				
0

×

�
−
1

g

δαβ
N

Z
dt0ξclðt1−t2−t0Þξclð−t0Þ

�
:

ð3:20Þ

Replacing the prefactor according to

�
1

β

ImZðβÞ
Z0ðβÞ

�				
0

→
1

β

ImZðβÞ
Z0ðβÞ

ð3:21Þ

takes care of the correction, and that replacement
exactly amounts to the multiplication of the leading-
order result by the correction factor FZ.

(ii) The angular symmetry of the problem implies that

Gαβðt1; t2Þ ¼
δαβ
N

Gγγðt1; t2Þ: ð3:22Þ

Hence, we can restrict the discussion, in the follow-
ing, to the function

Gðt1; t2Þ ¼ Gγγðt1; t2Þ ¼ δαβGαβðt1; t2Þ; ð3:23Þ

an operation that also eliminates the necessity to do
angular averaging.

(iii) We recall the action factor F1 from Eq. (2.38), the
Jacobian factor F2 from Eq. (2.39), and the pertur-
bative factor F3 from Eq. (2.40). The correction due
to the factor F3, in relative order g, is already taken
into account in the denominator of the perturbative
partition function Z0ðβÞ in the replacement in
Eq. (3.21). If we are thinking about the calculation
of perturbative corrections about the instanton sad-
dle point of the two-point correlation function,
then we must consider that the leading term is
proportional to

hqcl;αðt1 − t0Þqcl;βðt2 − t0ÞiSN−1
; ð3:24Þ

according to Eq. (3.18). Corrections of relative order
g are obtained in two ways, first, by replacing, in
Eq. (3.24), both classical paths by fluctuations,
which results in a term of relative order g, because
the fluctuations are of order g0, while the classical
field configurations are of order 1=

ffiffiffiffiffiffi−gp
. In this case,

the calculation proceeds simply by evaluating the
path integral, without any further perturbative cor-
rections from either F1 or F2, and is already of the
required relative order g.

The second way to obtain a correction of relative
order g is to replace only one of the classical field
configurations in Eq. (3.24) by a fluctuation, and to
contract the remaining term with the term FJ which
contains the terms up to relative order

ffiffiffiffiffiffi−gp
from the

product F1F2 and reads as follows:

FJ ¼ F1F2j ffiffiffiffi−gp ¼ 1þ ffiffiffiffiffiffi
−g

p �Z
dtξclðtÞ · χðtÞχ2ðtÞ

þ3

4

Z
dt_χðtÞ · _ξclðtÞ þ

N − 1

4

Z
dtχðtÞ · ξclðtÞ

�
:

ð3:25Þ

Finally, the third way to obtain a correction to the
two-point function is via the perturbative subtraction
term [the second term in Eq. (3.7)], which involves
the perturbative (Gaussian) correlation function

Zð2Þ
0;α1α2

ðt1; t2Þ. It is somewhat analogous to the factor
F3 for the partition function.

(iv) As it will turn out, one can actually show that the
two-point Green function Gðt1; t2Þ is a function of
the time difference t1 − t2. This has consequences
for the evaluation of the two-point correlator at zero
momentum transfer, as follows. Namely, a priori,
one would formulate the Fourier transform of the
two-point correlator as follows:

Gðp1;p2Þ¼
Z

dt1

Z
dt2e−ip1t1−ip2t2Gðt1;t2Þ: ð3:26Þ

Using the property

Gðt1; t2Þ ¼ Gðt1 − t2Þ; ð3:27Þ

one finds

Gðp1; p2Þ ¼ 2πδðp1 þ p2ÞGðp1Þ: ð3:28Þ

We will be interested here in the two-point corre-
lation function at zero momentum transfer, which, in
view of the above considerations, is just the Fourier
transform of GðτÞ at zero momentum, i.e.,
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Gðp ¼ 0Þ ¼
Z

dτGðτÞ; ð3:29Þ

∂2

∂p2
Gðp ¼ 0Þ ¼

Z
dτð−τ2ÞGðτÞ; ð3:30Þ

where the latter expression enters the Callan-
Symanzik equation.

D. First correction term

Let us summarize the formulas mentioned above. We
have, for the first term in Eq. (3.15),

½Gαβðt1; t2Þ�1 ¼
δαβ
N

½Gγγðt1; t2Þ�1 ¼
δαβ
N

½Gðt1; t2Þ�1: ð3:31Þ

For later reference, it is customary to define a recurrent
prefactor as

QðgÞ ¼ 1

ΓðN=2Þ
�
−
8

g

�
N=2

exp

�
4

3g

�
: ð3:32Þ

Corrections to the two-point function can be derived
based on Eqs. (3.19) and (3.25), and lead to the
formula

½Gðt1; t2Þ�1
QðgÞ ¼

Z
dt0hFJ qγðt1 − t0Þqγðt2 − t0ÞiFZ

≈
Z

dt0hqcl;γðt1 − t0Þqcl;γðt2 − t0ÞiFZ

þ
Z

dt0hðFJ − 1Þqγðt1 − t0Þqγðt2 − t0Þi;

ð3:33Þ

which is valid up to relative order g. Here, the path
integral expectation value h·i has been defined in
Eq. (2.44). The first term has the classical field configu-
ration qcl;γðt1 − t0Þ and the correction factor FZ, while the
second has the correction factor FJ . We can thus write the
two-point correlation function, up to relative order g, as
follows:

½Gðt1; t2Þ�1
QðgÞ ¼

Z
dt0

�
−
1

g

�
ξclðt1− t0Þξclðt2− t0ÞFZ þ

Z
dt0hχLðt1− t0ÞχLðt2− t0Þþχ

T
ðt1− t0Þ ·χTðt2− t0Þi

þ
Z

dt0


 ffiffiffiffiffiffiffi
−
1

g

s
χLðt1− t0Þξclðt2− t0ÞðFJ −1Þ

�
þ
Z

dt0


 ffiffiffiffiffiffiffi
−
1

g

s
χLðt2− t0Þξclðt1− t0ÞðFJ −1Þ

�
; ð3:34Þ

where the first and the second terms have already been treated. The Wick theorem immediately leads to

h χLðt1 − t0ÞχLðt2 − t0Þ þ χ
T
ðt1 − t0Þ · χTðt2 − t0Þi ¼ ΔLðt1 − t0; t2 − t0Þ þ ðN − 1ÞΔTðt1 − t0; t2 − t0Þ: ð3:35Þ

For the third and the fourth terms in Eq. (3.34), one consults the definition of FJ and applies the Wick theorem in order, to
obtain

½Gðt1; t2Þ�1
QðgÞ ¼

Z
dt0

�
−
1

g
ξclðt1 − t0Þξclðt2 − t0ÞFZ þ ½ΔLðt1 − t0; t2 − t0Þ þ ðN − 1ÞΔTðt1 − t0; t2 − t0Þ�

�

þ
�Z

dt0

Z
dtξclðt1 − t0ÞξclðtÞ½3ΔLðt2 − t0; tÞΔLðt; tÞ þ ðN − 1ÞΔLðt2 − t0; tÞΔTðt; tÞ�

−
3

4

Z
dt0

Z
dtξclðt1 − t0Þξ̈clðtÞΔLðt2 − t0; tÞ þ

N − 1

4

Z
dt0

Z
dtξclðt1 − t0ÞξclðtÞΔLðt2 − t0; tÞ

�
þ ft1 ↔ t2g; ð3:36Þ

where ft1 ↔ t2g denotes the terms listed in the previous
curly brackets, with the time variables t1 and t2 inter-
changed. The first two terms do not involve an additional
integration over t, because they do not incur corrections
from the factor FJ . In the result, we have the integration
over t, from the product F1F2, the integration over t0, from
the collective coordinate, and the integration over t0, from
the evaluation of the correlation function at zero momen-
tum transfer.

If we shift, in Eq. (3.36), the integration variable,
uniformly, according to

t0 → t0 þ t2; ð3:37Þ
then we can show the time translation invariance identity
[see Eq. (3.27)]

½Gðt1;t2Þ�1¼½Gðt1− t2;0Þ�1¼½Gðt0Þ�1; t0 ¼ t1− t2: ð3:38Þ
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However, in the last term in Eq. (3.36) [the one characterized by the replacement ðt1 ↔ t2Þ], it is actually advantageous to
shift the integration variable according to t0 → t0 þ t1, at variance with Eq. (3.37).
Eventually, we will need to calculate the integral [see Eq. (3.29)]Z

dt0½Gðt0Þ�1 ¼ ½Gðp ¼ 0Þ�1: ð3:39Þ

We find

½Gðp ¼ 0Þ�1
QðgÞ ¼

Z
dt0

Z
dt0

�
−
1

g
ξclðt0 − t0Þξclð−t0ÞFZ þ ½ΔLðt0 − t0;−t0Þ þ ðN − 1ÞΔTðt0 − t0;−t0Þ�

�

þ 2

Z
dt0

Z
dt0

Z
dt

�
ξclðt0 − t0ÞξclðtÞ½3ΔLð−t0; tÞΔLðt; tÞ þ ðN − 1ÞΔLð−t0; tÞΔTðt; tÞ�

−
3

4
ξclðt0 − t0Þ̈ξclðtÞΔLð−t0; tÞ þ

N − 1

4
ξclðt0 − t0ÞξclðtÞΔLð−t0; tÞ

�
: ð3:40Þ

This integral is divergent for large β, but the infinities are
removed upon consideration of the perturbative term
½Gðp ¼ 0Þ�2, to be considered in the following.
In the last term in Eq. (3.40), we have the integration

over t, which is the integration variable in the perturbative
factor FJ , the integration over the collective coordinate t0,
and the integration over the time translation variable t0 ¼
t1 − t2 of the Green function. The presence of the instanton,
which vanishes exponentially for a large argument, guar-
antees the convergence of the integral.

E. Second correction term

We now concentrate on the second term in Eq. (3.15),

½Gαβðt1; t2Þ�2 ¼ −
Zð2Þ

0;αβðt1; t2ÞImZ1ð0Þ
Z2

0ð0Þ
; ð3:41Þ

and we can remember that, according to our previous
considerations, the discussion can be restricted to the
expression

½Gðt1; t2Þ�2 ¼ ½Gγγðt1; t2Þ�2

¼ −
Zð2Þ

0;γγðt1; t2Þ
Z0ð0Þ

ImZ1ð0Þ
Z0ð0Þ

: ð3:42Þ

In comparison to ½Gðt1; t2Þ�1, the expression ½Gðt1; t2Þ�2 is of
relative order g, because it lacks the presence of the
classical paths, which are, themselves, of order

ffiffiffiffiffiffiffiffiffiffiffi
−1=g

p
.

So, we evaluate the expression (3.41) to leading order only.
We have already anticipated the cancellation mechanism

for the β parameter; indeed, there is no dependence on β in

Zð2Þ
0;αβðt1; t2Þ. However, there is a multiplicative factor β in

ImZ1, due to the integral over the collective coordinate t0.
This factor β should cancel against other divergences in β,
to be found in the integrals over the propagators in

Zð2Þ
1;αβðt1; t2Þ. In fact, we show in the following, that the

term ½Gðt1; t2Þ�2 exactly furnishes the terms necessary for
the removal of the infinities in Eq. (3.40).
First, we have, upon perturbative expansion,

Zð2Þ
0;γγðt1; t2Þ
Z0ð0Þ

¼ hqγðt1Þqγðt2Þi0 ¼ NΔ0ðt1; t2Þ; ð3:43Þ

where the integration measure h·i0 has been defined in
Eq. (2.31). Compared to the instanton partition function
Z1ðβÞ, the generating function Z1ðJÞ lacks the integration
over the end point q0, while the same is true for the
perturbative contributions Z0ðβÞ versus Z0ðJÞ. However,
the lacking integration cancels in the ratio, and we can
write, with Eq. (2.36),

ImZ1ð0Þ
Z0ð0Þ

¼ ImZ1ðβÞ
Z0ðβÞ

¼ β

ΓðN=2Þ
�
−
8

g

�
N=2

exp

�
4

3g

�

×

�
1þ g

�
7

32
N2 þ 9

16
N þ 5

24

��
: ð3:44Þ

So, we finally get

½Gðt1; t2Þ�2 ¼ −
1

ΓðN=2Þ
�
−
8

g

�
N=2

exp

�
4

3g

�
× ½NβΔ0ðt1; t2Þ�: ð3:45Þ

Here, according to Eq. (2.24b), the free propagator
Δ0ðt1; t2Þ has the translation invariance property

Δ0ðt1; t2Þ ¼ Δ0ðt1 − t2Þ ¼ Δ0ðt1 − t2; 0Þ: ð3:46Þ

For the purposes of the removal of the infinities discussed
in Sec. III E, we can reformulate the Fourier transform of
this expression at zero momentum as follows:
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½Gðp¼ 0Þ�2 ¼ −
1

ΓðN=2Þ
�
−
8

g

�
N=2

exp

�
4

3g

�

×
Z

dt0

Z
dt0½Δ0ð0; t0Þ þ ðN − 1ÞΔ0ð0; t0Þ�;

ð3:47Þ

where t0 ¼ t1 − t2. We have replaced β →
R
dt0. We recall

that the integration limits in all given integrals cover the range
−∞ < τ < ∞ for all Euclidean time parameters τ, unless
indicated otherwise; however, these limits are incurred in
terms of the limiting process −β=2 < τ < β=2, where we
let β → ∞.

F. Evaluation of the corrections

We add the expressions from Eqs. (3.40) and (3.47) and
consider the sum of ½Gðp ¼ 0Þ�1 and ½Gðp ¼ 0Þ�2. The
substitutions t0 → t0 þ t0 and subsequently t0 → −t0 serve
to simplify the expressions (the Jacobian in each case is
unity). One can finally write Gðp ¼ 0Þ as

Gðp ¼ 0Þ
QðgÞ ¼

X7
i¼1

Ri; ð3:48Þ

where the Ri terms (i ¼ 1;…; 7) are defined in the
following (see also Fig. 3). For the evaluation of the
expression of R1, we refer to integral H1 listed in
Appendix A, and write

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 3. Diagrammatic representation of the seven two-loop corrections to the two-point function at zero momentum, for a one-
dimensional ϕ4 theory with an OðNÞ internal symmetry. The contribution of the diagrams is written beside each contribution. The total
result of order g is of the form given in Eq. (3.53). One of the classical field configurations, associated with the time variable t0 (or t0 − t0,
before a suitable change of variable), is somehow “detached” from the rest of the diagram. Recall that the transverse character of the
propagator (excluding the instanton configurations) is denoted by the symbol ⊥, and that the variable t0 ¼ t1 − t2 enters in view of the
time translation invariance of the Green function. Incidentally, the diagrams for the second derivative of the two-point function (Sec. III
G) and for the four-point function (Sec. III H) are the same as those depicted here, with (in the case of the four-point function) two more
detached instantons.
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R1 ¼ −
1

g

�Z
dt0ξclðt0Þ

�
2

FZ ¼ −
1

g
ðH1Þ2FZ

¼ −
2π2

g
− 2π2

�
7

32
N2 þ 9

16
N þ 5

24

�
; ð3:49Þ

where we use Eq. (3.19). For the term R2, one has

R2¼
Z

dt0
Z

dt0½ΔLðt0;t0Þ−Δ0ðt0;t0Þ�¼I1¼−4: ð3:50Þ

For the integral I1, we again refer to Appendix A. The
integral R3 involves the transverse propagator,

R3 ¼ ðN − 1Þ
Z

dt0
Z

dt0½ΔTðt0; t0Þ − Δ0ðt0; t0Þ�

¼ ðN − 1ÞI2 ¼ ðN − 1Þ
�
1 −

π2

4
−
7

2
ζð3Þ

�
ð3:51Þ

(see also Appendix A). The rest of the terms are

R4 ¼ 6

Z
dt0ξclðt0Þ

Z
dtξclðtÞΔLðt; tÞ

Z
dt0ΔLðt; t0Þ

¼ 6H1J3 ¼
3π2

2
; ð3:52aÞ

R5¼ 2ðN−1Þ
Z

dt0ξclðt0Þ
Z

dtξclðtÞΔTðt; tÞ
Z

dt0ΔLðt; t0Þ

¼ 2ðN−1ÞH1J4¼
π2

4
ðN−1Þ; ð3:52bÞ

R6 ¼ −
3

2

Z
dt0ξclðt0Þ

Z
dt ̈ξclðtÞ

Z
dt0ΔLðt; t0Þ

¼ −
3

2
H1J2 ¼ −

3π2

2
; ð3:52cÞ

R7 ¼
N − 1

2

Z
dt0ξclðt0Þ

Z
dtξclðtÞ

Z
dt0ΔLðt; t0Þ

¼ N − 1

2
H1J1 ¼ 0: ð3:52dÞ

The integrals Ji (i ¼ 1;…; 4) are listed in Appendix A. The
end result is

Gðp ¼ 0Þ
QðgÞ ¼ −

2π2

g
þ
�
7

2
ζð3Þ − 5 −

5π2

12

�

×

�
1 −

9π2

8
−
7

2
ζð3Þ

�
N −

7π2

16
N2: ð3:53Þ

It is interesting to note that, in the limit N → ∞, the leading
contribution to the coefficient of relative order g comes
from the partition function correction FZ . Furthermore, in
the limit of small g, the imaginary part of the Green
function described by Gðp ¼ 0Þ is positive.

G. Second derivative of the correlator

To evaluate the second derivative of the two-point
correlation function, we recall Eq. (3.40), subtract the
perturbative term with subscript “2,” and insert a factor
ð−t02Þ in the t0 integration,

∂2
∂p2 Gðp ¼ 0Þ

QðgÞ ¼
X7
i¼1

Si: ð3:54Þ

After appropriate substitutions in the integration variables,
we obtain the following expression, the following integrals
are generated, after obvious symmetry considerations,

S1 ¼
2

g

Z
dt0t02ξclðt0Þ

Z
dt0ξclðt0ÞFZ ¼ 2

g
H3H1FZ

¼ π4

g
þ π4

�
7

32
N2 þ 9

16
N þ 5

24

�
: ð3:55Þ

The subtracted propagators, with the momentum derivative
insertion, give rise to the following expressions:

S2 ¼
Z

dt0
Z

dt0½−ðt0 − t0Þ2�½ΔLðt0; t0Þ − Δ0ðt0; t0Þ�

¼ −K̄1 ¼ −2 −
π2

2
− 21ζð3Þ; ð3:56Þ

S3¼ðN−1Þ
Z

dt0
Z

dt0½−ðt0− t0Þ2�

× ½ΔTðt0;t0Þ−Δ0ðt0;t0Þ�

¼−ðN−1ÞK̄2¼ðN−1Þ
�
−6þπ4

8
þ93

2
ζð5Þ

�
: ð3:57Þ

The K̄ integrals are listed in Appendix A. The rest of
the terms involve instanton configurations. The first of
these is

S4 ¼ 6

Z
dt0

Z
dt0

Z
dt½−ðt0 − t0Þ2�ξclðt0ÞξclðtÞ

× ΔLðt0; tÞΔLðt; tÞ

¼ −6H3J3 − 6H1L3 ¼ þ π2

2
−
9π4

4
: ð3:58Þ

The term with combined transverse and longitudinal
propagators is

S5¼ 2ðN−1Þ
Z

dt0
Z

dt0

Z
dt½−ðt0− t0Þ2�ξclðt0ÞξclðtÞ

×ΔLðt0; tÞΔTðt; tÞ

¼−2ðN−1ÞðH3J4þH1L4Þ¼−
5π4

8
ðN−1Þ: ð3:59Þ

TWO-LOOP CORRECTIONS TO THE LARGE-ORDER BEHAVIOR … PHYS. REV. D 101, 125001 (2020)

125001-17



The term with the second derivative of the instanton is

S6 ¼
3

2

Z
dt0

Z
dt0

Z
dtðt0 − t0Þ2ξclðt0Þ̈ξclðtÞΔLðt0; tÞ

¼ 3

2
ðH3J2 þH1L2Þ ¼

3π4

2
: ð3:60Þ

The last term generated by the Jacobian factor FJ is

S7 ¼−
N − 1

2

Z
dt0

Z
dt0

Z
dtðt0 − t0Þ2ξclðt0ÞξclðtÞΔLðt0; tÞ

¼−
N − 1

2
ðH3J1þH1L1Þ ¼−

π4

4
ðN −1Þ: ð3:61Þ

The overall result is

∂2
∂p2Gðp¼0Þ

QðgÞ ¼π4

g
þ5π4

24
þ4−21ζð3Þ−93

2
ζð5Þ

þN

�
−
3π4

16
−6þ93

2
ζð5Þ

�
þ7π4

32
N2: ð3:62Þ

Again, it is somewhat surprising that the leading term for
large N comes from the correction factor FZ.

H. Four-point correlation function

We are interested here in understanding the imaginary
part of the four-point correlation function to relative order g.
To this end, it is first of all necessary to remember that we
only need to consider the first three terms K1;2;3 on the
right-hand side of Eq. (3.8), because the remaining terms
are of relative order g2. The dominant term, for small g, is
given byK1. We write, in analogy to Eq. (3.15), Gαβγδ as the
sum of two terms, the first of which is dominating,

Gαβγδðt1; t2; t3; t4Þ ¼ ImWð4Þ
1;αβγδðt1; t2; t3; t4Þ

¼ ½Gαβγδðt1; t2; t3; t4Þ�1
þ ½Gαβγδðt1; t2; t3; t4Þ�2

≈ ½Gαβγδðt1; t2; t3; t4Þ�1: ð3:63Þ

The leading term is

½Gαβγδðt1; t2; t3; t4Þ�1 ¼
ImZð4Þ

1;αβγδðt1; t2; t3; t4Þ
Z0ð0Þ

: ð3:64Þ

The additional perturbative term, which cancels a few
divergences, is

½Gαβγδðt1; t2; t3; t4Þ�2 ¼ −
Zð2Þ

0;αβðt1; t2ÞImZð2Þ
1;γδðt3; t4Þ

Z2
0ð0Þ

−
Zð2Þ

0;αγðt1; t3ÞImZð2Þ
1;βδðt2; t4Þ

Z2
0ð0Þ

−
Zð2Þ

0;αδðt1; t4ÞImZð2Þ
1;βγðt2; t3Þ

Z2
0ð0Þ

−
Zð2Þ

0;γδðt3; t4ÞImZð2Þ
1;αβðt1; t2Þ

Z2
0ð0Þ

−
Zð2Þ

0;βδðt2; t4ÞImZð2Þ
1;αγðt1; t4Þ

Z2
0ð0Þ

−
Zð2Þ

0;βγðt2; t3ÞImZð2Þ
1;αδðt1; t3Þ

Z2
0ð0Þ

: ð3:65Þ

Just as with the two-point function, the additional com-
pensating perturbative terms cancel certain divergences
from diagrams that originate from the leading term, in
the sense of the replacement

ΔLðt0 − t0; t0Þ → ΔLðt0 − t0; t0Þ − Δ0ðt0 − t0; t0Þ; ð3:66Þ

ΔTðt0 − t0; t0Þ → ΔTðt0 − t0; t0Þ − Δ0ðt0 − t0; t0Þ: ð3:67Þ

The leading expression for the four-point function is easily
derived, based on the same reasoning as was used in
Eq. (3.15),

Gαβγδðt1; t2; t3; t4Þ ≈
1

g2
huαuβuγuδiSN−1

Z
dt0ξclðt1 − t0Þξclðt2 − t0Þξclðt3 − t0Þξclðt4 − t0Þ

¼ QðgÞ δαβδγδ þ δαγδβδ þ δαδδγβ
NðN þ 2Þ

1

g2
Jðt1; t2; t3; t4Þ; ð3:68Þ

where Jðt1; t2; t3; t4Þ reads as

Jðt1; t2; t3; t4Þ ¼
Z

dt0ξclðt1 − t0Þξclðt2 − t0Þξclðt3 − t0Þξclðt4 − t0Þ

¼ −
8ðt1 − t4Þ

sinhðt1 − t2Þ sinhðt1 − t3Þ sinhðt1 − t4Þ
−

8ðt2 − t4Þ
sinhðt2 − t1Þ sinhðt2 − t3Þ sinhðt2 − t4Þ

−
8ðt3 − t4Þ

sinhðt3 − t1Þ sinhðt3 − t2Þ sinhðt3 − t4Þ
: ð3:69Þ

L. T. GIORGINI et al. PHYS. REV. D 101, 125001 (2020)

125001-18



This formula might seem “asymmetric” as the time
coordinate t4 has been singled out. However, a closer
inspection shows that the formula actually is symmetric
with respect to a cyclic permutation of the time coordinates
ti (with i ¼ 1, 2, 3, 4).
According to Eqs. (3.22) and (3.23), we can define, for

the two-point function, a “scalar” (with respect to the
internal symmetry group) quantity G, which is obtained
from Gαβ, via division by the factor δαβ=N. The same is true
for the four-point function, where we first note that Gαβγδ

can be written as

Gαβγδðt1; t2; t3; t4Þ ¼
δαβδγδ þ δαγδβδ þ δαδδγβ

NðN þ 2Þ
×Gðt1; t2; t3; t4Þ: ð3:70Þ

In leading order, one has

Gðt1; t2; t3; t4Þ ≈QðgÞ 1
g2

Jðt1; t2; t3; t4Þ: ð3:71Þ

In turn, Gðt1; t2; t3; t4Þ can be extracted from
Gαβγδðt1; t2; t3; t4Þ as

δαβδγδGαβγδðt1; t2; t3; t4Þ ¼ Gðt1; t2; t3; t4Þ: ð3:72Þ

Now, one can show that Gðt1; t2; t3; t4Þ can be written as a
function of the differences of the time coordinates only,

Gðt1; t2; t3; t4Þ ¼ Gðt1 − t4; t2 − t4; t3 − t4Þ: ð3:73Þ

For the leading term, given in Eq. (3.69), this relationship
can be checked by inspection. Let us investigate the Fourier
transform

Gðp1; p2; p3; p4Þ ¼
Z

dt1

Z
dt2

Z
dt3

Z
dt4

× e−iðp1t1þp2t2þp3t3þp4t4Þ

×Gðt1 − t4; t2 − t4; t3 − t4Þ: ð3:74Þ

By a suitable change of variable, one can show that

Gðp1;p2;p3;p4Þ¼ 2πδðp1þp2þp3þp4ÞGðp1;p2;p3Þ
¼ 2πδðp1þp2þp3þp4Þ

×
Z

dt0
Z

dt00
Z

dt000

×e−iðp1t0þp2t00þp3t000ÞGðt0; t00; t000Þ: ð3:75Þ

Our task will be focused on

Gðp1 ¼ 0; p2 ¼ 0; p3 ¼ 0Þ
¼ Gðpi¼1;2;3 ¼ 0Þ

¼
Z

dt0
Z

dt00
Z

dt000Gðt0; t00; t000Þ: ð3:76Þ

Note that the integral J defined in Eq. (3.69) can be
written as

Jðt1; t2; t3; t4Þ ¼ Jðt1 − t4; t2 − t4; t3 − t4Þ; ð3:77aÞ

Jðt0;t00;t000Þ¼−
8t0

sinhðt0−t00Þsinhðt0−t000Þsinhðt0Þ
−

8t00

sinhðt00−t0Þsinhðt00−t000Þsinhðt00Þ
−

8t000

sinhðt000−t0Þsinhðt000−t00Þsinhðt000Þ; ð3:77bÞ

so that, in leading order,

Gðpi¼1;2;3 ¼ 0Þ
QðgÞ ≈

1

g2

Z
dt0

Z
dt00

Z
dt000Jðt0; t00; t000Þ

¼ H4
1

g2
¼ 4π4

g2
: ð3:78Þ

It is clear that we have the same structure of corrections as
for the two-point function. One can conveniently express
the correction as the sum of seven terms, which contribute
up to relative order g,

Gðpi¼1;2;3 ¼ 0Þ
QðgÞ ¼

X7
i¼1

T i; ð3:79Þ

where the T i will be defined in the following. We have
the first correction T 1 “for free,” because it is just the
multiplicative correction FZ, multiplying the leading-order
instanton result,

T 1 ¼
4π4

g2
FZ ¼ 4π4

g2
þ π4

g

�
5

6
þ 9

4
N þ 7

8
N2

�
: ð3:80Þ

For the Green function in coordinate space, the replace-
ment of two classical fields in the leading term

ImZð4Þ
1;αβγδðt1; t2; t3; t4Þ by two fluctuations leads to two

terms ½T 2�1 and ½T 3�1, where the subscript ½� � ��1 is
motivated by Eq. (3.64). After suitable variables change,
their contribution to the four-point function at zero momen-
tum can be written as

½T 2�1 ¼ −
6

g

Z
dt0

Z
dt0

Z
dt00

Z
dt000

× ξclðt0Þξclðt000ÞΔLðt0; t00Þ; ð3:81Þ
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½T 3�1 ¼ −
2ðN − 1Þ

g

Z
dt0

Z
dt0

Z
dt00

Z
dt000

× ξclðt0Þξclðt000ÞΔTðt0; t00Þ: ð3:82Þ

To evaluate the compensating perturbative terms ½T 2�2 and
½T 3�2 from Eq. (3.65), one replaces [see Eq. (3.43)]

Zð2Þ
0;αβðt1; t2Þ
Z0ð0Þ

→
δαβ
N

½NΔ0ðt1; t2Þ�: ð3:83Þ

(There is no integration over a collective coordinate here, as
we are analyzing the perturbative propagator.) For the term
involving the instanton saddle point, we have

ImZð2Þ
1;γδðt3; t4Þ
Z0ð0Þ

→

�
−
1

g

�
δγδ
N

QðgÞ

×
Z

dt0ξclðt3 − t0Þξclðt4 − t0Þ: ð3:84Þ

After suitable variable changes, one arrives at the following
“counterterm” from the expression in Eq. (3.65),

½T 2�2 ¼
6

g

Z
dt0

Z
dt0

Z
dt00

Z
dt000

× ξclðt0Þξclðt000ÞΔ0ðt0; t00Þ; ð3:85Þ

½T 3�2 ¼
2ðN − 1Þ

g

Z
dt0

Z
dt0

Z
dt00

Z
dt000

× ξclðt0Þξclðt000ÞΔ0ðt0; t00Þ: ð3:86Þ

Hence, T 2 and T 3 can be expressed as

T 2 ¼ ½T 2�1 þ ½T 2�2 ¼ −
6

g
H2

1I1 ¼
48π2

g
; ð3:87Þ

T 3¼½T 3�1þ½T 3�2¼
N−1

g
ðπ4−4π2þ14π2ζð3ÞÞ: ð3:88Þ

Note that T 2 and T 3 are analogous to the terms G2 and G3,
incurred for the two-point function. The integrals H1, I1,
and I2 can be found in Appendix A.
Now we must treat the analogues of the terms G4;5;6;7,

generated by the Jacobian factor FJ , originally derived for
the two-point function. These terms are generated by the
replacement of one classical field configuration by a
fluctuation combined, via the Wick theorem, with a
contraction with a second fluctuation in the actionþ
Jacobian factor FJ . For the two-point function, we have
two possibilities to choose one field out of two for the cases
where only one field is replaced by a fluctuation. For the
four-point function, we have four such possibilities, and so
we could tentatively conjecture that the corrections T 4, T 5,

T 6, and T 7 receive a relative factor of 2, as compared to the
two-point Green function. This will turn out to be a good
guess, but it needs to be verified by an explicit calculation.
We now consider the term

ffiffiffiffiffiffi
−g

p Z
dtξclðtÞ · χðtÞχ2ðtÞ ð3:89Þ

from Eq. (3.25). One obtains two corrections T 4 and T 5 to
Gðpi¼1;2;3 ¼ 0Þ=QðgÞ, according to Eq. (3.79),

T 4 ¼ −
12

g

Z
dt0

Z
dt0

Z
dt00

Z
dt000

Z
dtξclðt0Þξclðt000Þ

× ξclðt0ÞξclðtÞΔLðt; tÞΔLðt; t00Þ

¼ −
12

g
H3

1J3 ¼ −
6π4

g
; ð3:90Þ

T 5 ¼ −
4ðN − 1Þ

g

Z
dt0

Z
dt0

Z
dt00

Z
dt000

Z
dt

× ξclðt0Þξclðt000Þξclðt0ÞξclðtÞΔTðt; tÞΔLðt; t00Þ

¼ −
4ðN − 1Þ

g
H3

1J4 ¼ −
π4

g
ðN − 1Þ: ð3:91Þ

From the term

ffiffiffiffiffiffi
−g

p �
−
3

4

Z
dtχðtÞ · ξ̈clðtÞ

�
ð3:92Þ

in Eq. (3.25), one has the correction

T 6 ¼
3

g

Z
dt0

Z
dt0

Z
dt00

Z
dt000

Z
dt

× ξclðt0Þξclðt000Þξclðt0Þξ̈clðtÞΔLðt; t00Þ

¼ 3

g
H3

1J2 ¼
6π4

g
: ð3:93Þ

The last correction is from the term

ffiffiffiffiffiffi
−g

p N − 1

4

Z
dtχðtÞ · ξclðtÞ ð3:94Þ

in Eq. (3.25) and reads as

T 7 ¼ −
N − 1

g

Z
dt0

Z
dt0

Z
dt00

Z
dt000

×
Z

dtξclðt0Þξclðt000Þξclðt0ÞξclðtÞΔLðt; t00Þ

¼ N − 1

g
H3

1J1 ¼ 0: ð3:95Þ

The end result is given as follows:
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Gðpi¼1;2;3 ¼ 0Þ
QðgÞ ¼

X7
i¼1

T i

¼ 4π4

g2
þ π2

g

�
52þ 5π2

6
− 14ζð3Þ

þN

�
9π2

4
− 4þ 14ζð3Þ

�
þ 7π2

8
N2

�
;

and involves, again, a couple of Riemann zeta functions.
Finally, we recall the Fourier transform of Eq. (3.70) in the
form

Gαβγδðpi¼1;2;3 ¼ 0Þ
QðgÞ ¼ δαβδγδ þ δαγδβδ þ δαδδγβ

NðN þ 2Þ

×
Gðpi¼1;2;3 ¼ 0Þ

QðgÞ ; ð3:96Þ

exhibiting the angular structure within the internal
OðNÞ group.

I. Two-point wigglet insertion

In this section we will derive the large-order behavior of
the two-point correlation function with a wigglet insertion
computed at zero momentum. Using the previous results
relative to the two- and four-point functions, its derivation
will be straightforward. We define the (imaginary part of
the) wigglet insertion into the two-point Green function
Gαβðt1; t2Þ, according to Eq. (3.7), as follows:

Gð1;2Þ
αβ ðt1; t2Þ ¼

∂2

∂m2
Gαβðm; t1; t2Þ

				
m2¼1

¼ ∂2

∂m2
ImWð2Þ

1;αβðm; t1; t2Þ
				
m2¼1

¼ −
1

2

Z
dsImWð4Þ

αβγγðs; s; t1; t2Þ

¼ −
1

2

Z
dsGαβγγðs; s; t1; t2Þ: ð3:97Þ

Here, Gαβðm; t1; t2Þ is the analogue of Gαβðt1; t2Þ, defined in
Eq. (3.15), but with respect to an action with a variable
mass term,

S½m; qðtÞ� ¼
Z

dt

�
1

2
_q2 þm2

2
q2 þ 1

4
gq4

�
: ð3:98Þ

In view of the result (3.68) for the leading contribution
to the four-point function, we have the relation [see
Eq. (3.68)]

Gð1;2Þ
αβ ðt1; t2Þ ¼ −

1

2

Z
dsGαβγγðs; s; t1; t2Þ

¼ −
QðgÞ
2

δαβ
N

1

g2
16ðt1 − t2Þ
sinhðt1 − t2Þ

; ð3:99Þ

where we have used Eq. (3.32). One can show that

Gð1;2Þ
αβ ðt1; t2Þ can be written in terms of the time coordinate

differences only,

Gð1;2Þ
αβ ðt1; t2Þ ¼ Gð1;2Þ

αβ ðt1 − t2Þ: ð3:100Þ

In leading order, we anticipate the result

Z
dðt1 − t2ÞGð1;2Þ

αβ ðt1 − t2Þ ≈ −
QðgÞ
2

δαβ
N

H2
1H2

g2

¼ −
QðgÞ
2

δαβ
N

8π2

g2
; ð3:101Þ

where we have used, again, integrals from Appendix A. To
analyze the two-loop corrections, we first need to remem-
ber the angular structure. First, it is easy to see that, from
Eq. (3.70), we have

Gαβγγðt1; t2; t3; t4Þ ¼
δαβ
N

Gðt1; t2; t3; t4Þ: ð3:102Þ

So,

Gð1;2Þ
αβ ðt1;t2Þ¼−

δαβ
2N

Z
dsGðs;s;t1−t2Þ

¼−
δαβ
2N

Hðt1;t2Þ¼−
δαβ
2N

Hðt1−t2Þ; ð3:103Þ

where we appeal to Eq. (3.73) and implicitly define the
function Hðt1; t2Þ ¼ Hðt1 − t2Þ. Let us investigate the
Fourier transform

Hðp1; p2Þ ¼
Z

dt1

Z
dt2e−iðp1t1þp2t2Þ

Z
dsHðt1; t2Þ

¼ 2πδðp1 þ p2ÞHðp1Þ; ð3:104Þ

where

HðpÞ ¼
Z

dt0
Z

dt00e−ipt00Gðt0; t0; t00Þ; ð3:105Þ

so that

Hðp ¼ 0Þ ¼
Z

ds
Z

dðt1 − t2ÞGðs; s; t1; t2Þ; ð3:106Þ

where we again use Eq. (3.73). In leading order, in view of
Eqs. (3.71) and (3.77b), one has
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Hðp ¼ 0Þ
QðgÞ ≈

1

g2

Z
dt0

Z
dt00Jðt0; t0; t00Þ

¼ H2
1H2

g2
¼ 8π2

g2
; ð3:107Þ

confirming the leading-order result given in Eq. (3.101).
One can conveniently express the correction as the sum of
seven terms, which contribute up to relative order g,

Hðp ¼ 0Þ
QðgÞ ¼

X7
i¼1

U i: ð3:108Þ

We have the first correction “for free,” because it is just the
multiplicative correction FZ, multiplying the leading-order
instanton result,

U1 ¼
8π2

g2
FZ ¼ 8π2

g2
þ 2π2

g

�
5

6
þ 9

4
N þ 7

8
N2

�
: ð3:109Þ

Just as we did in our analysis of the four-point function, we
now replace, in the Green function in coordinate space, two
classical fields by fluctuations and obtain two terms,

½U2�1 ¼ −
1

g

Z
dt0

Z
dt00ΔLðt0; t00Þ

Z
dt000½ξclðt000Þ�2

−
4

g

Z
dt0ξclðt0Þ

Z
dt00ΔLðt0; t00Þ

Z
dt000ξclðt000Þ

−
1

g

Z
dt0ΔLðt0; t0Þ

Z
dt00ξclðt00Þ

Z
dt000ξclðt000Þ;

ð3:110Þ

½U3�1 ¼ −
N − 1

g

Z
dt0

Z
dt00ΔTðt0; t00Þ

Z
dt000½ξclðt000Þ�2

−
N − 1

g

Z
dt0ΔTðt0; t0Þ

×
Z

dt00ξclðt00Þ
Z

dt000ξclðt000Þ: ð3:111Þ

From the perturbative compensating term in Eq. (3.65),
we have

½U2�2 ¼
1

g

Z
dt0

Z
dt00Δ0ðt0; t00Þ

Z
dt000½ξclðt000Þ�2

þ 4

g

Z
dt0ξclðt0Þ

Z
dt00Δ0ðt0; t00Þ

Z
dt000ξclðt000Þ

−
1

g

Z
dt0Δ0ðt0; t0Þ

Z
dt00ξclðt00Þ

Z
dt000ξclðt000Þ;

ð3:112Þ

½U3�2 ¼
N − 1

g

Z
dt0

Z
dt00Δ0ðt0; t00Þ

Z
dt000½ξclðt000Þ�2

þ N − 1

g

Z
dt0Δ0ðt0; t0Þ

×
Z

dt00ξclðt00Þ
Z

dt000ξclðt000Þ: ð3:113Þ

With the help of the integrals listed in Appendix A, we can
express U2 and U3 as follows:

U2 ¼ −
1

g
H2I1 −

4

g
H1ðJ1 − Jð0Þ1 Þ − 1

g
H2

1N1

¼ 48þ 31π2

3g
; ð3:114Þ

U3 ¼ −
N − 1

g
H2I2 −

N − 1

g
H2

1N2

¼ 2ðN − 1Þ
g

½π2 − 2þ 7ζð3Þ�: ð3:115Þ

We now consider the term

ffiffiffiffiffiffi
−g

p �Z
dtξclðtÞ · χðtÞχ2ðtÞ

�
ð3:116Þ

in the Jacobian Eq. (3.25). After the application of the Wick
theorem and suitable variable changes, one arrives at a
contribution to Hðp ¼ 0Þ=QðgÞ, consisting of the sum of
two terms, U4 and U5,

U4¼−
6

g

Z
dtξclðtÞΔLðt;tÞ

×
Z

dt0ΔLðt;t0Þ
Z

dt00½ξclðt00Þ�
Z

dt000½ξclðt000Þ�2

−
6

g

Z
dtξclðtÞΔLðt;tÞ

Z
dt0ξclðt0ÞΔLðt;t0Þ

�Z
dt00ξclðt00Þ

�
2

¼−
6

g
H1H2J3−

6

g
H2

1M3¼−
19π2

3g
; ð3:117Þ

U5¼−
2ðN−1Þ

g

Z
dtξclðtÞΔTðt;tÞ

Z
dt0ΔLðt;t0Þ

×
Z

dt00½ξclðt00Þ�
Z

dt000½ξclðt000Þ�2

−
2ðN−1Þ

g

Z
dtξclðtÞΔTðt;tÞ

Z
dt0ξclðt0ÞΔLðt;t0Þ

×

�Z
dt00ξclðt00Þ

�
2

¼−
2ðN−1Þ

g
H1H2J4−

2ðN−1Þ
g

H2
1M4¼0: ð3:118Þ

From the term
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ffiffiffiffiffiffi
−g

p �
−
3

4

Z
dtχðtÞ · ̈ξclðtÞ

�
ð3:119Þ

in the Jacobian given in Eq. (3.25), one has

U6¼
3

2g

Z
dtξclðtÞ

Z
dt0ΔLðt;t0Þ

Z
dt00ξclðt00Þ

Z
dt000½ξclðt000Þ�2

þ 3

2g

Z
dtξclðtÞ

Z
dt0ξclðt0ÞΔLðt;t0Þ

�Z
dt00ξclðt00Þ

�
2

¼ 3

2g
H1H2J2þ

3

2g
H2

1M2¼
9π2

g
: ð3:120Þ

The last correction is from the term

ffiffiffiffiffiffi
−g

p N − 1

4

Z
dtχðtÞ · ξclðtÞ ð3:121Þ

in Eq. (3.25) and leads to the correction

U7 ¼−
N − 1

2g

Z
dtξclðtÞ

Z
dt0ΔLðt; t0Þ

×
Z

dt00ξclðt00Þ
Z

dt000½ξclðt000Þ�2

−
N − 1

2g

Z
dtξclðtÞ

Z
dt0ξclðt0ÞΔLðt; t0Þ

�Z
dt00ξclðt00Þ

�
2

¼−
N − 1

2g
H1H2J1 −

N − 1

2g
H2

1M1 ¼
π2ðN − 1Þ

g
:

ð3:122Þ
The final result [see Eq. (3.79)] for order-g corrections to
the imaginary part of the wigglet insertion into the two-
point function reads as follows:

Hðp¼0Þ
QðgÞ ¼

X7
i¼1

U i¼
8π2

g2
þ1

g

�
20þ35π2

3
−14ζð3Þ

þN
�
15π2

2
−4þ14ζð3Þ

�
þ7π2

4
N2

�
: ð3:123Þ

It has the same structure as the result for the four-point
function, given in Eq. (3.96).

IV. CONCLUSIONS

A. Large-order behavior: A summary

In this article, we have concentrated on the one-
dimensional field theory, with an internal OðNÞ symmetry
group, in the normalization [see Eq. (2.1)]

S½qðtÞ� ¼
Z

dt

�
1

2

�∂qðtÞ
∂t

�
2

þ 1

2
q2ðtÞ þ g

4
q4ðtÞ

�
; ð4:1Þ

where qðtÞ ¼ fq1ðtÞ;…; qNðtÞg ¼ P
N
α¼1 qαðtÞeα. The

start time t0 of the instanton and the coordinate τi with

i ¼ 1;…; N − 1 are the collective coordinates of the
problem. Furthermore, we have analyzed the functional
determinant of the transformation of the path integral, into
integrals over the collective coordinates and path integrals
over paths orthogonal to the zero modes, in Sec. II C, with
the result for the Jacobian given in Eq. (2.21).
Based on the results given in Sec. III and the dispersion

relations studied in Sec. I B, we are now in the position to
write down the large-order behavior of various perturbative
expansions, of the partition function and various correlation
functions [in the sense of Eqs. (1.8) and (1.9)]. We have
from Eq. (2.55), for the imaginary part of the ground-state
energy of the OðNÞ oscillator,

ImE0ðgÞ
QðgÞ ¼ lim

β→∞

�
−

1

QðgÞβ
ImZ1ðβÞ
Z0ðβÞ

�

¼ −
�
1þ g

�
7

32
N2 þ 9

16
N þ 5

24

��
: ð4:2Þ

Here, according to Eq. (3.32), one has

QðgÞ ¼ 1

ΓðN=2Þ
�
−
8

g

�
N=2

exp

�
4

3g

�
: ð4:3Þ

Based on the formalism outlined in Sec. I B, this can be
converted to the asymptotics of the perturbative coefficients
of the ground-state energy in large orders [see Eq. (2.55)].
One can identify E0ðgÞ≡Gð0ÞðgÞ with the ground-state
energy and study the perturbative expansion Gð0ÞðgÞ ¼P

K Gð0Þ
K gK . Within the conventions outlined in Eq. (1.9),

one has n ¼ 0, D ¼ 1 and

cð0ÞðN; 1Þ ¼ −
8N=2

ΓðN=2Þ ; ð4:4aÞ

dð0ÞðN; 1Þ ¼ 7

32
N2 þ 9

16
N þ 5

24
: ð4:4bÞ

The two-point function has the angular structure [see
Eqs. (3.22) and (3.27)]

ImGð2Þ
αβ ðt1 − t2Þ ¼ Gαβðt1; t2Þ ¼

δαβ
N

Gðt1 − t2Þ: ð4:5Þ

We recall that Gαβðt1; t2Þ, as defined in Eq. (3.15), is the
imaginary part of the two-point function Gαβðt1 − t2Þ, in
the sense in Sec. I B. The result for Gðp ¼ 0Þ ¼ R

dt0Gðt0Þ
of the “scalar” two-point function at p ¼ 0 has been
recorded in Eq. (3.53),
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Gðp ¼ 0Þ
QðgÞ ¼ −

2π2

g

�
1þ g

�
5

24
þ 5

2π2
−
7ζð3Þ
4π2

þ
�
9

16
−

1

2π2
þ 7ζð3Þ

4π2

�
N þ 7

32
N2

��
: ð4:6Þ

For the imaginary part Gðp ¼ 0Þ, this translates into the
following coefficients in the large-order asymptotics,
according to Eq. (1.9):

cð2ÞðN; 1Þ ¼ 2π2
8N=2

ΓðN=2Þ ; ð4:7aÞ

dð2ÞðN; 1Þ ¼ 5

24
þ 5

2π2
−
7ζð3Þ
4π2

þ
�
9

16
−

1

2π2
þ 7ζð3Þ

4π2

�
N þ 7

32
N2: ð4:7bÞ

Of course, we have n ¼ 2 in the sense of Eq. (1.9) for the
two-point function at zero momentum transfer as well as for
its derivative, which gives rise to the following imaginary
part, according to Eq. (3.62),

∂2
∂p2Gjp¼0

QðgÞ ¼ π4

g

�
1þ g

�
5

24
þ 4

π4
−
21ζð3Þ
π4

−
93ζð5Þ
2π4

þ
�
−

3

16
−

6

π4
þ 93ζð5Þ

2π4

�
Nþ 7N2

32

��
:

ð4:8Þ
The leading and subleading large-order asymptotics for the
perturbative coefficients of ∂2

∂p2 Gjp¼0
are given as follows

[see Eq. (1.9)]:

cð∂pÞðN; 1Þ ¼ −π4 8N=2

ΓðN=2Þ ; ð4:9aÞ

dð∂pÞðN;1Þ¼ 5

24
þ 4

π4
−
21ζð3Þ
π4

−
93ζð5Þ
2π4

þ
�
−
3

16
−
6

π4
þ93ζð5Þ

2π4

�
Nþ 7

32
N2: ð4:9bÞ

For the imaginary part of the four-point function, according
to Eq. (3.70), we have

Gαβγδðt1; t2; t3; t4Þ ¼
δαβδγδ þ δαγδβδ þ δαδδγβ

NðN þ 2Þ
×Gðt1 − t4; t2 − t4; t3 − t4Þ: ð4:10Þ

One defines according to Eq. (3.76),

Gðp1 ¼ 0; p2 ¼ 0; p3 ¼ 0Þ ¼ Gðpi¼1;2;3 ¼ 0Þ

¼
Z

dt0
Z

dt00
Z

dt000Gðt0; t00; t000Þ: ð4:11Þ

The result, to relative order g, is given by [according to
Eq. (3.96)],

Gðpi¼1;2;3 ¼ 0Þ
QðgÞ ¼ 4π4

g2

�
1þ g

�
5

24
þ 13

π2
−
7ζð3Þ
2π2

þ
�
9

16
−

1

π2
þ 7ζð3Þ

2π2

�
N þ 7N2

32

��
:

ð4:12Þ

The perturbative expansion of the imaginary part
Gðpi¼1;2;3 ¼ 0Þ of the four-point function therefore has
the following asymptotics of the perturbative coefficients
[see Eq. (1.9) with n ¼ 4]:

cð4ÞðN; 1Þ ¼ 4π4
8N=2

ΓðN=2Þ ; ð4:13aÞ

dð4ÞðN; 1Þ ¼ 5

24
þ 13

π2
−
7ζð3Þ
2π2

þ
�
9

16
−

1

π2
þ 7ζð3Þ

2π2

�
N þ 7

32
N2: ð4:13bÞ

Finally, for the imaginary part of the two-point function
with a wigglet insertion, computed at zero momentum, we
have the following expression, according to Eq. (3.103),

Gð1;2Þ
αβ ðt1; t2Þ ¼ −

δαβ
2N

Hðt1 − t2Þ: ð4:14Þ

The quantity of interest is [see Eq. (3.106)]

Hðp ¼ 0Þ ¼
Z

dt0Hðt0Þ; ð4:15Þ

for which we obtain the result [see Eq. (3.123)]

Hðp¼ 0Þ
QðgÞ ¼ 8π2

g2

�
1þg

�
35

24
þ 5

2π2
−
7ζð3Þ
4π2

þ
�
15

16
−

1

2π2
þ7ζð3Þ

4π2

�
Nþ 7

32
N2

��
: ð4:16Þ

The large-order asymptotics of the perturbative coefficients
for Hðt1 − t2Þ are as follows:

cð1;2ÞðN; 1Þ ¼ 8π2
8N=2

ΓðN=2Þ ; ð4:17aÞ

dð1;2ÞðN;1Þ¼ 35

24
þ 5

2π2
−
7ζð3Þ
4π2

þ
�
15

16
−

1

2π2
þ7ζð3Þ

4π2

�
Nþ 7

32
N2: ð4:17bÞ
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We note that the large-order asymptotics have the param-
eter n ¼ 4 in the conventions delineated in Eq. (1.9)
because of the additional two fields that have to be inserted
in view of the mass derivative.

B. Interpretation of the results

In this article, we have laid the groundwork for the
accurate systematic analysis of the large-order behavior of
perturbation theory for the correlation functions in the
N-vector model. Our paradigm is that once the number of
loops in a Feynman diagram becomes very large, the large-
order behavior of the N-vector model is determined by
classical field configurations (instantons), which determine
the cut of the correlation functions for negative coupling.
They act as a second saddle point of the Euclidean action.
The (longitudinal) fluctuation operator around the saddle
point has one negative eigenvalue, commensurate with the
imaginary square root of the determinant of this operator.
Through the evaluation of corrections to the classical

configurations, we are able to evaluate corrections of
relative order g to the correlation functions, which, via
dispersion relations, immediately lead to the corrections of
relative order 1=K to the perturbative coefficients. The
connection is elucidated in great detail in Sec. I B.
In all cases, the leading term of the order-g correction, in

the large-N limit, is given by the multiplicative correction
to the partition function term, i.e., due to the factor FZ
given in Eq. (3.19). One might wonder why the term of
order N2 in the correction to the partition function con-
stitutes the universal leading correction in the large-N limit.
To understand this phenomenon, let us consider the
computational origin of the corrections. The leading term
in a correlation function (for the imaginary part) is given by
a term in which one replaces all field configurations by
instantons. Then, a set of universal corrections is obtained
when one keeps the instanton field configurations inside
the main integrand but considers the corrections due to the
field Jacobian, and due to the effective action around the
instanton, which, together, give rise to the universal
correction factor FZ given in Eq. (3.19).
Let us now consider the additional corrections obtained

when one replaces, instead, one of the instanton field
configurations by a fluctuation. Then, for the order-g
corrections to the imaginary part of the partition function,
one has to combine the fluctuation with the factor FJ from
Eq. (3.25). This combination leads, at most, with regard to
N, to the product of a longitudinal fluctuation factor, which
carries no N, and one additional factor N due to the
transverse fluctuations encoded in χ2 ¼ χ2L þ χ2

T
. Finally,

replacing two instanton configurations by fluctuations, one
obtains at most a single factor of N, generated by a term
proportional to χ2. The universality of the large-N limit of
the correction terms can be justified based on the decou-
pling of expectation values of fields at different spacetime

points in the limit of large N, as explained in the text
following Eq. (2.2) of Ref. [26] and Chap. 14 of Ref. [27].
In fact, according to formulas given in Chap. 14 of
Ref. [27], critical exponents reach universal values in the
large-N limit and depend only on the spatial dimension of
the system.
Our expressions for the two-point correlation function,

for its second derivative, for the four-point correlation
function and for the two-point correlation function with a
wigglet insertion, computed at zero momentum, were
obtained by integrating the corresponding correlation
function in coordinate space over the difference of all its
coordinate with respect to one of them. Incidentally, it is
interesting to note that this procedure is completely
equivalent to an alternative procedure where one fixes
one of the time coordinates in a correlation function
to zero, and integrates over all the others. This equivalence
holds due to the time translation invariance of the corre-
lation functions. One of the most important additional
conclusions of the current article is that, for the correlation
functions, the two-loop corrections to the imaginary part,
of relative order g, have a much more complex analytic
structure as compared to those of the ground-state
energy.
A remark on our notation is in order. We apologize to the

reader for the manyG’s in our paper. Generic n-point Green
functions are denoted by the sans-serif G, according to
Eq. (3.13). We also recall that Gαβ, according to Eq. (3.15),
is the imaginary part of the two-point function, while Gαβγδ,
according to Eq. (3.63), is the imaginary part of the four-
point function. Incidentally, we also have the terms Ri
(i ¼ 1;…; 7) for the contributions to the two-point function
at zero momentum transfer, according to Eq. (3.48). Seven
corrections are also incurred for the contributions to the
derivative of the two-point function, summarized in the
terms Si [see Eq. (3.54)]. For the four-point function one
defines the scalar Green functionG according to Eq. (3.76).
Finally, we have the seven terms T i (i ¼ 1;…; 7) for the
four-point function at zero momentum transfer, according
to Eq. (3.79), and the seven terms U i (i ¼ 1;…; 7) for the
two-point function with a wigglet insertion, according to
Eq. (3.123).
A remark on the character of the factorial divergence

of the perturbation series is in order. According to
Eq. (1.9), all factorially divergent series calculated in this
work are alternating in large order, in view of the factor
ð−1=AÞK in Eq. (1.9), where A ¼ 4=3. Indeed, it is known
that perturbation series in ϕ4 theories are factorially
divergent, Borel summable series [6–8,28–30]. In a more
general context, such series constitute the conceptually
simplest manifestation of so-called resurgent expansions
(transseries), which have recently been shown to lead to
adequate representations of physical quantities of interest in
a number of mathematical investigations and in field
theories [13–15,31–35].
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In principle, based on the results presented in the current
paper, one could go further and calculate the large-order
behavior of the renormalization constants of the one-
dimensional OðNÞ field theory (see Sec. B). We recall
that the renormalization constants Zϕ (wave function), Zϕ2

(wigglet insertion), Zg (coupling constant), and δm2 (mass
counterterm) are determined by the renormalization con-
ditions imposed on the vertex functions, which can be
obtained from the correlation functions (calculated here)
via a Legendre transformation. The renormalization con-
stants, in turn, determine the large-order behavior of the
beta function βðgÞ, the anomalous dimension function ηðgÞ,
and the correlation length function η2ðgÞ, which enter the
Callan-Symanzik equation. The Callan-Symanzik equation
is a RG equation fulfilled by the vertex functions of
the theory (a minireview on this aspect is given in
Appendix B). However, in one dimension, we refrain from
engaging in this endeavor because of the absence of a
second-order phase transition due to the low dimensionality
of the system under study, which prevents the system from
undergoing a phase transition to the low-temperature phase.
In higher dimensions, the critical exponents can be studied
on the basis of the Callan-Symanzik equation [9–12].
One of the main conclusions of the current paper is that

the calculation of corrections to the large-order growth of
perturbation theory for correlation functions, beyond the
plain calculation of the partition function, is possible for
field theories with a nontrivial internal structure [here, the
OðNÞ symmetry group]. The results presented here are a
first step toward the evaluation of subleading corrections to
the factorial asymptotics of perturbative coefficients in
perturbative field theory, for physical quantities of interest
beyond the partition function. The evaluation of subleading
corrections to the large-order asymptotics of Feynman
diagram coefficients in large loop-order provides us with
an alternative method to enhance our understanding of the
predictive limits of field theory. The ultimate goal of the
endeavor is to “interpolate” between (necessarily finite-
order) perturbative Feynman diagram calculations and the
large-order asymptotics (about “infinite loop” order), the
latter being enhanced by the evaluation of the subleading
corrections about the instantons. The latter, in turn, lead to
corrections of relative order 1=K (two-loop order discussed
here) to the large-order behavior of perturbation theory. The
generalization to relative order 1=K2 (four-loop order about
the instanton) and the consideration of field theories in
higher dimensions are the natural next steps in this program
and are currently under investigation.
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APPENDIX A: INTEGRAL TABLE

We first list integrals that involve only the instanton,

H1 ¼
Z

dtξclðtÞ ¼
ffiffiffi
2

p
π; ðA1Þ

H2 ¼
Z

dt½ξclðtÞ�2 ¼ 4; ðA2Þ

H3 ¼
Z

dt t2ξclðtÞ ¼
π3

2
ffiffiffi
2

p : ðA3Þ

Integrals involving the subtracted longitudinal and trans-
verse propagators read as follows:

I1 ¼
Z

dt1

Z
dt2½ΔLðt1; t2Þ − Δ0ðt1; t2Þ� ¼ −4; ðA4Þ

I2 ¼
Z

dt1

Z
dt2½ΔTðt1; t2Þ − Δ0ðt1; t2Þ�

¼ 1 −
π2

4
−
7

2
ζð3Þ: ðA5Þ

In addition, we have integrals involving longitudinal and
transverse propagators and instantons,

J1 ¼
Z

dt1ξclðt1Þ
Z

dt2ΔLðt1; t2Þ ¼ 0; ðA6Þ

J2 ¼
Z

dt1 ̈ξclðt1Þ
Z

dt2ΔLðt1; t2Þ ¼
πffiffiffi
2

p ; ðA7Þ

J3¼
Z

dt1ξclðt1ÞΔLðt1; t1Þ
Z

dt2ΔLðt1; t2Þ¼
π

4
ffiffiffi
2

p ; ðA8Þ

J4¼
Z

dt1ξclðt1ÞΔTðt1; t1Þ
Z

dt2ΔLðt1; t2Þ¼
π

8
ffiffiffi
2

p : ðA9Þ

Integrals involving the subtracted longitudinal and trans-
verse propagators, and powers of the Euclidean time
variable, are needed for the second derivative of the
two-point function,

K1 ¼
Z

dt1

Z
dt2t21½ΔLðt1; t2Þ − Δ0ðt1; t2Þ�

¼ −
π2

3
; ðA10Þ

K2 ¼
Z

dt1

Z
dt2t21½ΔTðt1; t2Þ − Δ0ðt1; t2Þ�

¼ 2þ π2

12
−
π4

16
−

7

24
π2ζð3Þ − 31

2
ζð5Þ: ðA11Þ

Furthermore, we have the following integrals with mixed
contributions:
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K̃1 ¼
Z

dt1

Z
dt2t1t2½ΔLðt1; t2Þ − Δ0ðt1; t2Þ�

¼ −
7π2

12
− 1 −

21

2
ζð3Þ; ðA12Þ

K̃2 ¼
Z

dt1

Z
dt2t1t2½ΔTðt1; t2Þ − Δ0ðt1; t2Þ�

¼ −1þ π2

12
−

7

24
π2ζð3Þ þ 31

4
ζð5Þ: ðA13Þ

Among all integrals considered, the integrals K2 and K̃2

are by far the most difficult to evaluate.
One may derive a relatively compact representation for

K2 via the substitutions t2 ¼ 2 lnðvÞ, followed by the t2
integral, then followed by t1 ¼ 2 lnðuÞ, and u ¼ ffiffiffi

x
p

, so
one would effectively substitute t1 ¼ lnðxÞ. This results in

K2 ¼
Z

∞

0

dx

�
−

ln2ðxÞ
xðx2 þ 1Þ −

ln2ðxÞðx2 − 1Þ arctanðxÞ
x2ðx2 þ 1Þ

−
i ln2ðxÞ
1þ x2

½Li2ð−ixÞ − Li2ðixÞ�
�
: ðA14Þ

This representation is seen to involve Legendre’s χ2
function [36,37],

χ2ðzÞ ¼
1

2
ðLi2ðzÞ − Li2ð−zÞÞ: ðA15Þ

Formula (A11) was found by the PSLQ algorithm [20–23].
One can form the combinations

K̄1 ¼
Z

dt1

Z
dt2ðt1 − t2Þ2½ΔLðt1; t2Þ − Δ0ðt1; t2Þ�

¼ 2ðK1 − K̃1Þ ¼ 2þ π2

2
þ 21ζð3Þ; ðA16Þ

K̄2 ¼
Z

dt1

Z
dt2ðt1 − t2Þ2½ΔTðt1; t2Þ − Δ0ðt1; t2Þ�

¼ 2ðK2 − K̃2Þ ¼ 6 −
π4

8
−
93

2
ζð5Þ: ðA17Þ

We have additional reference integrals with a second
derivative insertion, which are important for the calculation
of the derivative ∂2G=∂p2, at p ¼ 0,

L1 ¼
Z

dt1ξclðt1Þ
Z

dt2t22ΔLðt1; t2Þ ¼
π3

2
ffiffiffi
2

p ; ðA18Þ

L2 ¼
Z

dt1 ̈ξclðt1Þ
Z

dt2t22ΔLðt1; t2Þ ¼
3π3

4
ffiffiffi
2

p ; ðA19Þ

L3 ¼
Z

dt1ξclðt1ÞΔLðt1; t1Þ
Z

dt2t22ΔLðt1; t2Þ

¼ 5π3

16
ffiffiffi
2

p −
π

12
ffiffiffi
2

p ; ðA20Þ

L4 ¼
Z

dt1ξclðt1ÞΔTðt1; t1Þ
Z

dt2t22ΔLðt1; t2Þ

¼ 9π3

32
ffiffiffi
2

p : ðA21Þ

For the wigglet insertion, i.e., the Green function Gð1;2Þ at
zero momentum, we also need the integrals

M1 ¼
Z

dt1ξclðt1Þ
Z

dt2ξclðt2ÞΔLðt1; t2Þ ¼ −1; ðA22Þ

M2 ¼
Z

dt1 ̈ξclðt1Þ
Z

dt2ξclðt2ÞΔLðt1; t2Þ ¼ 1; ðA23Þ

M3 ¼
Z

dt1ξclðt1ÞΔLðt1; t1Þ
Z

dt2ξclðt2ÞΔLðt1; t2Þ

¼ 1

36
; ðA24Þ

M4 ¼
Z

dt1ξclðt1ÞΔTðt1; t1Þ
Z

dt2ξclðt2ÞΔLðt1; t2Þ

¼ −
1

4
: ðA25Þ

In view of the confluence of arguments of the propagators
in the wigglet insertion, additional integrals are required,

N1 ¼
Z

dt1½ΔLðt1; t1Þ − Δ0ðt1; t1Þ� ¼ −
7

6
; ðA26Þ

N2 ¼
Z

dt1½ΔTðt1; t1Þ − Δ0ðt1; t1Þ� ¼ −
1

2
: ðA27Þ

Finally, we also need the integral

Jð0Þ1 ¼
Z

dt1ξclðt1Þ
Z

dt2Δ0ðt1; t2Þ ¼
ffiffiffi
2

p
π; ðA28Þ

which is obtained from (A6) by the replacement of the
longitudinal propagator with its free counterpart.

APPENDIX B: CALLAN-SYMANZIK EQUATION

In principle, the application of the Callan-Symanzik
equation [24,25] to the calculation of critical exponents has
been described in a number of monographs [27,30,38,39].
However, to put the calculations reported here into per-
spective, we should include a few remarks regarding
the relation of the quantities calculated here to the
RG functions that enter the Callan-Symanzik equation.
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The Callan-Symanzik equation is a RG equation fulfilled
by one-particle irreducible vertex functions Γða;nÞ, derived
via Legendre transformation from the connected correlation
functions (see Chap. 7 of Ref. [30]).
The Callan-Symanzik equation is obtained by differ-

entiating the vertex functions with respect to the renor-
malized mass parameter while holding the bare parameters
constant and reads as follows:�
mR

∂
∂mR

þβðgRÞ
∂
∂gR−

n
2
ηðgRÞ−aη2ðgRÞ

��

Γða;nÞ
R ðfq⃗igai¼1;fp⃗igni¼1;mR;gRÞ
¼ ½2−ηðgRÞ�Γðaþ1;nÞ

R ðfq⃗igai¼1; 0⃗;fp⃗igni¼1;mR;gRÞ: ðB1Þ

Here, Γða;nÞ
R is the n-point vertex function with a wigglet

insertions. In the term with Γðaþ1;nÞ
R , we have to set the

momentum argument corresponding to the wigglet inser-
tion number aþ 1 (the one created by the action of the

operator ∂=∂m2
R on Γða;nÞ

R ) to zero. As already mentioned,
the vertex functions are obtained from the connected
correlation functions via a Legendre transformation. For
example, the vertex function Γð2Þ ¼ Γð0;2Þ is the inverse of
the two-point correlation function Wð2Þ [see the discussion
following Eq. (7.80) of Ref. [30] ]. The four-point function
Γð4Þ ¼ Γð0;4Þ is obtained from Wð4Þ via “amputation” of the
external legs and sign inversion [see the discussion follow-
ing Eq. (7.80) of Ref. [30], or Eq. (4.24) of Ref. [39] ].
Bare (index zero) and renormalized vertex functions are

related by [see Eq. (10.20) of Ref. [30] ]

Γða;nÞ
0 ðfq⃗igai¼1; fp⃗igni¼1;m0; g0Þ

¼ Z−n=2
ϕ

�
Zϕ

Zϕ2

�
a
Γða;nÞ
R ðfq⃗igai¼1; fp⃗igni¼1;mR; gRÞ: ðB2Þ

Here, Zϕ is the wave function renormalization, Zϕ2 is the
renormalization of the wigglet insertion, and the bare and
renormalized mass parameters are related by

m2
0 ¼ ðm2

R þ δm2Þ=Zϕ; ðB3Þ

where δm2 is the mass counterterm.
The wave function renormalization constant Zϕ2 is fixed

by the condition

∂
∂p2

1

Γð2Þ
R ðp⃗1; p⃗2;m2

R; gRÞ
				
p⃗i¼0⃗

¼ 1: ðB4Þ

The renormalization condition

Γð2Þ
R ðp⃗1; p⃗2;m2

R; gRÞjp⃗i¼0⃗
¼ m2

R ðB5Þ

fixes the mass counterterm δm2. The coupling constant
renormalization constant Zg is fixed by the condition

Γð4Þ
R ðp⃗1; p⃗2; p⃗3; p⃗4; m2

R; gRÞjp⃗i¼0⃗
¼ m4−D

R gR; ðB6Þ

where gR is the dimensionless, renormalized coupling, and
D is the spatial dimension. Finally, the wigglet insertion
renormalization constant Zϕ2 is determined by

Γð1;2Þ
R ðq⃗; p⃗1; p⃗2;m2

R; gRÞjp⃗i;q⃗¼0 ¼ 1: ðB7Þ

The renormalization-group functions are obtained as
follows:

βðgRÞ ¼ −ð4 −DÞ
� ∂
∂gR ln

�
gR

ZgðgRÞ
ZϕðgRÞ2

��−1
; ðB8Þ

ηðgÞ ¼ βðgRÞ
∂
∂gR lnðZϕÞ; ðB9Þ

η2ðgÞ ¼ βðgRÞ
∂
∂gR ln

�
Zϕ2

Zϕ

�
: ðB10Þ

From these relations, one calculates the critical value g�
determined by the condition βðg�Þ ¼ 0 which determines
the infrared non-Gaussian fixed point of the RG flow,
which is approached by the system because of the relevance
of the ϕ4 interaction in dimensions lower than four. Critical
exponents are determined by the values of the RG functions
at the critical point, η ¼ ηðg�Þ and η2 ¼ η2ðg�Þ, via well-
known hyperscaling relations. For example, the critical
exponent ν of the correlation length is determined as
ν ¼ 1=ð2þ η2Þ, while the critical exponent α of the heat
capacity is α ¼ 2 −Dν, and the critical exponent γ of the
magnetic susceptibility is γ ¼ νð2 − ηÞ.
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(1978); Reprinted in E. Brézin and G. Parisi, Field Theory,
Disorder and Simulations, edited by G. Parisi (World
Scientific, Singapore, 1992), pp. 119–142.

[9] J. C. LeGuillou and J. Zinn-Justin, Critical Exponents for
the n-Vector Model in Three Dimensions from Field Theory,
Phys. Rev. Lett. 39, 95 (1977).

[10] J. C. Le Guillou and J. Zinn-Justin, Critical exponents from
field theory, Phys. Rev. B 21, 3976 (1980).

[11] Large-Order Behaviour of Perturbation Theory, edited by
J. C. Le Guillou and J. Zinn-Justin (North-Holland, Am-
sterdam, 1990).

[12] R. Guida and J. Zinn-Justin, Critical Exponents of the N-
vector model, J. Phys. A 31, 8103 (1998).

[13] U. D. Jentschura and J. Zinn-Justin, Instanton effects in
quantum mechanics and resurgent expansions, Phys. Lett. B
596, 138 (2004).

[14] J. Zinn-Justin and U. D. Jentschura, Multi–instantons and
exact results I: Conjectures, WKB expansions, and instanton
interactions, Ann. Phys. (Amsterdam) 313, 197 (2004).

[15] J.Zinn-Justin andU. D. Jentschura,Multi–instantons andexact
results II: Specific cases, higher-order effects, and numerical
calculations, Ann. Phys. (Amsterdam) 313, 269 (2004).

[16] U. D. Jentschura, A. Surzhykov, and J. Zinn-Justin,
Unified Treatment of Even and Odd Anharmonic Oscillators
of Arbitrary Degree, Phys. Rev. Lett. 102, 011601 (2009).

[17] U. D. Jentschura, A. Surzhykov, and J. Zinn-Justin, Multi–
instantons and exact results III: Unified description of the
resonances of even and odd anharmonic oscillators, Ann.
Phys. (Amsterdam) 325, 1135 (2010).

[18] U. D. Jentschura and J. Zinn-Justin, Multi–instantons and
exact results IV: Path integral formalism, Ann. Phys.
(Amsterdam) 326, 2186 (2011).

[19] E. M. Malatesta, G. Parisi, and T. Rizzo, Two-loop correc-
tions to large order behavior of φ4 theory, Nucl. Phys. B922,
293 (2017).

[20] H. R. P. Ferguson and D. H. Bailey, A polynomial time,
numerically stable integer relation algorithm, RNR Techni-
cal Report No. RNR-91-032, 1992.

[21] D. H. Bailey and S. Plouffe, Recognizing numerical
constants, in Proceedings of the Workshop on Organic
Mathematics, Burnaby, BC, edited by J. Borwein, P.
Borwein, L. Joergenson, and R. Corless (American Math-
ematical Society, Philadelphia, PA, 1997), pp. 73–88.

[22] H. R. P. Ferguson, D. H. Bailey, and S. Arno, Analysis of
PSLQ, an integer relation finding algorithm, Math. Comput.
68, 351 (1999).

[23] D. H. Bailey and D. Broadhurst, Integer relation detection,
Math. Comput. 70, 1719 (2001).

[24] J. Callan, Broken scale invariance in scalar field theory,
Phys. Rev. D 2, 1541 (1970).

[25] K. Symanzik, Small distance behaviour in field theory and
power counting, Commun. Math. Phys. 18, 227 (1970).

[26] M. Moshe and J. Zinn-Justin, Quantum field theory in the
large N limit: A review, Phys. Rep. 385, 69 (2003).

[27] J. Zinn-Justin, Phase Transitions and Renormalisation
Group (Oxford University Press, New York, 2007).

[28] G. Parisi, Singularities of the Borel transform in renorma-
lizable theories, Phys. Lett. 76B, 65 (1978).

[29] E. Caliceti, V. Grecchi, and M. Maioli, The distributional
Borel summability and the large coupling ϕ4 lattice fields,
Commun. Math. Phys. 104, 163 (1986).

[30] J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Oxford University Press, Oxford, 2002), 4th ed.

[31] F. Pham, Fonctions résurgentes implicites, C. R. Acad. Sci.
Paris: Ser. I Math. 309, 999 (1989), https://mathscinet.ams
.org/mathscinet-getitem?mr=1054521.

[32] E. Delabaere and F. Pham, Eigenvalues of complex
Hamiltonians with PT-symmetry. I, Phys. Lett. A 250, 25
(1998).

[33] E. Delabaere and F. Pham, Eigenvalues of complex
Hamiltonians with PT-symmetry. II, Phys. Lett. A 250,
29 (1998).

[34] B. Candelpergher, J. C. Nosmas, and F. Pham, Approche de
la Résurgence (Hermann, Paris, 1993).

[35] An overview of recent activity in the field was given at
the conference on “Resurgence and Transseries in
Quantum, Gauge and String Theories” held at CERN from
30-JUN-2014 to 04-JUL-2014.

[36] L. Lewin, Polylogarithms and Associated Functions
(North-Holland, New York, 1981).

[37] A. M. Legendre, Exercises de Calcul Intégral (Courcier,
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