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Abstract

Since the pioneering work of Richardson in 1926, later refined by Batchelor and Obukhov
in 1950, it is predicted that the rate of separation of pairs of fluid elements in turbulent flows
with initial separation at inertial scales, grows ballistically first (Batchelor regime), before
undergoing a transition towards a super-diffusive regime where the mean-square separation
grows as t3 (Richardson regime). Richardson empirically interpreted this super-diffusive
regime in terms of a non-Fickian process with a scale dependent diffusion coefficient (the
celebrated Richardson’s “4/3rd” law). However, the actual physical mechanism at the origin
of such a scale dependent diffusion coefficient remains unclear. The present article proposes
a simple physical phenomenology for the time evolution of the mean square relative sepa-
ration in turbulent flows, based on a scale dependent ballistic scenario rather than a scale
dependent diffusive. It is shown that this phenomenology accurately retrieves most of the
known features of relative dispersion for particles mean square separation ; among others :
(i) it is quantitatively consistent with most recent numerical simulations and experiments for
mean square separation between particles (both for the short term Batchelor regime and the
long term Richardson regime, and for all initial separations at inertial scales), (ii) it gives a
simple physical explanation of the origin of the super diffusive t3 Richardson regime which
naturally builts itself as an iterative process of elementary short-term-scale-dependent bal-
listic steps, (iii) it shows that the Richardson constant is directly related to the Kolmogorov
constant (and eventually to a ballistic persistence parameter) and (iv) in a further extension
of the phenomenology, taking into account third order corrections, it robustly describes the
temporal asymmetry between forward and backward dispersion, with an explicit connection
to the cascade of energy flux across scales. An important aspect of this phenomenology is
that it simply and robustly connects long term super-diffusive features to elementary short
term mechanisms, and at the same time it connects basic Lagrangian features of turbulent
relative dispersion (both at short and long times) to basic Eulerian features of the turbulent
field : second order Eulerian statistics control the growth of separation (both at short and
long times) while third order Eulerian statistics control the temporal asymmetry of the dis-
persion process, which can then be directly identified as the signature of the energy cascade
and associated to well known exact results as the Karman-Howarth-Monin relation.

1 Introduction

Molecules in a quiescent fluid tend to spread due to molecular diffusion. If we consider a small
spherical patch of tagged molecules, this results in an isotropic and homogeneous growth of the
patch. At a microscopic level this expansion is due to random uncorrelated collisions induced by
the thermal agitation of the molecules. At a macroscopic level this mechanism results in a Fickian
diffusion process where the local concentration C of tagged molecules diffuses according to the
simple equation ∂C/∂t = K∆C, where K is the molecular diffusivity, with units [m2·s−1]. In
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Figure 1: Qualitative illustration of the non-normal dispersion of a dense cluster of particles
as proposed in Richardson’s original 1926 article [Richardson (1926)], from which the figure is
taken.

elementary kinetic gas theory, the connection between microscopic and macroscopic descriptions
is for instance given by the relation K ∝ lvT (with l a characteristic correlation length of particles
trajectories, typically given by the mean free path and vT the thermal agitation velocity of the
molecules). A fundamental property of such a Fickian process concerns the linear growth with
time t of the mean square separation < ~D2 >∝ Kt between any two molecules in the patch, what
is generally referred to as normal diffusion. It is well-known that normal molecular diffusion
alone is very inefficient to mix and disperse usual species (for instance, molecular diffusivity of
carbon dioxyde in air is 16·10−6m2·s−1, meaning that molecules separate at a rate of only a few
millimeters per second).

A usual way to enhance mixing and dispersion consists in stirring the fluid in order to generate
large scale uncorrelated turbulent structures, which will act in a similar way (i.e. normally
diffusive) as molecular diffusion, but with an enhanced diffusion coefficient Kturb ∝ Lσ with
L the turbulence correlation length scale and σ the turbulent fluctuating velocity (standard
deviation of the turbulent velocity field). In the context of atmospheric dipersion for instance,
the turbulent correlation length is typically of the order of hundreds of meters (let us take 100 m
as an order of magnitude) with velocity fluctuations typically of the order of meters per second in
normal conditions (let us take 1 m/s as an order of magnitude), leading to a turbulent diffusivity
coefficient Kturb of the order of 30 m2·s−1 (meaning that fluid particles separate at a rate of
several meters per second), hence many orders of magnitude larger than molecular diffusion. The
efficiency of turbulent diffusion therefore relies on the capacity of a substance to spread thanks
to the uncorrelated motion of large scale turbulent eddies. However, if we consider the dispersion
of a patch initially much smaller than the turbulent correlation scale L (for instance a patch
with an initial dimension within the inertial range of the carrier turbulence, hence much smaller
than the energy injection scale L, and larger than the dissipation scale η), another mechanism
is necessary to allow the patch to grow first at sufficiently large scales to eventually undergo
the effect of uncorrelated turbulent diffusion. Such an inertial scale mechanism is ensured by
the super-diffusive nature of turbulence at inertial scales. Processes where the mean square
separation grows faster than in normal diffusion (i.e. < ~D2 >∝ tα, with α > 1) are called
super-diffusive.

The super-diffusive nature of turbulence and its major consequences in terms of enhanced
mixing was first emphasized by Lewis Richardson in his seminal 1926 article (see Richardson
(1926)). Concerning the dispersal of an initial point-charge of particles in the atmosphere,
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Richardson already noted in 1926 that “a small dense cluster of marked molecules, represented
by the dot in figure 1(1) which, by molecular diffusion alone, would spread through the successive
spherical clusters shown in figures 1(2) and 1(3), actually seldom passes through the large spher-
ical stage 1(3), because it is first sheared into two detached clusters as suggested in figure 1(4).
These are carried far from one another, and are likely to be again torn into smaller pieces as
in figure 1(5)”. This qualitative description by Richardson shows how turbulence acts to super-
diffusively separate particles initially packed in a small patch, in order to create sufficiently large
separations where the uncorrelated motion of turbulent eddies eventually disperses particles at
large scales.

Richardson gave an interpretation of turbulent super-diffusion in terms of a non-Fickian
process which could be locally modeled as a normal diffusion process, but with a scale depen-
dent diffusion coefficient which depends on particle separation D, according to the celebrated
Richardson’s 4/3rd law : K(D) ∝ D4/3. Besides, Richardson showed that this non-Fickian diffu-
sion resulted in a cubic super-diffusive growth of the mean square separation of pairs of particles
according to the law

〈
D2
〉

= gεt3, where ε is the turbulent energy dissipation rate and g a uni-
versal constant since known as the Richardson constant. In the framework of Kolmogorov 1941
phenomenology of turbulence (Kolmogorov (1941), hereafter referred as K41) the t3 dependency
can be understood as a simple dimensional constraint. K41 states indeed that for sufficiently
large Reynolds number, the only relevant physical parameter for the dynamics of turbulence at
inertial scales is the average energy dissipation rate per unit mass ε (with dimensions [m2·s−3]):
D2 ∝ εt3 is then the only dimensionally consistent relation if initial separation is ignored.

Richardson’s work was later refined by Batchelor and Obukhov in the 1950s (see Batch-
elor (1950)), who pointed that while the loss of memory of initial separation is a reasonable
assumption for the long-term dispersion, initial separation must play a role in the short-term.
They showed that the rate of separation of pairs of fluid elements in turbulent flows with initial
separation ~D0 at inertial scales (η � D0 � L) must obey the following scalings :

R2 =

〈(
~D − ~D0

)2〉
=

{
S2( ~D0)t

2 if t < t0 (1a)

gεt3. if t > t0 (1b)

with S2(~r) =
〈
|δ~r~u|2

〉
the full second order Eulerian structure function of the velocity field (with

δ~r~u the increment between two points separated by a vector ~r of the eulerian velocity field of
the flow ; note that homogeneity is assumed, so that velocity increment only depends on the
separation vector) and t0 a characteristic time scale of the particles motion at scale D0. In K41

framework, inertial scalings for S2 and t0 are : S2( ~D0) = 11
3 C2ε

2/3D
2/3
0 (where local isotropy is

also assumed so that S2(~r) only depends on the norm of the separation vector r =
√
|~r|2, and C2

is a universal constant known as the Kolmogorov constant, with a well accepted value C2 ' 2.1

for 3D homogeneous and isotropic turbulence, see Sreenivasan (1995)) and t0 ∝ ε−1/3D
2/3
0 (t0

then represents the eddy turnover time at scale D0). Formally speaking, the initial ballistic
regime (eq. 1a) is nothing but the leading term of the Taylor expansion for the mean square
pair separation at short times, expressed in terms of the initial mean square relative velocity
between particles (Batchelor (1950); Ouellette et al. (2006)). Note that such a ballistic Taylor
expansion is a general and purely kinematic relation valid for any early dispersion process and
is not limited to the case of turbulence. Specificities of turbulence only appear when expliciting
the form of the structure function S2 at inertial scales. This short-term ballistic regime has been
shown to be accurately and robustly followed in experiments of turbulent relative pair dispersion
within the inertial scales of 3D-turbulence (see for instance Bourgoin et al. (2006)).

For times exceeding t0, a transition is expected towards an enhanced dispersion regime,
cubic in time and independent of initial separaion, as originally predicted by Richardson. The
experimental observation of this regime remains however very elusive. A convincing t3 regime has
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been reported for 2D-turbulence experiments by Jullien et al. (1999). Concerning 3D-turbulence
experiments, Ott & Mann (2000) reported a cubic regime, but they needed to introduce a time-
shift in the cubic expression 1b (< (D − D0)

2 >∝ ε(t − t0)3, with t0 a negative virtual time
origin depending on initial separation) to fit accurately their experimental data.

The Richardson constant g in eq. (1b) is one of the most fundamental constants in turbu-
lence. It plays a major role in turbulent dispersion and mixing processes. However, in spite
of its importance, it is only recently that a robust estimate for g started to emerge in the lit-
terature (Sawford (2001); Salazar & Collins (2009)). This is probably related to the difficulty
to observe experimentally Richardson’s superdiffusion. Until recently, best estimates for g still
spanned several orders of magnitude. Most recent high resolution direct numerical simulations
seem to point toward a robust estimate of g ∼ 0.5 − 0.6 (Boffetta et al. (2002); Biferale et al.
(2005); Bitane et al. (2012)), in agreement with the experiments by Ott & Mann (2000), where
g was found around 0.55.

As already mentioned, in his seminal 1926 article (Richardson (1926)), Richardson empiri-
cally related such a superdiffusive regime to a non-Fickian process, with a local diffusivity coeffi-
cient K which depends on the probed spatial scale D: K(D) ∝ D4/3. Further refinements in the
framework of K41 phenomenolgy extended Richardson’s non-Fickian phenomenology by consid-
ering also a time scale dependency of the local diffusivity coefficient (Klafter et al. (1987)) such
that K(D, τ) = k0ε

γDατβ (with the dimensional constraints that 3α+2β = 4 and γ = 1−α/2).
Such processes also lead to a t3 regime for the mean square separation (the Richardson constant
g is then directly related to k0). However no clear physical interpretation for the origin of such
a time/scale dependency of the local diffusivity is still known, even if the problem of relative
dispersion has been extensively studied in the last decades, both for 3D and 2D-turbulence,
and from theoretical, numerical and experimental points of view. A complete review of the
turbulent relative dispersion problem goes beyond the scope of the present article, and I suggest
to the reader to refer to two important reviews on the question (Sawford (2001); Salazar &
Collins (2009)) for a detailed insight into this topic. In this rich context the present work is
however in the direct line of some previous studies, seeking for possible physical interpretations
to explain Richardson super-diffusion and for possible connections with K41 phenomenology
(beyond purely dimensional considerations), among wihch I would like to stress some important
contributions.

Grossman & Procaccia (Grossmann & Procaccia (1984); Grossmann (1990)) proposed a
model for pair dispersion relying on a mean field approach of Navier-Stokes equation and a
phenomenological closure assumption which allowed them to relate the Richardson constant to
the Kolmogorov constant C2 as g = (229 C2)

3/2 without any adjustable parameter. In spite of
the elegance of this model, the predicted value for g ' 12 (taking the well accepted value for
C2 ' 2.1) remains about 20 times larger compared to the current reference value for g ' 0.5−0.6.

More classical approaches of pair dispersion tend simply to follow Richardson’s original
idea of a scale dependent diffusive process. However, Sokolov (1999) emphasized that in flows
where two point velocities statistics and local correlation time scales follow K41 dimensional
constraints, a local ballistic description may be more relevant than a local diffusive approach,
what is also supported by experiments and numerical studies where, as already mentioned, the
short term ballisitic behavior is indeed robustly observed. Sokolov et al. (2000) then proposed
a heuristic model for pair dispersion including a persistence parameter weighting the relative
importance of diffusive versus ballistic processes. This model, based on a one dimensional Lévy-
walk description of pair dispersion, considers a succession of simple ballistic separations between
random turning points, with scale dependent relative velocities and a persistence parameter
describing the probability of turning points. The model was shown by the authors to be in good
qualitative agreement with experimental observations of Richardson dispersion in 2D-turbulence
by Jullien et al. (1999), confirming the leading role of short term ballistic events in the overall
turbulent super-diffusion process.
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More recently, Goto & Vassilicos (2004) proposed an simple similar model (known as GV04
model), also higlighting the role of ballisitic motion between turning points (identified here as the
zero-accleration points of the flow field) where particles separation undergoes sudden growing
“bursts”. In the GV04 model the dispersion process is described as a step by step process where
the separation Dk at step k grows to Dk+1 = ξDk (with ξ a prescribed growth parameter) after
a scale depend waiting time Tξ(Dk) depending on the number of acceleration stagnation points
in the flow. When K41 scalings are considered for the time scale Tξ this model naturally builds a
long term t3 Richardson regime, where Richardson’s constant is simply related to the parameter
ξ and to the number of acceleration stagnation points. In a further refinement of this model,
Faber & Vassilicos (2009) added the possibility for particles to converge to smaller scales. The
refined model, applied to two-dimensional turbulence, was shown to reproduce the temporal
asymmetry of particle forward vs backward dispersion in 2D-turbulence DNS. The concept of
backward dispersion is crucial for turbulent mixing and passive scalar studies (Salazar & Collins
(2009)). The temporal asymmetry of pair dispersion, was only recently pointed by Sawford
et al. (2005) who showed that backward dispersion in Lagrangian stochastic models and three-
dimensional DNS operates at a significantly faster rate compared to forward dispersion. Recent
experiments and simulations by Berg et al. (2006) confirm this trend with a ratio of backward
to forward Richardson constants of the order of 2 for 3D-turbulence. Insterestingly, numerical
simulations of 2D-turbulence in the inverse cascade regime by Faber & Vassilicos present the
opposite asymmetry, 2D forward dispersion operating faster than 2D backward dispersion. The
origin of this asymmetry remains unclear (and will also be addressed in the final section of
this article). Sawford et al. (2005) pointed the importance of odd moments of two points
velocity statistics while Berg et al. (2006) suggested a explanation based on the strain-tensor
eigenvalues, which was however shown by Faber & Vassilicos (2009) to be insufficient to explain
the difference between 2D and 3D-turbulence, hence emphasizing the possible role of energy flux
accross scales, which goes from large to small scales in 3D-turbulence and from small to large
scale in 2D-turbulence inverse cascade.

In a different spirit, the dominant role of “burst” events and waiting times has also been
recently emphasized by Rast & Pinton (2011) who investigated the pair dispersion problem in a
simplified point-vortex flow model sharing some common properties with actual turbulent flows
(Rast & Pinton (2009)). Their study points toward a leading role of statistics of delay times,
corresponding to periods during which particles in a pair remains close to each other before they
separate.

The work presented in the this article builds on these previous studies, which emphasized
the role of local ballisitic events and local correlation times. Let me finish this introdcution
by mentioning that the ballisitic approach proposed in the present article (and detailed in the
next section) is similar to a recent publication by (Thalabard et al. (2014)), but it was derived
independently. Besides as discussed further below, although they are similar, the approaches
are exploited in different ways.

2 An iterative ballisitic phenomenology of pair dispersion

I propose here a very simple physical phenomenology for the Richardson super-diffusivity in
turbulence, which shares some analogies with the approaches by Sokolov et al. (2000) and Faber
& Vassilicos (2009). The main idea behind the dispersive process proposed here is that of an
iterative ballistic mechanism, as illustrated in figure 2. It is based on the simple idea that if a set
of particle pairs with a given initial mean square separation D2

0 starts to disperse ballistically,
with a separation rate S2(D0) over a given period t0 after which the mean square separation
has grown to D2

1 = D2
0 + S2(D0)t

2
0 (following the elementary short term ballisitic regime, as

given by eq 1a), instead of considering for t > t0 a sudden transition towards an enhanced
cubic dispersion regime (as in eq. 1b), the same short-term elementary ballistic process can be
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Figure 2: Illustration of the iterative ballistic cascade for the relative separation of two particles
initially separated by a distance D0: at each iteration step k, the mean square separation between
particles grows ballistically from D2

k to D2
k+1 with a growth rate S2(Dk), during a time lag tk.

Depending on the physical process at the origin of the local ballistic behavior, both S2 and
tk may eventually depend on the local scale Dk. The overall time required to reach the mean
square separation D2

k at the iteration number k is Tk =
∑k−1

j=0 tj(Dj).

iterated, but starting from the new mean square separation D2
1, hence with a new separation

rate S2( ~D1) which operates over a new period of time t1 and so on. Thus, in this scenario the
time evolution of particles mean square separation is simply described by the iterative process :

D2
k+1 = D2

k + S2(Dk)t
2
k(Dk), (2)

where D2
k =< | ~Dk|2 > represents the mean square separation of pairs after the kth iteration

step, tk(Dk) is a scale dependent “time of flight” characteristic of the duration of the ballistic
motion at step k+1. For the case of turbulent flows, S2(Dk) and tk(Dk) will be prescribed later
by imposing K41 scalings.

2.1 Relevance of the ballisitic phenomenology

The present formulation of the ballistic phenomenology addresses the question of the temporal
evolution of the mean square separation of an ensemble of pairs (D2

k in ref 2 is the mean square
separaiton of this ensemble and the growth rates S2(Dk) and tk(DK) have a a statistical meaning
only). It is important to stress that although this formulation is limited to the second moment of
the statistics of pair separation (possible extensions to higher moments are briefly discussed in the
last section), it has the benefit of not being just heuristic, but to stand a priori on solid statistical
grounds, which will be shown later to give a posteriori an accurate and quantitative description
of the time evolution of pairs mean square separation. First, the short term ballistic statistical
relation for the mean square separation in eq. (1a), < ( ~D − ~D0)

2 >= S2(D0)t
2 +O(t3) (which

shows that to the leading order, pairs statistics is related to second order velocity increments)
is purely kinematic and hence unquestionable. Second, as already discussed in the introduction,
this leading role of short term ballistic events in turbulent dispersion statistics and its connection
with second order velocity statistics has been emphasized in several theoretical studies and
it was accurately observed in high resolution Lagrangian tracking experiments and numerical
simulations, with robust scale dependent separation rates and characteristic time scale (see for
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instance Bourgoin et al. (2006); Ouellette et al. (2006); Bitane et al. (2012)). This contrasts with
the heuristic approach by Thalabard et al. (2014), who applied a similar ballistic scenario to
derive iteratively the temporal evolution of separation for individual pairs (rather than directly
for the mean square separation of an ensemble of pairs), with a growth rate and a ballistic time
scale hence defined locally for each individual particle pair (although they still use the average
dissipation ε to define the local ballistic time scale). They then address only in a second stage
the statistical implications for an ensemble of such individual iterations (following a continuous-
time-random-walk model, similar to the approach by Sokolov et al. (2000)). This approach has
the benefit to allow to easily investigate the full statistics of separations built by this process
(and not only the mean square separation) ; however it leads to the unrealistic result that the
separation growth is governed at leading order by third order velocity increments. Since their
approach is heuristic, this has probably only minor implications for most of the qualitative results
they obtain, but it gives a misleading picture of the relevant physical ingredients at play and it
may also lead to misleading conclusions if it is applied to more subtle effects, as for instance the
temporal asymmetry of dispersion, for which the actual role of third order increments may be
crucial (this will be discussed in section 4).

Even if the elementary scale dependent ballistic process considered here for the means square
separation does indeed rely on solid concepts and observations, several approximations still need
to be discussed regarding the proposed iterative approach :

• To derive the iterative scheme (2) I have used the approximation < D2 > − < D2
0 >=

S2(D0)t
2 for the elementary short-term ballisitc process in eq. (1a) (which rigorously ap-

plies to < ( ~D− ~D0)
2 >). This is a common approximation, which is equivalent to neglecting

the term < ~D0 · δ~r~u > (Batchelor (1950)). It is known to hold for statistically homoge-
neous flows, although it was shown to possibly fail (at very short times) in experiments
with non-homogeneous and anisotropic flows (Ouellette et al. (2006); Salazar & Collins
(2009)).

• A more sever approximation concerns the fact that in the iterative process, the separa-
tion rate S2(Dk) and the ballistic time of flight tk(Dk) are both estimated assuming a
unique value for the separation Dk, hence neglecting the statistical fluctuations of pairs
square separation, which in the real process explore a whole statistical distribution. In
the present implementation of the iterative ballisitic model, the separation rate S2(Dk)
and the typical time-scale tk(Dk) will be simply estimated at the scale corresponding to
the mean square separation D2

k. As it will be shown, this apparently näıve approximation
still gives an accurate quantitative description of the dispersion process when compared
to recent numerical simulations of pair dispersion in 3D-turbulence. This approximation,
is also supported by the experimental evidence in Bourgoin et al. (2006) that the short
term ballistic regime given by eq. (1a) is robustly observed even if the initial separation is
coarsely binned accross inertial scales, and when the growth rate is simply estimated from
the mean separation in each bin (note that bins with width up to 100% of the mean where
considered in those experiments, with still an excellent confirmation of the elementary
ballistic process 1a). More quantitatively this approximation can be expected to hold as
long as the width, δD2, of the distribution of particles square separation remains smaller
than the mean square separation < D2 > itself. If δD2 is estimated as the standard devi-
ation of particles square separation (δD2 =

√
< (D2− < D2 >)2 >), this condition would

be related to the flatness of the separation distribution. With this respect, it would be
interesting, in a further study, to investigate the ratio δD2/ < D2 > and its time evolu-
tion based on available experimental and numerical data for the statistical distribution of
particles separation, in order to explore more quantitatively the possible range of validity
of this approximation.

7



• Finally, a concrete implementation of the iterative scheme (2) requires the expressions for
the scale dependent separation rate S2(Dk) and the ballistic time of flight tk(Dk) to be
specified. This is discussed in the following sub-section.

2.2 Ballistic separation rates and time scales

The separation rate of the elementary ballistic kth step in (2) is simply given by the Eulerian
second order structure function at scale Dk. In the inertial range of scales of fully developped
turbulent flows, under local homogeneity and isotropy assumptions, the second order structure
function is known to follow K41 scaling (with negligible intermittent corrections), which in
3D-turbulence can be written as :

S2(~r) =
11

3
C2ε

2/3r2/3, (3)

with r =
√
|~r|2 and where C2 is a universal constant with a well-known value of approximately

2.1; as C2 is analytically related to the Kolmogorov constant CK ' C2/4 (Sreenivasan (1995)),
characterizing the −5/3 spectrum of turbulent kinetic energy (E(k) = CKε

2/3k−5/3), we shall
equivalently refer to C2 as the Kolmogorov constant itself. Note that S2 here is the total struc-
ture function trace and not only the structure function for one specific component of velocity.

Concerning the typical time scale t0 for which the elementary ballisitic process in eq. (1a)
is supposed to hold for a given initial separation D0, Batchelor proposed in his original ar-
ticle (Batchelor (1950)) that it should be taken as the eddy turnover time at the considered

scale : t0 ∝ ε−1/3D
2/3
0 . Experimental measurements of relative dispersion in highly turbu-

lent flows with Reynolds number up to Rλ ' 800 (Bourgoin et al. (2006); Ouellette et al.
(2006)) have shown indeed that the time laps for which the ballistic Batchelor regime holds

does scale as ε−1/3D
2/3
0 . Recent numerical simulations by Bitane et al. (2012) have refined the

estimation of the characteristic time scale for the ballistic regime. Their simulations show that
the duration of the ballistic regime for an initial separation D0 at inertial scales is given by

t0(D0) ' S2(D0)/2ε = 11
6 C2ε

−1/3D
2/3
0 . For times larger than this t0 they observe a transition of

the mean square separation towards a cubic Richardson regime, as in eq. (1b).
The time scale t0(D0) ' S2(D0)/2ε observed in the simulations can be more rigourously

discussed by considering the Taylor expansion leading to the short-term ballistic regime in
eq. (1a) beyond the second order. The third order expansion for < ( ~D− ~D0)

2 > (or equivalently
for < D2 > −D2

0 under the approximation previously discussed) can be kinematically written
as (Ouellette et al. (2006); Bitane et al. (2012)) :〈

~D2
〉
−
〈
~D2
0

〉
= S2(D0)t

2 +
〈
δ ~D0

~a · δ ~D0
~u
〉
t3 +O(t4), (4)

where δ ~D0
~a is the relative pair acceleration and δ ~D0

~u the relative pair velocity. The third order
coefficient is therefore given by the crossed velocity-acceleration structure funcion< δ ~D0

~a·δ ~D0
~u >

which can be analytically derived from the Navier-Stokes equation (Mann et al. (1999); Hill
(2006)) and shown to be equal to −2ε for 3D turbulence, under local stationarity, homogeneity
and isotropy conditions (note that < δ ~D0

~a · δ ~D0
~u >= −2ε is in particular independent of the

probed scale D0). The time t0(D0) = S2(D0)/2ε is therefore exactly the time for which the third
order term in eq. (4) equals the second order ballistic term (in absolute value). The role of the
third order term will be further discussed in section 4, however a brief discussion on the choice of
the typical time scale for a purely ballistic (quadratic) dominant regime is still required at this
stage. Numerical results by Bitane et al. (2012) show indeed that for a given initial separation
D0, the extent of the short term ballistic regime seems to be accurately given by S2(D0)/2ε,
hence suggesting to use tk(Dk) = S2(Dk)/2ε as the typical “time of flight” for each elementary
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ballistic iterative steps in (2). This observation raises however the issue that rigorously speaking,
considering the negative sign of the third order coefficient < δ ~Dk

~a · δ ~Dk
~u >= −2ε, the ballistic

and the third order term in (4) cancel exactly for t = tk(Dk). For times t ' tk, negative
third order contributions annihilate the initial quadratic growth. In other words, a dominant
ballistic mechanism, which requires terms of order 3 and higher to be negligible in the Taylor
expansion (4) only holds for times t� tk = S2(Dk)/2ε. For the iterative scheme considered here,
this indicates that the actual temporal duration of each elementary ballistic step is necessarily
much shorter than tk(Dk) = S2(Dk)/2ε. This points towards the necessity to introduce a
ballisitic persistence parameter α < 1, defining the actual characteristic ballisitic time of flight
at each iteration step k as t′k(Dk) = αtk(Dk) = αS2(Dk)/2ε. The condition α < 1 (and more
realistically α � 1) ensures that the ballistic term is indeed still dominant at the end of each
ballistic iteration of duration t′k ; we shall refer to this condition as the ballisitic approximation.

2.3 Explicit formulation of the iterative ballistic model

We can now explicitly write the complete iterative scheme of the iterative ballistic phenomenol-
ogy as

D2
k+1 = D2

k + S2(Dk)t
′2
k (Dk) with

{
S2(Dk) = Cε2/3D

2/3
k

t′k(Dk) = αtk = αS2(Dk)/2ε
, (5)

where the only parameters in the model are C (which is directly related to the Kolmogorov
constant, and which we shall refer to as the Kolmogorov constant as well) and the persistence
parameter α.

For 3D-turbulence C = C3D = 11
3 C

3D
2 , with C3D

2 ' 2.1 the 3D-Kolmogorov constant (hence
C3D ' 7.7). The model can also be applied to the inverse cascade regime of scales of 2D-
turbulence, for which S2 also obeys K41 scalings, with C = C2D = 8

3C
2D
2 , where the 2D-

Kolmogorov constant is C2D
2 ' 0.17C2D

K ' 13.2 (Lindborg (1999)), with C2D
K ∼ 6 (Boffetta &

Ecke (2012)) the spectral 2D-Kolmogorov constant (hence C2D ' 35.3).
The persistent parameter is the only adjustable parameter of the model. Based on numerical

observations by Bitane et al. (2012), empirically suggesting α = 1, we shall also briefly discuss
in the sequel this particular case (where t′k = tk = S2(Dk)/2ε) as a situation “free of adjustable
parameter”, although as pointed previously α = 1 is unlikely to be a relevant choice as it
is incompatible with the ballisitic approximation. Note that in the iterative scheme similarly
implemented by Thalabard et al. (2014), α = 1 is assumed (for each individual particle pair).

The next paragraphs show that the present scale dependent iterative scheme (5) builds by
itself a long term super-diffusive t3 regime “à la Richardson” and gives a relevant description
of the whole dispersion process, both for short term and long term regimes, as well as for the
transition between one and the other.

2.4 From short-term ballisitic steps to long-term Richardson dispersion

Substituting the explicit expressions for S2(Dk) and t′k(Dk) in (5) into the iteration equation for
D2
k, leads to a simple geometrical progression (and hence to an exponential growth of separation

with the iteration number) both for the mean square separation D2
k and the ballisitic time scale

t′k: {
D2
k = AkD2

0, (6a)

t′k = Ak/3t′0. (6b)

with

A = 1 +
α2C3

4
(7)
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and

t′0 =
αC

2
ε−1/3D

2/3
0 . (8)

From there, it is trivial algebra to relate the mean square separation at the iteration k to
the total iteration time Tk =

∑k−1
j=0 t

′
j (with T0 = 0) :

(
D2
k

D2
0

)1/3

= 1 + (A1/3 − 1)
Tk
t′0
, (9)

which can be equivalently written as

D2
k = gε

[
Tk +

(
D2

0

gε

)1/3
]3

(10)

with

g =

[
2
A1/3 − 1

αC

]3
=

[
2

(1 + α2C3

4 )1/3 − 1

αC

]3
(11)

Before confronting these results to experimental and numerical data, several points are worth
being briefly discussed :

• We can note that relations (17a) and (17b) show that in the present model, particles
dispersion eventually proceeds with a similar discrete scheme than in the GV04 model
by Goto & Vassilicos (2004) (although the GV04 model was originally derived only for
2D-turbulence, with a phenomenology related to separation bursts by specific hyperbolic
points in the flow). It would be interesting in future studies to push further the comparison

between both models. For instance, the relation A = 1 + α2C3

4 in the present model,
suggests that the two parameters in the GV04 model can actually be related to each
other, via the Kolmogorov constant. On the other hand, the GV04 phenomenology may
help giving a physical interpretation, at least for the 2D-turbulence case, (in terms of
the density of stagnation points for instance) for the persistence parameter α introduced
here on mainly kinematic considerations (to warrant the ballisitic approximation validity).
Similarly, the question of a possible phenomenological connection between both approaches
in 3D-turbulence may also be addressed.

• Expression (10) shows that at short term, dispersion may still exhibit an apparent Richardson-
like cubic regime D2

k = gε(Tk − Torigin)3, as long as a negative virtual time origin is in-
troduced : Torigin = −(D2

0/gε)
1/3 = −2t0/Cg

1/3, which depends on the initial separation
D0. This justifies and validates the necessity of introducing such a negative time shift in
the experiments by Ott & Mann (2000), to devise a cubic regime from the available short
time measurements. This also suggests that the experimental data by Ott & Mann can be
fitted with only one free parameter (namely the Richardson constant g) as the time shift
Torigin only depends on g and the known initial separation and energy dissipation rate. It
would be interesting to revisit this experimental data with this vision.

• Expression (10) has an asymptotic long-term behavior D2
k = gεT 3

k , showing that the
elementary scale dependent ballisitic steps, trivially build a cubic regime, independent on
initial separation, à la Richardson. Besides, eq. (11) relates the Richardson constant g to
the two parameters of the ballisitic phenomenology (namely the Kolmogorov constant C
and the persistence parameter α).
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Figure 3: (a) Dependency of the Richardson constant g on the Kolmogorov constant C in
the ballisitic mode when the persistence parameter is fixed to α = 1. (b) Prediction of the
Richardson constant g on the persistence parameter α, when the Kolmogorov constant is fixed
to C = C3D = 7.7.

3 Results of the model and comparison with existing numerical
and experimental data

First, the practical implementation of the model, requires the 2 parameters C and α to be
prescribed.

3.1 Determination of relevant values of model parameters

We shall focus in the sequel on the case of 3D-turbulence, hence taking for the parameter C the
value C3D = 11

3 C
3D
2 ' 7.7. Later, in section 4, we shall also briefly discuss some aspects of the

inverse cascade regime of 2D-turbulence, in which case C2D = 8
3C

2D
2 ' 35.3 will be used for C.

If we forget for a moment about the persistence parameter (hence considering the typical
ballisitic time scale as being simply tk = S2(Dk)/2ε, assuming α = 1, as empirically suggested by
Bitane et al. simulations and as done in Thalabard et al.), relation (11) then directly connects
the Richardson constant g to the Kolmogorov constant only. Figure 3a shows the predicted
evolution of g as a function of C for the case α = 1. Interestingly this figure shows that the
predicted value for g when C = C3D ' 7.7 is then g3D ' 1.0. It is appealing that, although
this value is slightly larger than the well accepted value g3D ' 0.5− 0.6, it is still a reasonable
estimate considering the simplicity of the model and the lack of adjustable parameter. However,
figure 3a also shows that for α = 1, g tends asymptotically to the limit g∞ = 2 as the Kolmogorov
constant increases. This clearly shows a physical limit of the case α = 1 (beyond the previous
considerations requesting α < 1 for the ballistic approximation to hold), as numerical simulations
of pair dispersion in the inverse cascade regime of 2D-turbulence report values of g2D larger than
2 (Boffetta & Sokolov (2002) report for instance a value g2D ' 3.8 while Faber & Vassilicos (2009)
report g2D ' 6.9). This observation, raised by one of the anonymous referees of the first version
of this article, also supports the necessity of considering the persistence parameter α.

To determine the optimal value of the persistence parameter α for the case of 3D-turbulence,
we therefore use relation (11) with the value for the Kolmogorov constant prescribed to C =
C3D ' 7.7 and we seek for the value of α for which the well accepted value for the Richardson
constant, g = g3D = 0.55 ± 0.05, is retrieved. Figure 3b shows the dependency of g predicted
by the iterative ballistic phenomenology as a function of the persistence parameter α for C =
C3D ' 7.7. We see that g ' 0.55 ± 0.05 for α ' 0.118 ± 0.007 (a second solution exists for
α ' 2.57 > 1 which is out of the range of validity of the ballistic approximation, requiring α < 1
and which will therefore not be considered). The value α = 0.12 will therefore be used in the
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Figure 4: Growth of the mean square separation between particles predicted as the iterative scale
dependent ballistic process (defined by eq. 5) propagates starting from several initial separations
D0 in the inertial range of turbulence. The mean square separation < D2 > is normalized by
the square of the dissipative scale η2 and time is normalized by the dissipative time scale τη.
Turbulent energy dissipation rate and dissipative scales have been choosen to match experiments
in [Bourgoin et al. (2006)], although as shown in figure 5, the results are independent of this
particular choice when the data is properly normalized. It can be seen in this plot that at long
times, a dispersive regime “à la Richardson”, cubic in time and independent of initial separation,
is naturally built by the iterative scale dependent ballistic process.

sequel for the persistence parameter in 3D-turbulence. It can also be noted in figure 3b that the
evolution of g with α has a mild maximum around α ' 0.4, so that the dependency of g on α
is relatively weak in the range 0.1 < α < 1, where the Richardson spans the relatively narrow
range 0.4 < g < 1.3.

3.2 Practical implementation of the model

Let me now first illustrate the proposed ballistic cascade mechanism, in 3D turbulence, using
the values C3D = 7.7 and α = 0.12 for parameters of the model, and with realistic numbers
for the energy dissipation rate and initial separations compared to existing experiments and
simulations. Concerning the energy dissipation, I use the value corresponding to the experiment
byBourgoin et al. (2006) at Rλ = 815: ε ' 6.25 m2s−3 (giving a dissipation scale η ' 23µm for a
flow of water and a dissipation time scale τη ' 0.4 ms). Several initial separations D0, spanning
the range [η; 100η] will be considered.

Figure 4 shows the mean square separation obtained then from the iterative ballisitc scheme
given by eqs. (5). It can be seen that in the long term the iterative ballistic process eventually
leads to a cubic super-diffusive regime “à la Richardson”, independent on the initial separation.
The inset shows the same data but with the initial mean square separation D2

0 substracted in
order to better emphasize the initial ballistic regime at short times and the transition toward
the Richardson regime. Note that time t in these plots corresponds to the total discrete iteration
time Tk previously defined.

In figure 4 time is non-dimensionalized using the dissipative time scale τη while mean square
separations are non-dimensionalized using the square of dissipative scale η2. However, the
natural scales in the iterative ballistic process proposed here are t0 (or t′0 = αt0) for the time
scale and D0 for the spatial scale. Relation (9) shows indeed that with such non-dimensionalized
separations and time, the separation process only depends on the parameters C and α of the
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Figure 5: Growth of the mean square separation (with the initial separaion substracted) nor-
malized by t0S2(D0) as a function of time normalized by t0. The light blue solid line correspond
to the exact same data as in figure 4 from the ballistic model (with C = 7.7 and α = 0.12),
which with the present normalization collapses onto a single curve, according to relation 12. The
yellow line corresponds to the prediction of the ballistic model with C = 7.7 and α = 1. Colored
circles correspond to experimental results for the mean square pair separaion in [Bourgoin et al.
(2006)] for different intial separations. Other symbols correspond to the mean square separation
for different intial separations from the DNS by Bitane et al. [Bitane et al. (2012)]. Finally
the solid black line shows the prediction from Grossmann and Procaccia model [Grossmann &
Procaccia (1984); Grossmann (1990)]. Two important aspects to be noted are : (i) the limited
temporal range of experimental data, which does not allow to probe the transition between the
initial ballisitc regime and the late Richardson cubic regime and (ii) the remarkable agreement
between the ballisitic model and the numerical simulations.

model, via the constant A (eq. 7). For the sake of comparison with numerical results I use the
same non-dimensionalization as Bitane et al. (2012), based on t20S2(D0) = 1

2C
3D2

0 (rather than
just D2

0, without loss of generality) for the mean square separation and on t0 for the time. With
such a choice, relation (10) for the evolution of the mean square separation simply becomes :

X2
k =

g

2

[
τk −

2

Cg1/3

]3
(12)

with X2
k = D2

k/t
2
0S2(D0) and τk = Tk/t0.

The light blue line in figure 5 represents the same data as in figure 4, but with this new
non-dimensionalization, which now collapses the mean square separations for all initial separa-
tions into a single curve. I have also reported on the same figure the mean square separations
obtained for various initial separations in the simulations by Bitane et al. (2012). The agreement
of the iterative ballisitic phenomenology compared to the numerics is almost perfect. The first
interesting observation concerns the collapse of the numerical data with this normalization (as
already noted by Bitane et al. (2012)) which is perfectly reproduced by the present phenomenol-
ogy. Besides, not only the global trend of the mean square separation evolution is very well
descibed by the model (both for short and long term regimes), but some subtler details are also
well captured. For instance, as in the simulation, the transition between the early Batchelor
regime and the Richardson regime is robustly found to occur around t = t0, even if the duration
of the initial ballistic iteration is t′0 = αt0 (hence significantly smaller than t0 in the present
case). A mild slowing down of the ballistic separation for t . t0 (prior to the transition towards
the cubic regime), present in the simulations is also captured by the iterative ballistic model.
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For comparison, figure 5 also shows the prediction of the ballistic model, with unity per-
sistence parameter α = 1, hence taking t′k = tk = S2(Dk)/2ε as the characteristic time of the
fundamental ballistic process (as originally proposed by Bitane et al. (2012) and in the line of
the implementation of the ballistic phenomenology by Thalabard et al.). It is interesting to
note, that although the long term separation is then slightly over-estimated (as a result of the
Richardson constant being g = 1.0 in the model with α = 1 as previously discussed, instead of
g ' 0.55), the global picture for the mean-square separation is still relatively well captured, with
no other additional adjustable parameter in this case than the Kolmogorov constant. Overall,
the global picture of the temporal growth of the mean-square separation in the present ballistic
phenomenology is not very sensitive to the specific value of the persistence parameter (as long
as we remain in the range 0.1 < α < 1.0) : when the persistence parameter is varied in the
range 0.1 < α < 1.0 the Batchelor to Richardson transition is always observed to occur for times
around t0, with a Richardson constant restricted to the range 0.4 < g < 1.3 (see figure 3b),
reasonable compared to the well accepted value of 0.55. The choice α ' 0.12, remains however
optimal in terms of quantitative comparison with available numerical data for the mean square
separation.

Figure 5 also reports the prediction for the mean square separation of particle pairs from
an altenative model of turbulent relative dispersion, proposed by Grossmann & Procaccia in
1984 (Grossmann & Procaccia (1984); Grossmann (1990)). This model relies on a mean field
approach of Navier-Stokes equation and a phenomenological closure assumption to predict the
evolution of the mean square sepration of pairs of particles (with initial separation within inertial
scales of turbulence) as follows :〈(

~D − ~D0

)2〉
=

(
D

4/3
0 +

2

3
Cε2/3t2

)3/2

−D2
0 (13)

whose long time approximation asymptotically reaches a cubic Richardson regime < ( ~D −
~D0)

2 >= g′εt3 with g′ =
(
2
3C
)3/2

. Interestingly this model also proposes a direct connection
between the Richardson and the Kolmogorov constant C. However, although the prediction
given by eq. (13) and shown in figure 5 captures correctly the initial ballistic separation, it
significantly anticipates the transition towards the Richardson regime which occurs much earlier
than in the DNS or the iterative ballistic phenomenology proposed, what results in a significant
over-estimation of the actual mean-square separation at long times. This sooner transition is
related to the over-estimation of the Richardson constant in Grossmann & Procaccia’s model :
g′ =

(
2
3C
)3/2 ' 12 (with C = 7.7), what is much larger than the well accepted value g ' 0.55.

Finally, I have also superimposed in figure 5 the mean square separation of pairs measured
in high resolution particle tracking experiments by Bourgoin et al. (2006). In those experi-
ments, only the Batchelor ballisitc regime was reported, while no hint of Richardson regime was
detected. Figure 5 emphasizes a possible reason for the failure in experiments to observe the
Richardson regime : the longest experimental tracks did not exceed a few tenth of t0 while the
separation needs to be tracked for at least a few t0 to reasonably detect the transition toward
the cubic regime. A simple possible strategy to improve the chances to observe the cubic regime
in experiments would simply consist in better controlling the injection of particle pairs in or-
der to achieve sufficiently small initial separations, hence reducing the time t0 required for the
transition to occur within experimentally accessible tracking time.

4 Temporal asymmetry of turbulent dispersion

As pointed in the introduction, a noticeable feature of turbulent dispersion is the temporal
asymmetry. This means that backward and forward dispersion operate at different rates, as
pointed by Sawford et al. (2005). In 3D turbulence, backward dispersion has for instance been
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shown numerically and experimentally to operate twice as fast as forward dispersion (see Berg
et al. (2006); Bragg et al. (2014)). In the inverse cascade regime of 2D turbulence, the opposite
trend was reported by Faber & Vassilicos (2009).

In its present formulation, the iterative ballistic phenomenology is completely time-reversible
as the elementary ballistic process in eq. (1a) at each scale is quadratic in time and hence fully
reversible under the transformation t→ −t. I propose in this section a simple extension of the
iterative ballistic phenomenology to address the question of time assymmetry.

4.1 A ballistic cascade phenomenology

Time irreversibility can be simply introduced by pushing up to third order the Taylor expansion
leading to the elementary ballistic process (1a), as already presented in eq. (4). When pushed to
third order, the iterative scheme (5), giving the growth of pair separation at iteration between
the kth and the (k + 1)th iteration then becomes :

D2
k+1 = D2

k + S2(Dk)t
′2
k + Sau(Dk)t

′3
k , (14)

where Sau(r) = 〈δ~r~a · δ~r~u〉 is the crossed velocity-acceleration strcture function.
The relevance of considering the cubic term in the iterative process is also supported by the

fact that in the practical implementation of the iterative ballisitic phenomenology discussed in
the previous section, the optimal value for the persistence parameter α was found to be of the
order of 0.1, while as discussed in section 2.2 neglecting completely the third order term would
require α� 1. With α ' 0.1, the cubic term can still be expected to contribute of the order of
10% to the quadratic separation at each iteration step. It is therefore reasonable to consider a
possible corrective contribution of third order effects in the ballistic phenomenlogy.

From a physical point of view, the third order term has a clear energetic interpretation. As
discussed in section 2.2, the crossed velocity-acceleration structure function 〈δ~r~a · δ~r~u〉 in 3D
turbulence is predicted to be −2ε (at all inertial scales), and hence solely related to the energy
dissipation rate ε. If we were discussing single particle issues (instead of particle pairs) this would
be simply understood as a dissipative correction of the average ballistic motion of the particle, as

〈~a · ~u〉 = 1
2

〈
du2

dt

〉
is indeed the average dissipation of particle kinetic energy along its Lagrangian

path. When the relative motion of particles in a pair is considered, the physical meaning of the
crossed velocity-acceleration structure function Sau = 〈δ~r~a · δ~r~u〉 is however somehow subtler.
Sau can indeed be analytically related to the third order velocity structure function (and hence
to the energy cascade accross scales) directly from Navier-Stokes equation, such that under local
stationarity and homogeneity assumptions (see for instance Mann et al. (1999); Hill (2006)) :

2 〈δ~r~a · δ~r~u〉 = ~∇ · 〈δ~r~uδ~r~u · δ~r~u〉 . (15)

In 3D turbulence, ~∇ · 〈δ~r~uδ~r~u · δ~r~u〉 = −4ε (what is an exact relation and an alternative
version of the Karman-Howarth-Monin relation under local homogeneity and isotropy assump-
tions Frisch (1995)), what retrieves the relation S3D

au = −2ε previously mentioned for the case of
3D turbulence. The negative sign in these relations reflects the fact that in 3D turbulence the
energy cascade at inertail scales is a direct cascade (energy flows from large to small scales).

Conversely, in the inverse cascade of 2D turbulence ~∇ · 〈δ~r~uδ~r~u · δ~r~u〉 = +4ε (Lindborg
(1999)), what leads then to S2D

au = +2ε. The positive sign refering now to the inverse nature of
the energy cadcade.

The crossed velocity-acceleration structure function therefore carries the signature of the
energy flux accross scales. In the present context of pair dispersion, the cubic term in eq. (14)
should therefore be seen as the Lagrangian signature of the energy flux due to the relative
motion (relative velocity and relative acceleration) of particles separating from a given scale to
larger scales. The negative sign in the relation S3D

au = −2ε in 3D can be interpreted as the fact
that in the forward disperion process, as particles separate (from small to large scales), they
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climb the energy cascade “upstream”, against the energy flux (which flows from large to small
scales in the direct 3D cascade), while in the backward case separation pair separation climbs
the cascade downstream, with the energy flux. The scenario is reversed in the inverse cascade
of 2D turbulence.

The time asymmetry introduced by the third order correction to the ballistic process in
the extended iterative phenomenology therefore accounts, in the Lagrangian framework of pair
dispersion, for the scale asymmetry of energy flux in the turbulent cascade. We shall therefore
refer to this extension as the ballistic cascade phenomenology.

We can note, that when the relation S3D
au = −2ε (for 3D turbulence) is reported in the

elementary short term separation process given by eq. (4) (or by eq. 14), we find that for short
times, the short term separation is naturally dominated by the ballistic (quadratic) contribution,
with a third order temporal asymmetry such that the difference between short term forward and
backward separation is < D2 > (−t)− < D2 > (t) = 4εt3 (in 3D turbulence). This corresponds
to the short term cubic in time asymmetry of relative dispersion recently investigated by Jucha
et al. (2014). We will show here (in next sub-section) that the iterative propagation of this short
term asymmetry also builds the long-term asymetry, in quantitative agreement with previous
studies for the Richardson regime asymmetry. Such a connection between the short term and
long term asymmetry still remained to be established, as pointed by Jucha et al. (2014).

4.2 Explicit formulation of the ballistic cascade phenomenology

The extended phenomenology can be explicitly implemented as follows

D2
k+1 = D2

k + S2(Dk)t
′2
k + Saut

′3
k with

 S2(Dk) = Cε2/3D
2/3
k

Sau = Cau2ε
t′k(Dk) = αtk = αS2(Dk)/2ε

, (16)

where the asymmetry coefficient Cau = ±1 depending on the inverse or direct nature of the
energy cascade (C3D

au = −1 for the 3D cascade in 3D turbulence and C2D
au = +1 for the inverse

cascade in 2D turbulence). I also recall the values for the Kolmogorov constant (previously
discussed in section 3.2) : C3D = 7.7 and C2D = 35.3.

Time asymmetry between forward and backward dispersion can then be simply considered
by changing t′k → −t′k (what only affects the third order term in (16)) or equivalently by re-
versing the sign of Cau when propagating the iterative scheme. The following table specifies the
values to be used for the asymmetry parameter Cau for the different cases :

Cau
3D 2D

(direct cascade) (inverse cascade)

forward -1 +1
backward +1 -1

4.3 From short term asymmetric ballistic dispersion to long term asymmetric
Richardson dispersion

As for the case of the purely ballistic model discussed in section (2.4), the new iterative scheme
can be explicitly solved by substituting the expressions for S2, Sau and t′k into the iterative rela-
tion in (14). Since Sau does not depend on the separation Dk, the solution is straightforward, and
leads to a geometric progression for D2

k and t′k, analog to the previous relations (17a) and (17b)
:
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Figure 6: Dependency of the Richardson constant predicted by the ballistic cascade model (with
third order term correction, eq. 16) for the forward and backward dispersion problem in direct
cascade 3D turbulence, as a function of the persistence parameter. The plot shows the forward
Richardson constant g3Dfwd (plain blue line), the backward Richardson constant g3Dbwd (red dot-

dashed line) and the ratio g3Dbwd/g
3D
fwd (yellow dashed line). The vertical dot line emphasizes the

optimal value for the persistence parameter, determined as the smallest value of this parameter
for which the forward Richardson constant predicted by the model matches the values in the
litterature (g3Dfwd ' 0.55 ). The horizontal lines emphasize the corresponding values for the

forward and backward Richardson constants, as well as for the ratio g3Dbwd/g
3D
fwd (these values are

reported on the right side of the plots).

{
D2
k = A′kD2

0, (17a)

t′k = A′k/3t′0. (17b)

with

A′ = 1 +
α2C3

4
(1 + Cauα) . (18)

Note that setting Cau = 0 (hence neglecting the third order term) naturally retrieves A′ = A =

1 + α2C3

4 (as given by eq. 7 for the purely ballistic model).
The temporal evolution of the mean square separation can therefore be written with an

analogous formulation as eqs. (10) & (11)

D2
k = gε

[
Tk +

(
D2

0

gε

)1/3
]3

(19)

with

g =

[
2
A′1/3 − 1

αC

]3
=

[
2

(1 + α2C3

4 (1 + Cauα))1/3 − 1

αC

]3
(20)

As a result, the third order corrected model behaves exactly as the purely ballistic model,
except for the relation between the Richardson constant and the model parameters which now
includes an α3 corrective term in the expression of the constant A′ (eq. 18), associated to the
asymmetry coefficient Cau.
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4.4 Forward vs Backward dispersion

I consider here the practical implementation of the ballistic cascade phenomenology, exploring
the consequences in terms of temporal asymmetry of the dispersion process in the direct cascade
of 3D turbulence and the inverse cascade regime of 2D turbulence.

4.4.1 The case of direct cascade in 3D turbulence

Figure 6a represents the dependency on the persistence parameter α of the Richardson constant
as predicted by the ballistic cascade phenomenology given by relation (20) for the case of 3D
turbulence (C = 7.7) in the forward (Cau = −1) and backward (Cau = +1) situations (g3Dfwd
and g3Dbwd are respectively the 3D-forward and 3D-backward Richardson constants). The figure
also shows the ratio g3Dbwd/g

3D
fwd as a function of α. This ratio is found to be always larger than

unity, what shows that for a given value of the persistence parameter, the backward dispersion
in 3D turbulence always operates faster than forward dispersion, in qualitative agreement with
experiments and simulations by Berg et al. (2006). In the context of the present phenomenology,
the faster separation in the backward case compared to the forward case is directly related to
the positiveness and negativeness of Cau in each respective situation. The positive value of Cau
in the backward case, results in an enhancement of the separation due to the positive third
order corrective term in 16 which accelerates in fine the long term cubic separation compared
to the case of the purely ballistic iterative phenomenology. On the contrary, the negative value
of Cau for the forward case results in the reduction of the separation due to the negative third
order corrective term, which decelerates the long term cubic separation compared to the purely
ballistic iterative phenomenology.

The comparison with experiments and simulations by Berg et al. (2006) can be pushed to
a quantitative level by considering the optimal value of the persistence parameter, for which
g3Dfwd = 0.55 (the well accepted value for the forward dispersion problem). It can be seen in
figure 6a that two values of α satisfy this condition, one around 0.15, the other around 0.42.
There is no a priori obvious choice to select one or the other of these values, except that
the validity of the short term Taylor expansion for the mean square separation (which is the
starting point of the present phenomenology) is expected to be more robust for shortest times,
what tends to prefer the smallest compatible value for the persistence parameter. We will
therefore take α ' 0.15 as the optimal value for the persistence parameter, compatible with
the well accepted value g3Dfwd = 0.55. Figure 6a then shows that the corresponding value for

the backward Richardson constant is g3Dbwd ' 1.04, leading to a ratio g3Dbwd/g
3D
fwd ' 1.9, in good

quantitative agreement with the experiments and simulations by Berg et al. (2006) and with the
more recent simulations by Bragg et al. (2014), who all find a ratio g3Dbwd/g

3D
fwd ' 2.

4.4.2 The case of inverse cascade in 2D turbulence

Figure 6b represents the dependency on the persistence parameter α of the Richardson constant
as predicted by the ballistic cascade phenomenology for the case of 2D turbulence (C = 35.3) in
the forward (Cau = +1) and backward (Cau = −1) situations (g2Dfwd and g2Dbwd are respectively the

2D-forward and 2D-backward Richardson constants). The figure also shows the ratio g2Dbwd/g
2D
fwd

as a function of α. This ratio is found to be always smaller than unity, what shows that for a
given value of the persistence parameter, the backward dispersion in the inverse cascade regime
of 2D turbulence always operates slower than forward dispersion, in qualitative agreement with
the numerical simulations by Faber & Vassilicos (2009). This trend is the opposite than in 3D
turbulence, what is directly related to the fact that Cau has opposite sign for the inverse and
direct cascade situations.

For a more quantitative analysis of the 2D case, we proceed as previously by determining the
optimal value of the persistence parameter α compatible with reported values for the forward
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Figure 7: Same as figure 6, but for the case of 2D inverse cascade. The optimal value for the
persistence parameter, is here determined as the smallest value for which the forward Richardson
constant predicted by the model matches the value in Faber & Vassilicos (2009) (g2Dfwd ' 6.9).

Richardson constant g2Dfwd. As discussed in the introduction, values for g2Dfwd in the litterature

still span a broad range. Experiments by Jullien et al. (1999) suggest g2Dfwd ' 0.55, while
numerical simulations by Boffetta & Sokolov (2002) and by Faber & Vassilicos (2009) report
g2Dfwd ' 3.8 and g2Dfwd ' 6.9 respectively. For the sake of the present discussion, I will consider

the value proposed by Faber & Vassilicos (g2Dfwd ' 6.9) as this study also addresses explicitly and
quantitatively the comparison between forward and backward dispersion in the inverse cascade
regime of 2D turbulence. Figure 6b shows that, as for the 3D case, two possible values of α are
compatible with the value g2Dfwd ' 6.9, one around 0.014, the other around 0.27. As for the 3D
case, the smallest of these values is chosen, ensuring a better validity of the Taylor expansion
for the short term evolution of the mean square separation. We then find that the backward
Richardson constant is only slightly smaller than the forward constant, g2Dbwd ' 6.5, with a ratio
g2Dbwd/g

2D
fwd ' 0.94 in excellent agreement with simulations by Faber & Vassilicos who report

g2Dbwd/g
2D
fwd = 0.92± 0.03.

5 Conclusions

5.1 Summary of main results

The iterative ballistic phenomenology approach for turbulent pair separation described in this
article presents a simple, robust and intuitive phenomenology which gives a physically sound
mechanism accurately describing the overall pair separation scenario, from the short-term bal-
lisitic regime (Batchelor regime) to the celebrated Richardson super-diffusive long-term regime
of turbulent relative dispersion. In its simplest formulation, the important physical ingredients
in the model are : (i) a short term ballisitic growth of the mean square separation of particle
pairs, with a growth rate given by the second-order Eulerian strucutre function of the carrier flow
(eq. 1a), (ii) the usual K41 scaling for the second order Eulerian structure function at inertial
scales (given by eq. 3) to account for the scale dependency of the ballisitic growth rate and (iii)
a scale dependent duration of the elementary ballisitic process, also given by K41 scalings. The
combination of these ingredients leads to a scale-dependent-short-term ballistic process for the
mean square separation at each given scale. In this process the scale dependency appears both
in the duration of the ballistic regime and in the ballistic growth rate. The existence such a short
term ballisitic regime is extremly robust : (i) the quadratic growth of mean square separation,
related to the second order strucutre function S2 (eq. 1a), is a purely kinematic relation (valid
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beyond the sole frame of turbulence), (ii) the validity of K41 scaling for S2 is a longstanding
result of turbulence research (small intermittency corrections could however be included in a re-
fined version of the present model) and (iii) the short term growth of the mean square separation
of particle pairs has been shown in previous experimental and numerical studies to follow very
precisely the ballisitc relation (1a) with the usual K41 scaling for S2 and with durations of the
ballistic regime also given by K41 scalings (Bourgoin et al. (2006); Bitane et al. (2012)). From
there, the proposed phenomenology simply consists in propagating iteratively accross scales this
scale-dependent-short-term elementary ballistic process. Only two parameters enter into play
in this iterative phenomenology : (i) the Kolmogorov constant C which characterizes the bal-
lisitc growth rate at scale r via the second order structure function S2(r) = Cε2/3r2/3 and (ii)
the persistence parameter α which characterizes the duration of the ballistic regime at scale r,
t(r) = αC

2 ε
−1/3r2/3. Note that the persistence parameter α is the only adjustable parameter of

this model, as for the Kolmogorov constant we use the well accepted values of the litterature.
This simple phenomenology reproduces accurately the overall behavior of mean square sep-

aration of turbulent relative dispersion. The short term ballisitc Batchelor regime is obviously
well described. More interestingly the transition towards the cubic Richardson regime is also
well captured, with an explicit connection between the Richardson constant, the Kolmogorov
constant and the persistence parameter (eq. 11). An interesting aspect of the phenomenology is
that the Richardson regime (cubic in time and scale independent) naturally builds itself simply
from successive scale dependent ballistic processes. We can also point that although the physical
phenomenology is different, this process exhibit interesting analogies with the model proposed
by Goto & Vassilicos (2004) for pair dispersion in 2D turbulence.

If the persistence parameter is taken simply equal to 1, as heuristically suggested by Bitane
et al. (2012) simulations (where the transition between the Batchelor and Richardson regime is
observed to occur around t0 = C

2 ε
−1/3r2/3), and as done by Thalabard et al. (2014) in a similar

iterative phenomenology, the Richardson constant g is then directly related to the Kolmogorov
constant C only. For the case of 3D turbulence (C = 7.7.) we then find g = 1.0. Although
slightly larger than the well accepted value g = 0.5 − 0.6, this is still a reasonalbe estimate
considering the absence of any additional adjustable parameter.

Nevertheless, as discussed in section 2.2 the assumption α = 1 for the peristence parameter is
not compatible with the ballistic approximation, which requires α < 1 (and more likely α� 1),
and has only a heuristic justification based on the time scale reported in simulations for the
Batchelor to Richardson regime transition. The strategy in the present work has therefore
been to use the relation (11) between the Richardson constant, the Kolmogorov constant and
the persistence parameter to determine the optimal value of α, for which the well accepted
value of the Richardson constant is recovered. When several values of α satisfy this condition,
the smallest value is preferred, to ensure a better validity of the ballistic approximation. For
the case of 3D turbulence, the optimal value is α = 0.12. The predicted evolution of the
mean square separation predicted by the iterative ballistic phenomenology is then in perfect
quantitative agreement with numerical simulations by Bitane et al. (fig. 5), whatever the initial
separation (at inertial scales) for the overall dispersion process. In particular, the collapse of
the numerical data at different initial separations is well captured as wall as transition time
between the Batchelor and the Richardson (which is found indeed to eventually occur around
t = t0 = C

2 ε
−1/3r2/3), and more subtle trends as the slight deceleration of separation growth

just before the transition toward the Richardson regime.
Another interesting point predicted by the present phenomenology is that the separation

growth can be written in a Richardson-like form at all times, but with a negative virtual time
origin (eq. 10), what gives support to the methodology by Ott & Mann (2000) to extract the value
of the Richardson constant from relatively short term experimental data of relative dispersion.
Besides eq. (10) predicts a simple connection between the virtual time origin, the Richardson
constant and the initial separation of pairs, which may be used to reinterpret the virtual time
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origin determined experimentally.
Finally, a further extension of the model has been proposed to address the question of

temporal asymmetry, which is a wellknown feature of turbulent relative dispersion. The pure
ballistic phenomenology is time reversible, as it only involves the square of time at all iteration
steps. To introduce temporal asymmetry, the Taylor expansion leading to the short term ballistic
growth for the mean square separation is pushed to the next order, taking into account the
third order corrective term, which involves the crossed velocity-acceleation structure function
Sau(~r) = 〈δ~r~a · δ~r~u〉. This term is analytically connected, via the Navier-Stokes equation, to
the third order structure function of the velocity field, and carries the signature of the energy
cascade (its value is Sau(~r)3D = −2ε for 3D direct cascade and Sau(~r)2D = +2ε for 2D inverse
cascade). The present extension of the model has been shown to accurately account for temporal
asymmetry reported in experiments and simulations of 3D turbulence (with a direct energy
cascade) and in simulations of 2D turbulence (in the inverse cascade regime). In particular, the
value of the forward and backward Richardson constants (and their ratio) are quantitatively
in agreement with those studies with the persistence parameter as only adjustable parameter.
Furthermore, the fact that in 3D turbulence backward dispersion is faster than forward, while
the opposite trend is reported for the inverse cascade of 2D turbulence, is explicitly explained
in the present phenomenology as the signature of the energy cascade, carried by the thir order
term via Sau, in agreement with the conjecture by Faber & Vassilicos (2009).

5.2 Final discussion

To finish I would like to highlight two important conceptual consequences of the present phe-
nomenology and a few of the several further studies that can be envisaged for the present ballistic
phenomenology :

• An important consequence of the present iterative ballisitc phenomenology concerns the
links that it builds between the Lagrangian framework (inherent to the relative dispersion
problem) and the Eulerian framework of turbulence. In the present phenomenology the
overall process of particle relative dipsersion is, to the leading order, controlled by the
Eulerian second order structure function (or equivalently the Eulerian energy spectrum).
The iterative ballisitic approach shows indeed that second order Eulerian statistics not
only control the short term ballistic separation at each scale, but are also eventually re-
sponsible for the emergence of the cubic Richardson regime as a result of the iteration of
the ballistic events. Furthermore, the extended version of the phenomenology (including
third order terms), relates the temporal asymmetry of relative dispersion to third order
Eulerian statistics, and hence to the energy flux accross scales. This justifies the appella-
tion ballistic cascade phenomenology chosen for this approach. Furthermore, the iterative
phenomenology shows that the temporal asymmetry of turbulent relative dispersion can be
quantitatively interpreted simply in terms of inverse vs direct energy cascade, as stipulated
by Faber & Vassilicos (2009). Besides, the iterative phenomenology simply connects the
short term asymmetry of pair dispersion (given by eq. (14) or eq. (4), and already studied
for instance by Jucha et al. (2014)) to the long term asymmetry (characterized by different
values for the forward and the backward Richardson constant). Such a connection still
remained to be established, as pointed by Jucha et al.. In particular, the ballisitic cascade
phenomnelogy shows that both, short term and long term asymmetry of pair dispersion,
can be simply interpreted as a Lagrangian signature of the asymmetry of energy flux ac-
cross scales in the Eulerian framework.

• Another interesting remark concerns the fact that the present ballistic phenomenology also
offers a new paradigmatic frame to reinterpret what was originally addressed by Richard-
son as a scale dependent diffusion coefficient (with K(D) ∝ D4/3, such that the mean
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square separation at a given scale D grows, locally, linearly in time as
〈
D2
〉
∝ K(D)t).

Richardson drew this conclusion by a short time, scale by scale, analysis of local diffu-
sion properties over a wide range of phenomena, from diffusion of oxygen intro nitrogen,
to the diffusion of cyclones in the atmosphere (Richardson (1926)). It is now accepted
that his derivation of the 4/3rd law was at the same time fortuitous and the result
of Richardson’s unique intuition (Sawford (2001)). However no robust physical ground
support such a scale dependent diffusive scenario. The phenomenology presented here
proposes a change of paradigm where the scale dependent diffusive process is replaced
by a scale dependent ballistic process. Besides the ballistic phenomenology also explains
why a short time scale by scale analysis can lead to an apparent scale dependent diffu-
sive process. The elementary ballistic step given by eq. (5) shows that the square sep-
aration at each iteration grows by

(
D2
k+1 −D2

k

)
= S2(Dk)t

′2
k what can be rewritten as

[S2(Dk)t
′
k]t
′
k = αC

2 ε
1/3D

4/3
k t′k. The short term growth of the mean square separation, can

therefore be equivalently interpreted as a scale dependent normally diffusive process with
a diffusion coefficient K(D) = αC

2 ε
1/3D4/3, precisely following Richardson’s “4/3rd” law.

• As discussed in section 2.1, an important approximation of the iterative scheme, concerns
the fact that the estimation of the duration t′k(Dk) of each iteration step and of the bal-
listics growth rate is done based only on the mean square separation D2

k, but does not
take into account the fact that separations spread over a whole statistical distribution. In
spite of this approximation, the results presented here show a posteriori that the model
behaves extremely well to predict the evolution of the mean square separation. A first
test to probe a priori the relevance of this approximation can be done using the measured
(experimentally or numerically) statistics of particles relative dispersion, in order to es-
timate the evolution of the width of the statistical distribution of the square separation
(which can be estimated from the flatness of the distribution). The approximation can
be assumed to be valid as long as this width remains small compared to the mean square
separation itself. Beyond this simple verification, it is also possible to imagine to imple-
ment a similar iterative approach for higher order moments (and not only for the mean
square separation), what should then involve higher order velocity strucutre functions.
A short term ballistic relation equivalent to eq. 1a can indeed be written at all orders:
< ( ~D − ~D0)

n >=< (δ ~D0
~u)n > tn (where we define ~X2m = | ~X|2m and ~X2m+1 = | ~X|2 ~X).

This relates the short term evolution of the statistical moments of particle pair separation
to same order Eulerian structure functions. The possibility to apply a similar iterative
scheme at all orders, hence also addressing intermittency corrections to the relative dis-
persion problem, will be investigated in future studies.

• Many situations of practical interest for turbulent dispersion issues concern non-homogeneous
flows. This is the case for instance for the dispersion of pollutants in the atmospheric
boundary layer. Extending the present phenomenology to the case of non-homogeneous
turbulence is therefore also of relevant interest. This would involve several important
steps forward. One aspect concerns taking into account inhomegeneities of the velocity
field, to account for instance for the dependency of the second order structure function
not only on the pair separation, but also on the pair position. Another aspect concerns
the approximation, also discussed in section 2.1, which consists in neglecting the term
< ~D0 · δr~u >, in order to apply the elementary ballisitic growth to < D2 > − < D2

0 >
instead of < ( ~D− ~D0)

2 >. This approximation has been shown to fail, at very short times,
in non-homogeneous experimental flows (Ouellette et al. (2006)). It can be shown that
keeping this term, adds a short term linear contribution to the growth of the mean square
separation compared to the ballisitc scenario considered here. This will tend to add a
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short term normally diffusive-like contribution. The extension to non-homogeneous situ-
ations will therefore probably require to investigate the relative importance of this linear
contribution compared to the ballistic contribution.

• The physical origin of the persistence parameter, which controls the statistical duration of
each ballistic step remains to be clarified. The analogy with the model by Goto & Vassilicos
(2004) suggests a possible interpretation in the case of 2D, in terms of the probability
to encounter hyperbolic stagnation points. More generally, it would be interesting to
investigate possible connections with the idea of delay times, recently proposed by Rast &
Pinton (2011) to possibly play a leading role in turbulent pair dispersion.

• The present ballistic phenomenology goes beyond the sole frame of turbulent dispersion,
as it shows that super-diffusion is not an exclusive feature of turbulence. Pairs separating
super-diffusively can be simply driven by pure ballistic processes, as soon as the timing
and/or the ballistic growth rate is controlled scale by scale. This shows the way towards
new possible strategies to enhance dispersion in non turbulent flows, where efficient mix-
ing is difficult to achieve. This is the case for instance in micro-fluidic devices, where
the ability to control and tune phoretic mechanisms (as diffusiphoresis (Abecassis et al.
(2008)), thermophoresis, chemotaxis, photophoresis, etc.) could be efficiently used to drive
a ballistic cascade of the motion of colloidal particles, macro-molecules, bacteria, etc., in
order to promote their super-dispersion.
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