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Abstract—We propose a working-memory model inspired by
the prefrontal cortex for flexible cognitive tasks. Our neural
model categorizes contexts depending on the task features and
selects the most appropriate one relative to inputs. Output errors
led to a reevaluation of the context confidence level and a shift
to another or the creation of a new one. Tests on the Wisconsin
card task show the relevance of our model. Impairments of brain
parts that regulate the neuromodulators for context evaluation
or output selection produces similar prefrontal disorder and
degeneration found in the brain literature.

Index Terms—top-down learning, bottom-up learning, rules
inference, task-set shifting, working memory

I. INTRODUCTION

The ability to maintain a behaviour during a period of time
or to switch between multiple concepts is very important for
achieving complex tasks that require to plan and compose with
multiple sensory information. In this paper we will present a
neural architecture for learning and switching contextual rules
in the Wisconsin card sorting test (WCST).

A. Neurosciences studies

In neuropsychology, there are various experiences to test the
cognitive ability to maintain a behaviour of a patient. They
are designed to show the cognitive effects of neurological
disorders (memory impairments, executive functions, ...). In
case of task switching, we can cite the Wisconsin card sorting
test, which permits to measure the ability of a subject to create
a contextual rule and to maintain it : if we present different
cards with different shapes, colors or values, we need to be
able to select one of these characteristics (a rule associated to
a context) to select one card [17].

Neurosciences explain how effects found by neuropsychol-
ogists in task switching depends on the exchanges between
BG (basal ganglia) and PFC (prefrontal cortex). They are
necessary for executive functions such as task shifting. For
instance, studies have shown that people with Parkinson or
Schizophrenia diseases or addictions have issues in dopamin-
ergic and serotonic pathways [2]. These deregulations in the
dopaminergic system imply a sensitivity to noise in reward-
related cognition, which has for effect a deficit in set shift-
ing tasks, and more generally in cognitive processes [10].
In frontal cortex, studies show the anterior cingulate cortex
(ACC) is responsible for high cognition processing in its dorsal
part [7], [8], a lesion in ACC will result in a deficit in error
detection processes [3]. Futhermore, studies also present that
people with Tourette syndrome, schizophrenia, which both

imply an inhibition of social contexts, have different level of
cholinergic and serotonin neuromodulators activities compared
to healthy subjects [21]. These neuromodulators have shown
their implication in the inhibition and the uncertainty in
context selection and associated rules [14], [16], [18], [28].

The study of these different diseases or impairments sug-
gests that the presence of an inhibition mechanism is vital in
the decision making process and in action selection, it also
demonstrates the importance of the basal ganglia - frontal
cortex loop for executive functions and particularly for the cre-
ation and the maintainance of semantic/contextual rules [24],
which permits to achieve complex tasks such as Hanoi towers
or Wisconsin card sorting. These rules are dynamic, they are
created along a learning process, by accumulating experience
in different contexts. They are also plastic : the association can
change through time like the card association in the Wisconsin
test. If we select a rule in excitatory selection, it is a situation
that has no impact for the plausibility of the rule for the current
context because the previous associated rule is not inhibited.
Conversely, in a case of rule inhibition, we are sure of its
non-validity for this context. There is some kind of asymmetry
between the two mechanisms. The inhibition mechanism, in a
case of random exploration is better in terms of computational
cost.

Similarly, in order to plan a complex task in our environ-
ment, we need to order / prioritize our sensorimotor level or
maintain purpose with a higher level of abstraction.

Prefrontal neurons have shown their abilities to maintain
information for many seconds or until the task is succeeded
in the working-memory [4]. These specificities of the work-
ing memory permit us to maintain information of different
granularity (visual goal, error during a task ...) for a long
period of time [15] and permits to maintain a visual goal
even if the visual cue is no longer present [26]. The update in
the working memory is based on a input gating control that
permits to open the gate when a useful information is available
and then reinforce the associated activity or to close it when
an irrelevant information is presented [11]. Based on FMRi
studies, basal ganglia appears, with dopaminergic projections,
to be the main mediator of this input gating system [5], [13].
According to the top-down biased competition model [6], [31],
the evidence of an output gating control is enlighted, this
mechanism permits to activate specific neurons in the dorsal
pre-premotor cortex [9].



B. State of the art studies on prefrontal models
In state of art, gated networks are present on various

domains : in image processing [22], in robotics for learning to
write numbers [12] or to learn multimodal representations [1]
and even for the learning of higher functions like affor-
dances [23]. Hasselmo proposed a model of gating associated
learning for the learning of rules which are composed of
multiple combinations of input patterns, and shows the im-
portance of gating in learning processes compared to classical
hebbian learning association [19]. Tani shows the principles
of operation of information processing at a nodal point in the
PFC, or through a cascade of nodes that processes information
successively to achieve a behavioral goal [29]. In state of art,
the action is often not included in models, the resolution of
problems like Wisconsin card sorting test, Stroop test or the
learning of physical rules [30] are realised on a strictly visual
point of view and with discrete time. In the learning of rules,
we can cite the paper of Rougier [27], which presents an
architecture capable of learning rules that depend on various
visual cues (shape, color, position, size), or the paper of Pitti
et al. [25] for the learning of tasks in motor control situation.

C. A bio-inspired model
After we describe our neural network that is inspired on

the characteristics of the BG-PFC loop and working memory
effects. This approach has multiple advantages :

• To predict a rule in an instantaneous way : even if
the prediction is wrong, it will be refine during the
experiment.

• An architecture of working memory that maintain infor-
mation (rule,context,...) during a long period of time.

We will present the results for dynamical context/rule switch-
ing and the push up of an inferred rule. We show that few
contexts are required to solve the task and then permitted a
fast switching when the association rule changes. We will also
show the impact of impairments on the different simulated part
of the BG-PFC loop (ACC and BG). We will then discuss the
relevance of our model in real robotic tasks and its utility
for more executive function tasks such as ( planning, problem
solving, ...)

II. ARCHITECTURE AND NEURAL MECHANISMS

A. Visual and integrative modules
For visual and the multimodal modules resp. represented

with red and green dashed blocks in Fig. 1 and corresponding
to the visual and parietal systems. We assume that our system
has access to an analyzed image by the visual cortex and
has then three different channels for the three modalities
(value, shape, color of the card). Each of these channels are
categorized separately to reduce the input dimension with
factored functions or basis functions, fS , fC and fV where
S,C and V are the inputs resp. for shape, color and value
following the Eq.(1) and W their associated weights.

fS =
∑
WS ∗ S

fC =
∑
WC ∗ C

fV =
∑
WV ∗ V

(1)

They are modeled with feed-forward neural networks and
they are then merged into a multimodal node to represent a
conjunction of the three modalities [1].

B. Frontal system compound model

In this section we detail the different components of our
model of frontal cortex, purple dashed block in Fig. 1

1) Context recruitment: The context recruitment module is
based on a variation of K-mean algorithm, it recruits new
neurons based on an adaptive vigilance parameter. The output
of context module is given by Eq.(2) where Y represents
all recruited context for a particular task and Ei represents
a particular multimodal node. A new node is recruited if
vigilance parameter is greater than the maximum value Ymax
of Y Eq.(3)

Y =
∑

WY ∗ Ei (2)

∆Wij =

{
Ei if Yjmax < vigilance

0 otherwise
(3)

2) ACC: ACC is the mediator of the context recruitment
and context competition. It monitors the error detection and
conflictual situations. ACC works like a control gate : if it has
no activity the context remains the same, otherwise if ACC
has activity the system need to initiate a new competition
or to recruit a new context. To know if the system needs
a new competition or to recruit a new context, ACC looks
what is available in the short-term memory(STM). If the STM
is empty (i.e there is no context recruited for the task or all
already recruited contexts are not satisfying the task), the ACC
sends a signal (vigilance) to the context recruitment module
to recruit a new context.
Otherwise, a competition is initiated, this process is based
on a winner takes all mechanism, from all available contexts
in the STM. During competition if ACC detects error it can
inhibit the selected context in the STM to avoid perseverance
in context selection if error is detected following Eq.(4).

Yj =

{
Yj − 1 if error > 0

Yj otherwise
(4)

3) Working memory module: Hebb’s rule describes with a
differential equation how we can represent synaptic plasticity
and the adaptation of neurons during learning process. This
result that the weight between two neurons increases if the two
neurons activate simultaneously and decrease otherwise [20].
In our case it will serve to implement a dynamical and plastic
working memory. The input information of this working
memory corresponds to the winner context. The system will
associate this context with working memory’s activities Sj .
This bounding between WM activities and contexts form
contextual rules.

The basal ganglia contributes to working memory input
gating : a good selection of working memory output will
reinforce the input noise which result an increase of the
synaptic weights between the selected context and the winner
neuron of the working memory. An error of prediction will



Fig. 1. Neural network for learning contextual rules. The network learns from the conjunction of the different characteristics of a game card (color, value,
shape) to infer a contextual sorting rule (by color, by shape or by value). For that it needs to recruit different contexts if necessary or to compete between
already recruited contexts, this part is modulate by the ACC, that play a mediator role. The working memory corresponds to which rule is maintained or not,
it’s input flow (i.e inhibition or reinforcement of the current selected neuron) is handled by the basal ganglia part depends on prediction error. The output
gating of the WM corresponds litterally to gates that are activated or not by the WM to let through one or multiple sensory signal(s).

decrease the synaptic weights for inhibiting these output of
the working memory for the current context, see Eq.(6). This
mechanism, after exploration, stabilizes a random neuron and
specialize it for particular rule. The output of the working
memory Y is the product between input variables Ei and the
weights Wij Eq.(5).

The different parameters for the input gating of the working
memory are ε, α and β, they are local neuromodulations, they
represent resp. the reinforcement signal, the passive decay in
neuronal activity and the decay if the input is not active.

Yj =
∑
i

∑
j

WijEi (5)

TABLE I
VALUES OF THE DIFFERENT PARAMETERS OF THE WM

noise rate 0.5
ε 0.8
β 0.4
α 0.1

∆Wij = ε ∗ Ei ∗ Sj −Wij(α+ Ei ∗ β) (6)

4) Output gating: The output gating permits, in function
of neurons active in the WM to select one or multiple inputs
and to block other ones.

In the case of the Wisconsin card sorting, the output gating



unit will only learn to let go one modality and block the others.
Each neuron of the WM is connected to a gate, and the activity
of this neuron determines if the gate is open or close. If the
gate is opened the output is then a recopy of the connected
modality, otherwise the gate is close and the output is zero.

C. Dorsal premotor cortex (DPC)
We made the assumption that the dorsal premotor cortex

(black dashed block in Fig. 1) has already learned the as-
sociation between a visual cue (value,shape,color) and the
corresponding action (association between colors , values ,
...). DPC is then able, in function of the selected rule to place
correctly the card to the corresponding deck.

D. Basal ganglia
We model the prediction error mechanism of the basal

ganglia, which is represented with blue dashed block in Figure
1. The experimenter has a desired rule (sort by color for
example), the prediction error will compute the difference
between the current output given by where the card is placed
(i.e which association is selected) by the system and the
signal given by the experimenter : true or false for the current
association. Depends on activity of the group, an inhibition
flow will be send to the system if an error is detected,
otherwise an reinforcement flow will be send.

III. EXPERIMENTAL SETUP

We choose Wisconsin card sorting test to analyze the
performances of our WM system for decision marking. Four
cards are disposed in line, each card corresponds to different
visual stimulus (number, shape, color).There are four different
stimulus for each characteristics, see Table. II. Cards will in a
random manner be presented to the neural network randomly.
There is 64 cards in the database, which is corresponds the 43

possibilities of values, shapes and colors. We give as inputs
to the network a card of the Wisconsin card sorting test,
this card is decomposed into three different channels by the
visual cortex, each channel corresponds to resp. the value,
the color and the shape of the card. Each of these channels
are then categorize separately into feature functions fV ,fC
and fS from (1) consist on 4 units each, factorizing the input
space. The multimodal recruitment node is based on 10 units
and represents the conjunction of the different inputs. The
system based on ACC signal can dynamically recruit contexts,
see part II.1 and part II.2. The desired rule given by ”the
teacher” is hidden to the system and only serves to modulate
the system through positive or negative assessments. During
learning stage, an iteration correspond to the presentation of
one card, few steps are require to make the WM to converge
on a valid rule.

TABLE II
VALUES OF THE DIFFERENT CARD PARAMETERS

color red, blue, green, yellow
shape circle, star, triangle, cross
value 1, 2, 3, 4

Fig. 2. Evolution through time of the number of context recruited.Each phase
corresponds to the presentation of a new context to discover.

IV. RESULTS

A. In the learning of a new task

The neural network achieves a rule inference and informa-
tion maintenance through context recruitment and gating flow
of information. As mentioned previously in section II.2) , the
ACC is responsible for context error detection and control of
the competition. In our case we want to apply this mechanism
during the learning of a new task, and to see how the system
is able to understand that it needs the recruitment of a new
context. We plot in Fig. 2, the evolution of number of contexts
recruited through time for the WCST task.
As we can see at the beginning of the experiment in phase
I, the system has no contexts dedicated to the WCST task,
the contexts are gradually recruited through time when the
ACC system has inhibated all already recruited contexts and
there is still an error of prediction. Each phase corresponds
to the presentation of a new context to discover. We can
also see that only 3 contexts are recruited, they corresponds
to the auto-organization of the system around the different
sorting rules (by color, by value or by shape). The fact that
the system only recruits 3 contexts for the WCST, shows
us that the ACC permits to the system to be ecological in
terms of context recruited for the task. In fact like ACC sends
a recruitment signal for a new context only if there is still
an error of prediction after the inhibition of all previously
recruited contexts it avoids the recruitment of unecessary
contexts. The reduced context recruited also permits to reduce
the time of competition between two switching of associated
rule.

In order to demonstrate the ability of the network to select
a contextual rule and maintain it after the recruitment of the
contexts corresponding to the WCST task, we plot in Fig. 3 the
indexes of the selected rule (red dots) by the WM compared
to those desired by the experimenter (blue line). A difference
between the two indicates an error of prediction of the system
to infer the sorting rule (i.e a bad selection of context). During
these periods of error, ACC is then active and forced the
system to initiate a context competition during its activation
time (black signal in Fig.3). We can see that during the period



Fig. 3. Evolution of selected rules through time depending of ACC signal
activation.

Fig. 4. Representation of activity of the working memory through time for
the presentation of different rules

when ACC is not active (green line in Fig.3), the current
selected rule is maintained. We can also notice that for each
task switching, the system persevere only one time on its
current context (the time for ACC to detect the error).

We plot in Fig. 4 the activities of the different neurons of
the WM system corresponding to the different rules activated
in Fig. 3. The duration of activation of the winner neurons are
related to the plateau formed by indexes of selected rule (red
dots) in Fig. 3. We can see that particular neurons are active
for the different selected contexts, they corresponds to valid
rules for a particular context. In our case only one rule is valid
per context.

TABLE III
CORRESPONDENCE WM ACTIVATION/SELECTED RULE

Neuron 1 by color
Neuron 2 by shape
Neuron 3 by value
Neuron 4 not recruited for WCST

B. ACC impairments

In the previous section, we described a model for rule
inference and information maintenance with a functionally

Fig. 5. Number of perseverance in a particular context depending on various
damage degrees on ACC part.

ACC that permits a quick error detection and then initiate a
new context competition. As we see previously, with no im-
pairments the integration of prediction error is instantaneously
and a new competition is then started. But in case of ACC
impairments or schizophrenia disease, the change of context
is not detected immediately, the subject has perseverance in
the current task and needs some time to adapt the context.
In this section, we propose to use the same architecture with
the same inputs but with adding impairments of the ACC
part, which will correspond to difficulties for the system to
resolve contradictory rules (when the experimenter decides to
change the association) and then detect a variation in contexts.
The experiment aims at testing the ability of the network to
infer a contextual rule on the WCST experiment with different
level of ACC impairments. The result will be a delay to infer
the rule compared to experiments in previous section due to
perseverance in a particular context. We model the difficulty
for the system to integrate the error of prediction with using
a decay factor following the equation:

E(t) = E(t− 1) ∗ e−β∗Di (7)

where:

β = constant parameter = 4.5
E = error of prediction
Di = damage level

As we can see in Fig. 5, we plot the response of the system
for different damage levels from 0% (which is corresponds to
healthy subject) to 90% (which is corresponds to a partial fully
damage ACC) and their corresponding number of perseverance
in a particular context. We retrieve the same results as section
IV.A for the 0% damage (see Fig. 3), we can also notice
that perseverance in specific context explode exponantially in
function of ACC damage. We consider at 10 trials on the same
context that the task switching is failed. The 100% damage
level is not tested here, it will correspond to an uncapacity for
the system to switch from a previous context.



Fig. 6. Representation of the mean number of spontaneous error for 50
presentation of a rule depending on various damage degrees on BG part.

C. BG impairments

In this part, we use the described model that we used in
section IV.A, ACC returns to fully functionnal in this section.
As we see previously the BG permits the modulation of
the WM system through dopamine signal, by inhibiting or
reinforcing the output of the WM for a given context. In a
case of healthy patient, BG stabilizes the WM for the different
learned contexts, like we saw previously with Fig. 4, for the
different contexts, the output of the WM is maintained. With
impairments in the BG system, the selection and maintain
of activities become more sensitive to noise and results to
sporadic error in WM output selection even if the context
selected is correct. In this section, we propose to study the ef-
fects of dopamine signal regulation, with adding impairments
in the BG system. This experiment aims to show how the
system behaves in situation of BG impairments. The result will
show sporadic error in WM output selection. We modeling the
deregulation of dopamine signal with the addition of a random
white noise to the output of WM, following the equation (8)

S = S + α ∗N (8)

where:

α = damage level
S = output of the WM
N = white noise

We simulate different range of impairments, by playing on
the amplitude α of the noise, a null noise corresponds to
healthy patient and a maximum amplitude factor corresponds
to a fully damage BG system. In Fig. 6, we plot the mean
number of sporadic errors in WM output selection for different
level of DG impairments (from 0% for an healthy patient, to
100% for a full damage BG system) for 50 WCST samples .
We retrieve results from part IV.A : the output of the WM is
directly selected : the noise is not enough to alter the output
of the WM. From 50% to 100% of damage rate, the noise is
equal or bigger than the WM signal, the system behaves with
random exploration for selecting its output.

V. CONCLUSION

We proposed a neuro-inspired framework of working mem-
ory for contextual rule learning by dynamically recruit contexts
and dynamically associate them to one or various working
memory output(s). These kind of mechanisms are well-known
in neurosciences, they rely mainly on two neuromodulators
cholinergic and dopamine, which are playing roles mainly
in prefrontal cortex and basal ganglia. These features are
ecological for learning the contexts associated to a particular
task or to compete between contexts in case of task-shifting.

In future works, we will extend our work on our complete
humanoid robot arm called Tino, in order to reproduce Go/No
Go task or Stroop test. We also want to investigate the
mechanisms behind the learning of sequence of different rules
in order to solve task such as Hanoi towers.
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