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Abstract: Granular soils subjected to seepage flow may suffer suffusion, i.e. a selective internal erosion.
Extending the classical approach of poromechanics, we deduce a new form of the Clausius-Duhem inequality
accounting for dissipation due to suffusion and we deduce restrictions on the constitutive laws of the soil.
We suggest (i) a possible coupling between the seepage forces and the suffusion kinetics (ii) an extension
of an existing elastoplastic model for the skeleton mechanical behaviour. Numerical integrations of the
elastoplastic model are carried out under drained axisymmetric triaxial and oedometric conditions. As a
result, we prove that the extended model is able to qualitatively reproduce the suffusion induced strains
as well as the strength reduction experimentally observed. Predictions on the oedometric behaviour of
suffusive soils are also provided.

Keywords: Suffusion, thermodynamics, poromechanical model

1 Introduction

Seepage flow through a cohesionless granular medium may induce detachment, transport and even interlock-
ing of the grains of the granular skeleton. Detachment corresponds to the loss of contact between a grain
and the solid skeleton; transport refers to its convected displacement along the hydraulic flux; interlocking
corresponds to the capture of the transported particle by the solid skeleton. Once interlocking occurs the
contact between the ripped out fine particles and the solid skeleton is recovered. Internal erosion [1] is the
combination of these three processes. When internal erosion is selective (i.e. it concerns the finest fraction
of the grains constituting the skeleton) and takes place within the granular assembly, we call it suffusion.
Suffusion initiation and development highly depends on the nature of the soil, which on the one hand must
contain fine grains to be detached and transported and on the other hand should be characterized by a
sufficiently coarse pore network to let eroded fine grains be transported through a non negligible distance.
This means that suffusion does not occur for all grading of soil. Among three types of grain size distributions:
linearly graded soils, gap-graded soils and upwardly concave graded soils, the last two were identified as
"unstable", i.e. can be affected by suffusion[2, 3]. The shape of the grains also plays an important role
in triggering suffusion: for clayey sands with the same grain size distribution, the higher the angularity of
coarse grains, the larger the erosion resistance[4].
Even when a soil is expected to be affected by suffusion, a seepage flow is generally thought to be required
to trigger and continue the phenomenon. Indeed several studies have explored the link between seepage
flow and suffusion initiation and have advocated the existence of a hydraulic threshold for suffusion to
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occur. This threshold is generally defined via three different approaches: (i) a critical hydraulic gradient[5]
(ii) a critical hydraulic shear stress[6], or (iii) a critical fluid velocity[7]. According to these methods,
one can deduce a critical hydraulic threshold for a given set-up, however these approaches do not provide
any information about suffusion kinetics. Moreover, the critical hydraulic threshold is subjected to scale
effects[8] and depends on the history of hydraulic loading[9]. These conclusions have enlighted the need for
a new characterization and classification of suffusion susceptibility, which has recently been proposed based
on the energy dissipated by the pore fluid during the suffusion test[10]; this new energy approach has the
very good properties of being neither scale-dependent nor affected by the history of hydraulic loading.
From the mechanical point of view, the onset of suffusion has been related not only to variations of local
hydraulic gradients but also to the stress state of the soil[11]. Testing gap-graded soils, the effect of the
mechanical stress state on the initiation of suffusion has been studied with a modified tri-axial apparatus
that allows vertical seepage flows[12]. Due to the decrease of the initial porosity, the critical hydraulic
gradient that initiates suffusion increases with the value of the mean effective stress. Moreover, the critical
hydraulic gradient tends to increase with the deviatoric stress ratio, until a maximum value is attained;
from that point the critical hydraulic gradient begins to decrease. Regarding suffusion development, the
increase of the mean effective stress implies the decrease of the rate of eroded mass[13].
Conversely since suffusion involves detachment, transport and interlocking of the fine particles, it also
affects the hydraulic behaviour of the soil. Also, the microstructure is widly impacted: changes in both the
granulometry distribution and the porosity of the soil are commonly observed[12, 14]. Moreover, the delay
between detachment, transport and interlocking, which can potentially occur at different location within
the soil mass, increases the heterogeneity of the soil microstructure. In the worst cases, a preferential flow
path may appear within the soil[14, 15].
By changing the fine content and therefore the microstructure of the skeleton, suffusion affects also the
mechanical properties of the soil. To investigate the role of the fine content on the mechanical properties
of the soil, mechanical tests have been performed over reconstituted soils characterized by different amount
of fines[16]; the results of these tests can be compared with post-suffusion mechanical tests on eroded
sample[17]. The main result is that the mechanical behaviour of a suffusive soil is not the same as that of
a reconstituted one having the same fine content. This means that average parameters are not sufficient to
characterize the soil microstructure after suffusion, but additional informations concerning the local value of
the intergranular void space is mandatory. It has been shown that locally suffusion may induce volumetric
strain in the soil, yielding soil settlement[15]. Numerical experiments based on the use of the Discrete
Elements Method[18, 19, 20, 21] have provided similar results as those of the above mentioned laboratory
tests. Starting from a polydisperse granular medium, the suffusion kinetics has been modelled as a selective
particle removal[18, 19], or induced by the seepage flow[20, 21], also in these cases a volumetric strain has
been observed. The volumetric strain is due to the state of stress in the vicinity of the detached fine grains:
if eroded fine grains are initially parts of the force chains, their detachment induces a loss of equilibrium;
in order to make the force chains network balanced again, grain rearrangment occurs which modifies the
chain geometry[21]. At the macroscopic scale, this rearrangment causes volumetric strains. Conversely, if
eroded grains are initially free of charge, the force chains network is not affected by grain ripping so that
no rearrangement and consequently no volumetric strain occurs. A competition between the increase of the
specific volume and the contraction as a response of particle removal has been enlighted[18]. This conclusion
can be interpreted in term of the signed distance between the soil state and the critical state[18, 19]: if the
soil state is above the critical state (which is possible for dense soils), then dilation occurs during suffusion.
Conversely, if the soil state is below the critical state, compaction occurs during suffusion. Besides the effect
on strain evolution, suffusion affects also the strength of the soil. Several drained triaxial tests have been
conduced over dense soils that exhibit initially a dilative and softening behaviour (i.e. soils for which a peak
strength exists). The suffusion effect in this case is the loss of density: the suffused soil behaves like a loose
soil and the peak strength disappears[17, 20, 19]. Conversely, drained triaxial tests carried out over initially
loose samples have shown that the effect of suffusion is mainly the reduction of the residual strength[22].

2



Implementing within a suitable constitutive model the effects of suffusion on the hydromechanical response
of soils as well as vice-versa the effects of hydromechanical loading on suffusion has been, since few years,
the subject of significant modelling efforts within the scientific community of continuum geomechanics. The
main efforts have been realized in the framework of sand production during hydrocarbons extraction[23, 24,
25, 26, 27, 28]. In this framework, internal erosion kinetics has been accounted for as a mass source into the
mass balance equations of the fluid and the solid phases of porous medium, thus resulting into a porosity
variation. An additional equation specifying the rate of eroded mass has then been introduced. The effect
of erosion on the mechanical response has also been taken into account assuming the corresponding porosity
variation as a kind of damage parameter, reducing the elastic stiffness and the internal cohesion of the
sandstone[24, 25, 27].
In different contexts, few other constitutive laws aiming at modelling suffusion kinetics in granular soils
have been proposed[29, 15]. More recently, the constitutive modelling of soil subjected to internal erosion
has been explored using thermodynamics of porous media[30], the internal erosion kinetics being accounted
for by a new internal variable: φer the porosity variation induced by internal erosion. In a similar way as
in the model proposed by Stavropoulou et al[24]. this porosity variation is regarded as a kind of damage
parameter and the rate of erosion is once again assumed to be proportional to the distance between the
current and the critical hydraulic shear stress.
With the aim of going deeper into the constitutive modelling of suffusion, our study presents a new approach
to model coupling effects between the suffusion process and the hydro-mechanical response of a granular soil.
Adopting the framework of classical poromechanics[31], the kinematics of the suffusive soil is established
in Section 2. In Section 3, the external working is stated in order to express the fundamental principles of
thermodynamics in Section 4. Clausius-Duhem inequality is generalised by considering the solid and the fluid
dissipations to be fully coupled because of suffusion and the constitutive prescriptions for the suffusive soil
are given in Section 5. In Section 6 an existing elasto-plastic model for soils[32] is extended by introducing
the suffusion induced porosity as a hardening variable and a parameter of the characteristic state. In order to
reproduce experimental results[17, 22], numerical integrations of the elasto-plastic constitutive model have
been carried out in Section 7, for monotonic mechanical loadings, under drained triaxial and oedometric
conditions. In this paper, the continuum mechanics sign convention is employed.

2 Kinematics and mass balances

Each of the phases of a porous medium is endowed with its own kinematics and mass content. Accordingly,
this section presents the basic defintions and the balances of mass specific to the hydro-mechanical response
of a suffusive mixture. The suffusive porous medium is constitued of two phases: a solid and a fluid
saturating the porous network. The superscript s refers to the solid phase, including both erodible and
non-erodible grains, and the superscript f refers to the fluid phase as a binary mixture, constitued of the
pore liquid (denoted by the superscript wf) and fluidized grains (denoted by the superscript pf).
Let D0 be the reference configuration of the solid skeleton, T a time interval and E the Euclidian space
of positions, then χ : D0 × T → E indicates the placement map of the solid skeleton. The image D of the
reference configuration D0 under χ denotes the current configuration of the porous medium and it is a part
of E. Let X ∈ D0 be the reference position of a solid material particle and x its placement in the current
configuration then: x = χ (X, t). By time-differentiating χ, we introduce the velocity vs of the skeleton and
the related particle accelation γs:

vs =
dχ

dt
and γs =

dsvs

dt
(1)

In equation (1) and in the following ds/dt indicates the time derivative following the motion of a solid
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material particle. We denote by F the placement gradient and ∆ the related Green-Lagrange strain tensor:

F = ∇
X
χ and ∆ =

1

2

(

FF⊤ − I
)

(2)

where ∇X denotes ∂/∂Xi. Following the poromechanical framework [31], we introduce η, the Eulerian
porosity and φ the Lagrangian one wich are related by φ = Jη in which J stands for the determinant of F .
The solid mass conservation law in the current configuration reads as:

ds

dt

∫

D

ρs (1− η) dΩt =

∫

D

ρ̂s dΩt (3)

where ρ̂s indicates a mass source and the intrinsic density of the solid ρs is constant in space and in time.
According the localization theorem[33], the localized pull-back of this equation implies the following local
Lagrangian form of the skeleton mass conservation law to hold true:

ρs
ds (J − φ)

dt
= Γ̂s (4)

where Γ̂s = Jρ̂s is the Lagrangian mass source.
The reference configuration of the fluid is denoted by Df

0 and it is related to the skeleton reference configu-
ration via the mapping ̺ : D0 × T → E. The image under ̺ of a solid particle X identifies the fluid particle
Xf ∈ Df

0 which, at time t, occupies the same current place x as that of the solid. As a consequence, the
placement of the fluid phase is described by the mapping χf such that χf = χ ◦ (̺)−1. We indicate with
̺−1 the inverse map of ̺ (·, t). We are now able to introduce the velocity vf as the barycentric velocity of
the 2-species fluid f . This velocity vf is obtained by time differentiating the placement of the fluid χf :

vf (x, t) =
dχf

dt

(

Xf , t
)

=
dχ ◦ ̺−1

dt

∣

∣

∣

∣

(Xf ,t)

(5)

Applying the chain-rule, and considering Θ = ∇
X
̺ the fluid velocity is:

vf (x, t) = vs (X, t)− F (X, t) ·Θ(X, t)
−1 · ∂̺

∂t

∣

∣

∣

∣

(X,t)

(6)

Next, we denotes by γf the particle acceleration of the fluid:

γf =
dfvf

dt
(7)

where df/dt indicates the time derivative following the motion of a fluid material particle.
Since the fluid phase is a mixture of two species, its intrinsic density ρf obeys the mixture theory:

ρf =
(

1− Cf
)

ρwf + Cfρs (8)

where Cf indicates the fluidized grains volume concentration, while ρwf and ρs are the intrinsic densities
of the pore liquid and the grains, respectively. In other words, we will assume the fluid phase to be
fairly homogeneous. If considering a homogeneous binary mixture of fluidized particles and liquid is rather
meaningless at the pore scale, this is otherwise admissible from the macroscopic point of view. Considering
this hypothesis, we write the fluid mass balance in the current configuration:

df

dt

∫

D

ρfη dΩt =

∫

D

ρ̂f dΩt (9)
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where ρ̂f is the rate of mass supplied to the fluid phase. We now introduce mf representing the Lagrangian
fluid mass content: mf = φρf and Mf the Lagrangian filtration vector: Mf = φρfF−1 ·

(

vf − vs
)

. Consid-
ering the Lagrangian mass source Γ̂f = Jρ̂f , we pull-back the fluid mass conservation law into the reference
configuration of the solid skeleton and localise it:

dsmf

dt
+∇

X
·Mf = Γ̂f (10)

As usual in the framework of soil mechanics, we consider the grains incompressibility hypothesis, which
links J to the Lagrangian porosity: J − 1 = φ − φ0 where φ0 is the reference (initial) Lagrangian porosity.
According to Zhang et al.[30], in the case of a suffusive soil this relation is enriched introducing a new
variable φer measuring the variation of the Lagrangian porosity induced by the sole suffusion process so
that the grains incompressibility hypothesis becomes:

J − 1 = φ− φ0 − φer (11)

This condition constitues a crucial point of our approach since the variation of the Langrangian porosity
is no longer due just to volumetric strains but also to suffusion. Furthermore, as suffusion consists of an
exchange of mass content between the solid and the fluid phases, the two mass sources Γ̂s and Γ̂f are
opposite. For the sake of simplicity we write Γ̂ = Γ̂f = −Γ̂s (leading to the Eulerian equality ρ̂ = ρ̂f = −ρ̂s).
Under these assumptions, the solid and fluid mass balances become respectively:

ρs
dsφer

dt
= Γ̂ and

dsρf (J + φer)

dt
+∇

X
·Mf = Γ̂ (12)

It is worth to stress that the informations about the kinetics of grains detachment and interlocking are all
contained in the term Γ̂ which is proportional to the time derivative of φer with respect to the solid motion.

3 External working

Let Vπ (D) be the linear space of velocity fields of the phase π on D. Let the external working Pext be a
linear continuous functional over the cartesian product Vs × Vf say Pext : Vs (D)× Vf (D) → R, so that:

Pext

(

vs,vf
)

=

∫

D

bs · vs + bf · vf dΩt +

∫

∂D

ts · vs + tf · vf dS ,
{

vs,vf
}

∈ Vs × Vf (13)

where bπ is the bulk force in D and tπ the surface force on the boundary ∂D of the current configuration.
∂D is required to be sufficiently regular so that it outward unit normal n can be defined almost everywhere
on ∂D. Now let σπ be the stress acting on the phase π, such that the Cauchy stress theorem σπ · n = tπ

holds true for each phase π on ∂D. Using the Green-Ostrogradsky theorem, we obtain:
∫

∂D

ts · vs + tf · vf dS =

∫

D

σs : ds + (∇x · σs) · vs dΩt +

∫

D

σf : df +
(

∇x · σf
)

· vf dΩt (14)

Herein, the tensor d
π denotes the Eulerian strain rate tensor such that d

π =
(

∇xv
π +∇⊤

x v
π
)

/2 where ∇x

denotes ∂/∂xi. Replacing (14) into (13), the external working is given by the sole integral over D:

Pext

(

vs,vf
)

=

∫

D

σs : ds + σf : df + (∇x · σs + bs) · vs +
(

∇x · σf + bf
)

· vf dΩt (15)

Now focusing on the porous medium as a whole, the Cauchy stress σ = σs + σf and the overall bulk force
b = bs + bf are introduced so that:

Pext

(

vs,vf
)

=

∫

D

σ : ds + σf :
(

d
f − d

s
)

+ (∇x · σ + b) · vs +
(

∇x · σf + bf
)

·
(

vf − vs
)

dΩt (16)
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Recall that the balance of momentum for the overall porous medium reads as:

b+∇x · σ = ρs (1− η) γs + ρfηγf + ρ̂
(

vf − vs
)

(17)

while ρ̂
(

vf − vs
)

indicates the contribution to the time derivative of the overall momentum due to mass
echange between the phases. From now on we assume that the fluid stress is linked to the fluid pressure

through the Eulerian porosity, σf = −ηpI. Hence the term σf :
(

d
f − d

s
)

reduces to −ηp∇x ·
(

vf − vs
)

and

∇x ·σf to −∇xηp. Finally, assuming the bulk force on the fluid to be bf = ρfηf , equation (16) reduces to :

Pext

(

vs,vf
)

=

∫

D

σ : ds −∇x ·
(

ηp
(

vf − vs
))

+ ρfηf ·
(

vf − vs
)

dΩt

∫

D

(

ρs (1− η) γs + ρfηγf
)

· vs dΩt +

∫

D

ρ̂vs ·
(

vf − vs
)

dΩt

(18)

In the above writing, the first integral term contains the internal working and the second the inertial
effects[31]. The last integral corresponds to suffusion effects.

4 Thermodynamics

Thermodynamics of porous media is here specialized to consider the case of a suffusive soil to provide a
consistent framework for the further constitutive modeling. In this section, following a similar deduction as
that one proposed by Coussy[31], the two fundamental principles of thermodynamics are given in a general
form in the current configuration D. By using the above expression of the external working, a new form of
the Clausius-Duhem inequality is tackled.

4.1 The first principle : internal energy

The first principle of thermodynamics states the conservation law for the internal energy of the whole
porous medium. We denote by es and ef the specific internal energies (i.e. per unit mass) of the solid and
fluid constituents, respectively, and the specific internal energy of the porous medium (per unit volume) by
e = ρs (1− η) es + ρfηef . The first principle, written in the current configuration reads as:

Pext + Q̊ =
ds

dt

∫

D

ρs (1− η)

(

es +
vs · vs

2

)

dΩt +
df

dt

∫

D

ρfη

(

ef +
vf · vf

2

)

dΩt (19)

where Pext is the external working and Q̊ the heat source represented in terms of a heat flux through the
boundary ∂D:

Q̊ =

∫

∂D

−q · n dS =

∫

D

−∇x · q dΩt (20)

To highlight the effect of mass transfer (suffusion), the time derivative of the kinetic energy of each phase
is rewritten making use of the mass conservation laws. Thus time derivative of the solid kinetic energy is
given by:

ds

dt

∫

D

ρs (1− η)
vs · vs

2
dΩt =

1

2

∫

D

(

∂ρs (1− η)

∂t
+∇x · (ρs (1− η) vs)

)

vs · vs dΩt

+
1

2

∫

D

(

∂vs · vs

∂t
+∇x · ((vs · vs)vs)

)

ρs (1− η) dΩt

(21)

reformulated in the following form:

ds

dt

∫

D

ρs (1− η)
vs · vs

2
dΩt =

∫

D

−1

2
ρ̂vs · vs + ρs (1− η)γs · vs, dΩt (22)
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Similary the time derivative of the fluid kinetic energy is given by:

df

dt

∫

D

ρfη
vf · vf

2
dΩt =

∫

D

1

2
ρ̂vf · vf + ρfηγf · vf , dΩt (23)

Equations (22) and (23) show that the term ρ̂ is explicitly taken into account in the time derivative of the
kinetic energies. Moreover, as usual in poromechanics[31], the time derivatives of the internal energies of
the solid and the fluid can be rearranged as follows:

ds

dt

∫

D

ρs (1− η) es dΩt +
df

dt

∫

D

ρfηef dΩt =

∫

D

dse

dt
+ e∇x · vs +∇x ·

(

ρfηef
(

vf − vs
))

dΩt (24)

Replacing equations (18), (22), (23) and (24) in (19) and introducing the specific enthalpy of the fluid
hf = ef +

p

ρf
, we get the global Eulerian formulation of the first principle of thermodynamics for a suffusive

porous medium:

∫

D

σ : ds −∇x ·
(

ρfηhf
(

vf − vs
))

+

(

ρfη
(

f − γf
)

− 1

2
ρ̂
(

vf − vs
)

)

·
(

vf − vs
)

−∇x · q dΩt =
ds

dt

∫

D

e dΩt (25)

With the aim of providing the local Lagrangian form of the first principle of thermodynamics, we introduce
the Lagrangian quantities: E = eJ the total Lagrangian internal energy of the porous medium, Σ = JF−1 ·
σ ·F−⊤ the second Piola-Kirchhoff overall stress tensor, and Q = Jq the pull back of the Eulerian heat-flux
in the reference configuration. We localise the pull-back of (25) in D0. In this way, the local Lagrangian
form of the first principle is provided by:

dsE

dt
= Σ :

ds∆

dt
−∇X ·

(

hfMf
)

+

(

f − γf − Γ̂

2 (ρfφ)
2F ·Mf

)

·
(

F ·Mf
)

−∇X ·Q (26)

4.2 The second principle : entropy

The second principle of thermodynamics expresses the balance of entropy. We denote by ss and sf the
specific entropies (i.e. per unit mass) of the solid and fluid phases, respectively. Then the specific entropy
of the porous medium (per unit volume) is given by s = ρs (1− η) ss + ρfηsf . The entropy balance, written
on the current configuration, is:

ds

dt

∫

D

ρs (1− η) ss dΩt +
df

dt

∫

D

ρfηsf dΩt >

∫

∂D

−q · n
T

dS (27)

where T is the overall absolute temperature. Developing a similar procedure as the one considered for the
first principle, the second principle is pull-back into the reference configuration D0 and the local Lagrangian
form reads:

dsS

dt
> −∇X ·

(

sfMf +
Q

T

)

(28)

S being the Lagrangian entropy of the porous medium as a whole.

4.3 The Clausius-Duhem inequality

From now on and for the sake of simplicity, for any quantity a, ȧ denotes its time derivative with respect
to the motion of the skeleton (i.e. dsa/dt). The Clausius-Duhem inequality is now tackled with the aim of
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identifying the thermodynamical dissipation of a suffusive soil. This will allow for stating suitable restrictions
on the constitutive laws.
We introduce the Helmoltz free energy of the porous medium Ψ = E − TS, so that the second principle can
be re-written as:

Ṡ =
1

T

(

Ė − SṪ − Ψ̇
)

> −∇X ·
(

sfMf +
Q

T

)

(29)

Let Ψs be the Helmoltz free energy of the solid and ψf the specific Helmoltz free energy of the fluid such that
Ψ = Ψs +mfψf . Using the first principle (26) in (29) multiplied by T , we finally get the thermodynamical
dissipation Φ that is to say the Clausius-Duhem inequality :

Φ =

(

Σ : ∆̇−∇X ·
(

hfMf
)

+

(

f − γf − Γ̂

2 (ρfφ)
2F ·Mf

)

·
(

F ·Mf
)

−∇X ·Q
)

− SṪ − Ψ̇s −
(

ṁfψf +mf ψ̇f
)

+∇X ·
(

sfMf +
Q

T

)

T > 0

(30)

In order to provide the framework within which constitutive prescriptions for the solid skeleton can be
stated, cumbersome calculations are needed. The main steps are : (i) to consider the constitutive law of
the fluid phase as simple as possible:

p = − ∂ψf

∂(1/ρf)
and sf = −∂ψ

f

∂T
(31)

(ii) to use the definition of the Gibbs potential of the fluid as gf = ψf + p/ρf and gf = hf + Tsf , and (iii) to
consider the solid free energy as a function of T , ∆ and ζ: Ψs = Ψs (T,∆, ζ) where ζ is a generalized internal
variable vector accounting for irreversible processes occuring within the solid skeleton. Each component α
of ζ (i.e. ζα) may present a different order of tensoriality. In particular, among others, ζ will include the
scalar quantity φer. The Clausius-Duhem inequality is now splitted in three terms. The two first terms of
Φs

→ essentially describes the dissipation due to irreversible deformations and mechanical effects of suffusion,
Φf

→
gathers both the hydraulic diffusion and the suffusion evolution; finally the last contribution Φt, is

the dissipation linked to thermal effects. Due to its classical form, we suggest as usual that Φt is positive
but we don’t state for any positivity restricions over Φs

→
and Φf

→
right-now due to their unusual forms.

Consequently, we write the Clausius-Duhem inequality as Φ = Φs
→

+Φf
→

+Φt > 0.

Φs
→ =

(

Σ+ pJF−1 · F−⊤ − ∂Ψs

∂∆

)

: ∆̇−
〈

∂Ψs

∂ζα
, ζ̇α

〉

−
(

Ss +
∂Ψs

∂T

)

Ṫ (32a)

Φf
→

=

(

− 1

ρf
∇

X
p+

(

f − γf
)⊤ · F

)

·Mf +

(

p

(

1− ρs

ρf

)

− ρs

2 (ρfφ)
2

(

F ·Mf
)2

)

φ̇er (32b)

Φt = −Q

T
· ∇

X
T > 0 (32c)

where 〈∂Ψs/∂ζα, ζ̇α〉 denotes the inner product over the space to which belongs the α-th component of ζ.
The index → indicates the presence of suffusion effects on both Φs

→
and Φf

→
. One of the aims of the next

section is to identify more clearly the whole effect of suffusion and rephrase the Clausius-Duhem inequality
as Φ = Φs + Φf + Φt > 0. In this targeted form, we identify three uncoupled dissipation sources: the
first, Φs, is related to the skeleton behaviour, the second, Φf , is linked the hydraulic diffusion and every
explicit suffusion’s effects, the thermal dissipation, Φt, remaining unchanged. Each dissipation is supposed
to be positive. From such a formulation, we will deduce the constitutive restrictions related to mechanical
behaviour, hydraulic diffusion, suffusion kinetics and thermal diffusion.
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5 Constitutive modelling

In this section, we explore the possible constitutive modelling of a suffusive soil, focusing especially on the
coupling between the suffusion and both seepage flow and the mechanical state of the skeleton.

5.1 Constitutive prescriptions for the skeleton behaviour

The dissipation term of equation (32a) is similar to the one used to describe the effects of dissolution (see
Coussy[31]). If for the sake of simplicity, isothermal conditions so Ṫ = 0 are assumed, the dependency of Ψs

on the temperature can be omitted and the first term of the dissipation reduces to:

Φs
→

=

(

Σ+ pJF−1 · F−⊤ − ∂Ψs

∂∆

)

: ∆̇−
〈

∂Ψs

∂ζ
, ζ̇

〉

(33)

From now on the small strains hypothesis is taken into account, so that the Green-Lagrange strain tensor
∆ is equal to the linearised strain tensor ε. Moreover, we assume the reference configuration to be stress
free, which allows to identify the value of the Cauchy stress tensor σ with that of the second Piola-Kirchhoff
stress tensor Σ. As a consequence, the Terzaghi effective stress tensor σ′ = σ + p can be introduced:

Φs
→

=

(

σ′ − ∂Ψs

∂ε

)

: ε̇−
〈

∂Ψs

∂ζ
, ζ̇

〉

(34)

the hypothesis of small strains moreover yields: ε = εe+εp, where εe and εp are the elastic and plastic strain
tensors, respectively. Grain incompressibility stated in equation (11) is therefore rephrased by partitionning
the porosity φ into a reversible contribution φe and an irreversible one denoted φp:

εev + εpv = φe + φp − φer − φ0 (35)

where εev and εpv are, respectively, the elastic and plastic volumetric strains. In particular, the irreversible
contributions into equation (35) are required to verify:

φp = φer + εpv (36)

Next, we identify the internal variables as the current value of the plastic strain tensor εp and the suffusion
induced porosity φer as well as that of the cumulated plastic strain ǭp:

ǭp(t) =

∫ t

0

√

ε̇
p
d (τ) : ε̇

p
d (τ)dτ (37)

εd being the deviatoric strain tensor. Thus with slight abuse of notation, the solid free energy is represented
by: Ψs = Ψs (ε, εp, ǭp, φer). More specifically, we suggest to split Ψs in two contributions with respect
to the skeleton behaviour: an elastic one which depends on the elastic strain tensor and the suffusion
induced porosity: Ψs

e (ε− εp, φer) and the frozen or plastic one which depends only on the internal variables:
Ψs

p (ε
p, ǭp, φer). According to these assumptions, we assume that the suffusion induced porosity affects both

the elastic and the frozen free energies: the dependency of Ψs
e on φer accounts for the effects of erosion as

a kind of damage parameter which modifies the stiffness of the solid skeleton; the dependency of Ψs
p on φer

conversely is similar to the one of a softening or hardening variable.
Thus assuming the following expression of the solid free energy: Ψs = Ψs

e (ε− εp, φer) + Ψs
p (ε

p, ǭp, φer) we
write the skeleton dissipation as follows:

Φs
→

=

(

σ′ − ∂Ψs
e

∂ (ε− εp)

)

: (ε̇− ε̇p) + σ′ : ε̇p −
∂Ψs

p

∂εp
: ε̇p −

∂Ψs
p

∂ǭp
˙̄ǫp −

(

∂Ψs
e

∂φer
+
∂Ψs

p

∂φer

)

φ̇er (38)
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Separating the plastic strain into its spherical and deviatoric components one has:

Φs
→

=

(

σ′ − ∂Ψs
e

∂ (ε− εp)

)

: (ε̇− ε̇p) + σ′ : ε̇p −
∂Ψs

p

∂εpd
: ε̇pd −

∂Ψs
p

∂εpv
ε̇pv −

∂Ψs
p

∂ǭp
˙̄ǫp −

(

∂Ψs
e

∂φer
+
∂Ψs

p

∂φer

)

φ̇er (39)

If equation (36) is used within the frozen free energy, the following change of variable Ψs
p (ε

p
d, ε

p
v, ǭ

p, φer) =

Ψs
p (ε

p
d, φ

p, ǭp) can be made, so that Ψs
p depends on εpv and φer via φp:

∂Ψs
p

∂εpv
ε̇pv +

∂Ψs
p

∂φer
φ̇er =

∂Ψs
p

∂φp
φ̇p (40)

As a consequence, the term (∂Ψs
e/∂φ

er) φ̇er is the sole term explicitely linked to the suffusion kinetics, which
in fact motivates the choice to make it part of the fluid dissipation Φf rather than the solid one.
Accordingly the skeleton dissipation Φs is required to be positive definite and writes:

Φs = Φs
→

+
∂Ψs

e

φer
φ̇er > 0

=

(

σ′ − ∂Ψs
e

∂ (ε− εp)

)

: (ε̇− ε̇p) + σ′ : ε̇p −
∂Ψs

p

∂εpd
: ε̇pd −

∂Ψs
p

∂φp
φ̇p −

∂Ψs
p

∂ǭp
˙̄ǫp > 0

(41)

Similarly, the fluid dissipation Φf , including from now-on the suffusion effects, is rephrased and assumed to
be positive definite:

Φf = Φf
→

− ∂Ψs
e

φer
φ̇er > 0

=

(

− 1

ρf
∇

X
p+

(

f − γf
)

)

·Mf +

(

p

(

1− ρs

ρf

)

− ∂Ψs
e

∂φer

)

φ̇er > 0

(42)

Here, we have also assumed the fluid velocity to be small enough so that the contribution of the squared
filtration vector can be neglected. For purely elastic transformations, no dissipation occurs (Φs = 0) and
the internal variable set remains constant, then the elastic constitutive law is given by:

σ′ =
∂Ψs

e

∂ (ε− εp)
(43)

Let Ψs
e be a quadratic form such that Ψs

e = (ε− εp) : C (φer) : (ε− εp) /2+Ψs
e0, where C is the classical elastic

stiffness tensor and Ψs
e0 a reference free energy. The stress-strain relation becomes:

σ′ = C (φer) : (ε− εp) (44)

We notice that C possibily depends on φer as a kind of damage parameter see for e.g. Zhang et al.[30], the
purely dissipative part of Φs is therefore:

Φs = σ′ : ε̇p −
∂Ψs

p

∂εpd
: ε̇pd −

∂Ψs
p

∂φp
φ̇p −

∂Ψs
p

∂ǭp
˙̄ǫp > 0 (45)

where we identify ∂Ψs
p/∂ε

p
d as a kinematic hardening force, ∂Ψs

p/∂φ
p and ∂Ψs

p/∂ǭ
p as isotropic hardening

forces. In order to ensure the positivity of such a formal dissipation, we shall formulate a constitutive model
in the framework of elasto-plasticity parametrized by the irreversible porosity variation φ̇p (Section 6).

5.2 Hydromechanics: coupling fluid diffusion and suffusion

We now focus on the fluid dissipation (42). Basically, the first term is the classical Darcy contribution:
considering a non-suffusive process say assuming φ̇er = 0 leads to the following fluid dissipation:

(

− 1

ρf
∇

X
p+

(

f − γf
)

)

·Mf
> 0 (46)
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which obviously implies the Darcy law to hold true.

Mf = K ·
(

− 1

ρf
∇

X
p+

(

f − γf
)

)

(47)

where K is the symmetrical, positive definite permeability tensor. The second term of the inequality (42)

is related to suffusion φ̇er. Let us consider a purely suffusive process (i.e. Mf = 0), the fluid dissipation
reduces to:

(

p

(

1− ρs

ρf

)

− ∂Ψs
e

∂φer

)

φ̇er > 0 (48)

To ensure the positivity of the dissipation, we can therefore state a linear relationship such that:

φ̇er = R
(

p

(

1− ρs

ρf

)

− ∂Ψs
e

∂φer

)

> 0 (49)

R being a positive suffusional admittance: the larger R, the larger φ̇er. The stationary condition is reached
when the suffusive dissipation vanishes and reads as:

∂Ψs
e

∂φer
= p

(

1− ρs

ρf

)

(50)

However, it is experimentally observed[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15] that the suffusion rate is highly
dependent on seepage forces. Indeed, equation (42) suggests to introduce a linear symmetric coupling
between the fluxes Mf and φ̇er and the corresponding thermodynamic forces to enforce the positivity of
Φf via the positive definiteness of the coupling tensor. In this way, we extend the rationale leading to
equations (47) and (49) to the case when flow and suffusion are strongly coupled. As previously done for
the uncoupled analysis, a linear relationship is assumed between fluxes and forces, in the spirit of extended
thermodynamics:

(

Mf

φ̇er

)

=

{

K C
C R

}

·







− 1

ρf
∇

X
p+

(

f − γf
)

p

(

1− ρs

ρf

)

− ∂Ψs
e

∂φer






(51)

where C indicates a coupling vector which should guarantee the determinant of the coupling tensor to be
positive. The meaning of C is a crucial point of this development. Equation (51) implies on the one hand

that the porosity variation due to suffusion
(

φ̇er
)

is driven by the gradient of fluid pressure, corroborating

previous research results[23, 24, 25, 26, 27, 28]; on other hand, the proposed law implies an effect of suffusion
on the seepage flow. In other words, the filtration vector is not only prescribed by the pressure gradient
as in the classical Darcy law but it can also be affected by suffusion effects. At this stage, we provide only
a constitutive prescription and no assumption on the magnitude of the fluxes (direct or coupled) is made.
Equation (51) seems to be a relevant starting point for future works, devoted to the identification of the
constitutive parameters. Laboratory scale experimental activities as well as multi-scale numerical modelling
could be developed.

5.3 Thermal diffusion

Regarding the thermal dissipation, the positivity is ensured using the Fourrier law Q = −κth · ∇XT , where
κth is the thermal conductivity tensor, diagonal and positive definite.
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6 A porosity-dependent plasticity model for suffusive soils

With the aim of proposing an elasto-plasticity model accounting for changes in porosity due to suffusion, we
extend the Nova “Sinfonietta-Classica” model which combines the advantages of the Cam-Clay model and the
Mastuoka-Nakai failure criterion[32]. This is a non-associated model which considers the preconsolidation
pressure pc as an isotropic hardening variable, depending on the whole plastic strain tensor εp. Similar to the
Cam-Clay model, Sinfonietta-Classica is a cap model, which means that it restricts pure compressive stress
states to finite values: if pc is the preconsolidation pressure, then for cohesionless soils, p′ ∈ ]0, pc], p′ being
the mean effective pressure. However, unlike the Cam-Clay model, Sinfonietta-Classica well captures the
behaviour of sands and soft-rocks, especially during monotonic loadings. The original Sinfonietta-Classica
model was not designed to handle porous media characterised by a degradable solid matrix. The adopted
approach can be extended to other models stated in the same spirit as the Cam-Clay model.

6.1 Flow rule, plastic potential and loading surface

We denote by T2
s the space of symmetric second-order tensors. As usual in the theory of plasticity[34], we

assume the existence of a yielding function f defined over the cartesian product T2
s × R taking values in R

f : T2
s × R → R

(σ′, pc) 7→ f (σ′, pc)
(52)

σ′ being the effective stress and pc a hardening force which in this case is represented by the preconsolidation
pressure. The subdomain of T2

s × R where f is negative is called the elastic domain S. The part of T2
s on

which the value of f is 0 is defined as the loading surface ∂S.

S :=
{

(σ′, pc) ∈ T
2
s × R | f (σ′, pc) < 0

}

; ∂S :=
{

(σ′, pc) ∈ T
2
s × R | f (σ′, pc) = 0

}

(53)

The union of S and ∂S (which is nothing else than the closure S of S) defines the subdomain of plastically
admissible states. Evolutions of the plastic strain tensor occurs for a mechanical state implying f (σ′, pc) = 0

and ḟ (σ′, pc) = 0. If one of this two conditions is not fulfilled, the strain evolution remains purely elastic.
For non-associated plasticity, which is the case of the Sinfonietta-Classica model, the evolution of the plastic
strain tensor is assigned by means of a plastic potential g:

ε̇p = λ̇
∂g

∂σ′
(54)

where λ̇ > 0 is the so-called plastic multiplier. A hardening/softening law is normally postulated for the
hardening force as a function of suitable hardening variables. For Cam-Clay based models, this hardening
law relates the evolution of the preconsolidation pressure pc to the increment of the volumetric plastic strain
and, eventually, to the increment of the deviatoric plastic strain tensor. Due to grain incompressibility,
the increment of the volumetric plastic strain indeed is representative of the increment of the irreversible
porosity φ̇p

Let p′ be the mean effective pressure such that p′ = −1/3Tr (σ′) and s′ the deviatoric part of σ′, the second
invariant of s′ is denoted J2 = s′ : s′/2; moreover we define the deviatoric stress q as q =

√
3J2. We then

introduce the stress ratio tensor ξ = s′/p′ and the stress ratio ξ = q/p′. The second and third invariants of ξ
are denoted by J2ξ and J3ξ such that J2ξ = ξ : ξ and J3ξ = 3det (ξ). As for the original Sinfonietta-Classica
plastic model, the yielding function f and the plastic potential g are:

f (σ′, pc) = 3β (µ− 3) ln
p′

pc
+

9

4
(µ− 1)J2ξ + µJ3ξ 6 0 (55a)
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g (σ′, pg) = 9 (µ− 3) ln
p′

pg
+

9

4
(µ− 1)J2ξ + µJ3ξ (55b)

where β is a non-dimensionnal quantity characterizing the deviation from associativity: if β = 3, then the
plastic behaviour of the soil is associated and normality rule holds true. The second non-dimensionnal
parameter µ is defined by µ =

(

9− Z2
)

/
(

3− Z2 + 2Z3/9
)

where Z denotes the slope of the characteristic
state line: Z = 6 sinϕ/ (3− sinϕ), function of the friction angle ϕ measured at the zero-dilatance point in
drained axisymmetric triaxial test. This line describe the transition from contractive to dilative behaviour
of the soil. From the two sides of the characteristic state line, the volumetric plastic behaviour of the soil is
different: if the stress state is such that ξ > Z then the soil behaviour is dilative, inversely if ξ < Z the soil is
contractive. The limit case being ξ = Z, in this case, the soil is plastically incompressible. The parameter pg
should be non-zero and positive but the knwoledge of its value is of no importance since only the derivative
of g with respect to σ′ is considered in all computations.
Dilatancy is defined as the ratio between the volumetric plastic strain and the norm of the deviatoric plastic
strain. According to the flow rule, it is given by:

d = − ε̇pv
‖ε̇pd‖

= −
∂g

∂σ′
: I

∥

∥

∥

∥

P :
∂g

∂σ′

∥

∥

∥

∥

(56)

where P stands for the deviatoric projection tensor such that P = I−I⊗I/3, I being the fourth order identity
tensor and ⊗ the tensorial product. In axisymmetric conditions, we reduce J2ξ to 2ξ2/3 and J3ξ to 2ξ3/9.
Then, the dilatancy reads:

d = −
2

9
µξ3 − (µ− 1) ξ2 + 3 (µ− 3)

−2

9
µξ2 + (µ− 1) ξ

(57)

6.2 Porosity-dependent hardening law and suffusion induced straining

The original Sinfonietta-Classica model assumes the following hardening law that links the variation of the
preconsolidation pressure to the plastic strain rate :

ṗc =
pc
βp

(

−ε̇pv + κ

√

ε̇
p
d : ε̇pd +̟ 3

√

det ε̇pd

)

(58)

This law introduces three non-dimensionnal parameters βp, κ and ̟: βp is a logarithmic plastic compliance
under isotropic loading, κ provides the contribution of the deviatoric part of the plastic strain rate to the
hardening. Finally, ̟ takes into account the effect of the determinant of the plastic strain on the hardening.
In many curcumstances the last coefficient can be assumed to vanish, as we will do from now-on.
The hardening law was formulated for a healty soil, i.e. a soil which was not subjected to any degradation
(e.g. chemical dissolution, internal erosion, grain crushing) involving porosity changes. In this specific case,
the grain incompressibility condition expressed in terms of the rate of irreversible changes reads as: ε̇pv = φ̇p.
Taking into account this result, we interpret the first term on the right hand side of the hardening law (58)

as the irreversible changes in the porosity and we reformulate the hardening law in terms of φp. According
to equation (37) the increment of the preconsolidation pressure reads as:

ṗc =
pc
βp

(

−φ̇p + κ ˙̄ǫp
)

(59)

This alternative formulation clearly underlines the constitutive relation between the preconsolidation pres-
sure and the variation of irreversible porosity and it consequently naturally allows to introduce the ef-
fect of porosity changes due to suffusion. Consider the rate form of the grain incompressibility condition
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φ̇p = φ̇er + ε̇pv, the hardening law becomes:

ṗc =
pc
βp

(

−φ̇er − ε̇pv + κ ˙̄ǫp
)

(60)

Equation (60) now accounts for the reduction of the preconsolidation pressure during suffusion. The conse-
quences of the above formula are not trivial: the loading surface ∂S tends to shrink towards the stress state
in the occurence of suffusion.
The hardening law expressed in terms of φp allows to integrate the expression of the preconsolidation pressure
pc.

6.3 Implication of the porosity-dependent hardening law

The implications of the envisaged porosity-dependent model can be better understood by performing a
thought experiment. Consider a granular sample on which a given effective stress σ′ is applied such that
f (σ′, pc0) < 0, pc0 being the initial value of the preconsolidation pressure. The mechanical response of the
soil is therefore fully elastic. Consider now the case that a suffusive process takes place, the preconsolidation
pressure decreases from pc0 until the loading surface reaches the stress state. During the decrease of pc, the
increase of φer is not accompanied by changes in the plastic strain, nevertheless, eventual changes in the
total strain may be involved because of the variations of the elastic strain induced by the dependency of the
stiffness tensor C on φer. Once the shrinking loading surface has reached the constant stress σ′: f (σ′, pc) = 0,
the preconsolidation pressure can no longer decrease since the effective stress state must remain plastically
admissible. Then in order to counterbalance the increase of φer, the plastic strain must evolve to hold the
condition ṗc = 0 true. The condition ṗc = 0 hence implies a relation between the components of the plastic
strain rate and φ̇er:

φ̇er + ε̇pv = κ ˙̄ǫp (61)

As a consequence of equation (61), we notice that during suffusive processes both the spherical and deviatoric
parts of the plastic strain tensor evolve. This evolution is governed by the current stress state due to the
flow rule (54).
Consider now a dense granular sample that we want to test under drained triaxial conditions. The pre-
suffusion behaviour should be similar to that of a dense sand, characterized by a peak of the deviatoric
stress q. After suffusion, the sample is less dense and behaves like a loose sand exhibiting just an asymptotic
tendency to the residual state when the drained triaxial test is driven by axial displacement. One may notice
that at this stage of the model development, no strength reduction of the residual behaviour is introduced
due to suffusion. Experimentally[17], a strength reduction is observed that concerns only the stress peak
and is due to the changes on the density state, from dense to loose.
A graphic explanation of this statement is provided in Figure (1). Let p′0 and pc0 be the value of the mean
effective pressure and the preconsolidation pressure, respectively, at the begining of a drained triaxial stress
and before suffusion. Figure (1) illustrates the maximum deviatoric stress q supported by an intact soil
sample (dashed line) and by the same sample after suffusion (solid line), with respect to the confinement
state p′0/pc0. Regarding the intact sample, below the value (p′0/pc0)

1, the soil deviatoric stress envelop is above
the locus of the residual strength of the soil (line (Ξ)). So, in this region, the soil behaviour is characterized
by a peak of strength: the soil behaves like a dense soil. Above (p′0/pc0)

1, i.e. the region “(2)” in Figure (1),
the maximum deviatoric stresses envelop corresponds to the residual strengths line (Ξ): the soil behaves
like a loose one. Considering the same initial confinement state (p′0/pc0), then due to suffusion, the value of
(p′0/pc0)

1 decreases, becoming (p′0/pc0)
1
′

. Consequently, if: (p′0/pc0)
1
′

6 (p′0/pc0) 6 (p′0/pc0)
1, the soil behaviour

changes from that of a dense soil to that of a loose one during suffusion, see Figure (1).
We underline that for drained triaxial test without suffusion, the residual strength is reached when ṗc = 0,

14



0 5 10 15
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Suffused sample

Fig. 1: Maximum stresses envelop for drained triaxial loading, for intact and suffusive soil

so the dilatancy at failure is given by:
κ ˙̄ǫp = ε̇pv ⇔ d = −κ (62)

in such a way that ultimate stress ratio ξ verifies:

2

9
µξ3 − (µ− 1) ξ2 + 3 (µ− 3) = κ

(

−
2

9
µξ2 + (µ− 1) ξ

)

(63)

So for a positive κ, the residual stress state is reached above the characteristic state line. We notice that
for the specific case of κ = 0, the soil can not pass through the characteristic state line by hardening: once
ξ = Z is reached, volumetric plastic strain does not evolve anymore and pc remains constant. Consequently,
for such a soil, the characteristic state line and the locus of residual stress states are confused.

6.4 Porosity-driven characteristic state

We now introduce a way to model a soil initially contractive becoming dilative after a suffusion process
and being subjected to a residual strenght reduction[22]. As previously said, the nature of the volumetric
plastic behaviour of the soil (i.e. dilative or contractive) is fully determined by the location of the stress
state with respect to the characteristic state line. From the two sides of this line, the volumetric plastic
behaviour of the soil is different: if ξ < Z, then the soil is plastically contractive, if ξ > Z, then the soil is
plastically dilative. The limit case ξ = Z, corresponds to the characteristic state line on which the soil is
plastically incompressible. Moreover, for any confining pressure p′, the residual strength of the soil depends
on the characteristic state line slope: the higher Z, the higher the residual strength. Aiming at modelling
the strength reduction induced by suffusion, we assume Z to decrease with the amount of the eroded mass,
which implies the phase transition angle to be φer-parametrized, say ϕ = ϕ (φer) varying from an initial value
ϕmax to a degraded one ϕmin reached once every erodible grains is detached. To construct this dependency,
we consider that during suffusion, the first group of detached particles does not take parts to the force
chains so that the friction angle does not change during the early evolution of φer. Next, we assume that a
threshold value of φer exists beyond which ϕ is strongly affected by the increase of porosity. This threshold is
supposed to be proportional to the maximum of φer i.e. φer

c = Aφer
max with 0 6 A 6 1. The following transition
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is therefore proposed:

ϕ (φer) =
1

2
ϕmin

(

1 + tanh

(

1

l
(φer − Aφer

max)

))

+
1

2
ϕmax

(

1 + tanh

(

1

l
(Aφer

max − φer)

))

(64)

where l is a non-dimensional width factor. The higher the value of l is, the smoother the transition from
ϕmax to ϕmin is (see Figure (2)). If the effective stress state is fixed, the consequence of the decrease of ϕ is
the following: when the stress state is such that ξ < Z (ϕmin), then the soil is and remains contractive during
suffusion. When the stress state is above the intact characteristic state line, i.e. ξ > Z (ϕmax), the soil is
and remains dilative during suffusion. Finally, if the stress ratio belongs to the interval [Z (ϕmin) , Z (ϕmax)]

then the soil is first contractive and can become dilative during suffusion if the amount of the eroded mass
is sufficient. From now-on, we call this region the characteristic state zone. We recall that the present
phenomenon is not interpreted as a hardening process and φer simply parametrizes Z.

0 Aφ er
max φ er

max

φ er

ϕmax

 

ϕmin

ϕ

l=0.01
l=0.02
l=0.04

Fig. 2: Friction angle at characteristic state against suffusion induced porosity

To conclude, the porosity dependent hardening law (equation (60)) enables our model to reproduce strains
variations during suffusion and the effect of the change in the density state, from dense to loose. The ϕ

parametrization, i.e. the Z parametrization during suffusion allows to model the changes in the residual
strength and governs the nature of the strain variation: purely contractive, or contractive then dilative,
purely dilative. This latter parametrization is most probably strongly influenced by the grain size distri-
bution (i.e. the initial fine content), the angularities of the grains, the direction of the seepage flow with
respect to the principal stresses directions[17], and even the fabric of each soil[18]. We recall that such a
parametrization depends on the soil type: some soils are subjected to characteristic state changes during
suffusion, whereas other soils are not. For the latter type of soils, the amount of eroded fines does not affect
the mobilized friction, so the friction angle ϕ does not change during suffusion. To model it, the hypothesis
ϕmax = ϕmin holds.

7 Numerical results

The aim of this section is to illustrate the abilities of the developed elasto-plastic model to qualitatively
reproduce the mechanical behaviour of a suffusive soil before, during and after suffusion, at the scale
of a material point. Two loading conditions are considered: drained triaxial conditions and oedometric
conditions. In what follows, we do not consider how the suffusion induced porosity evolves with respect to
time due to the hydraulic gradient and we limit our attention on a quasi-static evolution driven by suffusion,
say on a quasi-static irreversible process where the applied loading is parametrised by φer. Since the present
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study is devoted to expose the response of the elasto-plastic model we do not take into account the damage
effect introduced in section 5.1 and the elastic stiffness tensor C is assumed constant during the suffusion
process.

7.1 Drained triaxial test

With the aim of validating the model versus experimental results[17, 22], we simulated a series of drained
triaxial loading paths during which suffusion occurs at different levels of stress. Each loading paths is
separated into three steps: (i) an initial mechanical loading path, driven by the applied axial strain, ending
at a fixed value of the stress ratio ξi; (ii) a suffusion induced porosity variation at constant stress state
driven by φer which ranges between 0 and φer

max; (iii) another strain driven loading path, until the strength
of the soil is mobilized. The sets of material parameters are choosen in order to reproduce qualitatively the
results from the aforementioned experimental studies.
Several simulations are carried out for different levels of stress ratios ξi at the begining of the suffusion
process, in particular the left and the right panels of Figure 3 are relative to the case of initially dense and
initially loose erodible soils, respectively. Following experimental references in the case of a dense sample[17],
three differents loading paths have been considered, during which ξi is equal to of 0, 1.2 and 1.5. Moreover,
regarding the experimental results provided, we assume that for this material, the variations of residual
strength during suffusion is not the predominent effect, the parametrization of the friction angle by φer is
therefore not taken into account assuming ϕmin = ϕmax. For the loose sample, only one test is carried out,
during this path, ξi = 0 as in experimental references[22]. Also in this case, the set of material parameters
are deduced also from this experimental study, see Table 1. First we focus on the response of the dense

Table 1: Material parameters for the tested samples under drained triaxial conditons

Sand type E (MPa) ν β ϕmax (deg) ϕmin (deg) A l βp κ pc0 (kPa) φermax

Dense sand 4.34 0.36 1.2 41 41 - - 0.012 0 720 0.031
Loose sand 3.46 0.25 1.2 38.5 36 0.5 0.01 0.01 0 50 0.05

sample. Regarding Figure (3a) and (3c), we observe that the intact sample shows a peak strength reached
during a purely elastic phase (see Figure (3c)). In fact, the initial confinement p′0 is substantially lower than
the value of pc0, then, during the first step of the loading path (mechanical loading) the loading surface is
reached for a soil stress state slightly larger than that corresponding to the characteristic state. Once the
loading surface is reached, plastic strains occur, and the dilative character of the latter induces a softening of
the soil, explaining the post-peak behaviour. The maximum strength of the dense sample is reduced during
suffusion: as exposed in subsection 6.2, the peak strength decreases to a lower value, and for a sufficiently
large porosity change induced by suffusion, it attains the residual strength. This means that even if the
soil shows a lower maximum strength after suffusion, the ultimate mobilizable strength remains the same,
characterized by ξ = Z (due to κ = 0). The transition from the dense to the loose state is also observable in
terms of volumetric strains, see Figure (3e). As previously said, for the dense soil the maximum strength
is located above the characteristic state line and once the peak reached, the stress ratio decreases toward
the residual strenght. This softening behaviour is acompagnied by volumetric dilation so that the total
volumetric strain εv increase once the strength peak reached. Once the soil eroded, no softening occurs and
the strength increases until the residual strength is reached, which corresponds to volumetric contraction:
the total volumetric strain εv decreases until the condition of non-dilatancy is attained (i.e. ξ = Z). As a
matter of fact, since for this sample κ = 0, the stress ratio can not overwhelm the characteristic state line
through hardening and the volumetric strains remains constant once ξ = Z. Moreover, from Figure (3e),
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it can be observed that for the same axial strain level and until the characteristic state is not reached, a
soil suffused at a lower ξi will present a larger volumetric strain than a soil suffused at a higher ξi. This
phenomenon is directly linked to the shrinkage of the loading surface: since pc decreases because of suffusion,
the initially elastic material becomes elasto-plastic and hardening of the material is now required to increase
the axial strain during the post-suffusion mechanical loading. The more pc decreases, the more the hardening
needed is important. In order to fulfill this requirement, plastic contraction increases strongly during the
post-suffusion loading and so the total volumetric contraction.
Now we focus on the loose sample. This soil exhibits a hardening elasto-plastic behaviour and the ultime
strength is the residual one, characterized by ξ = Z due to κ = 0. In this case we parametrize the characteristic
state line slope with φer (see equation (64)), the value of the stress ratio at failure therefore decreases during
suffusion (see Figure (3b) and (3d)). From Figure (3d) we observe that at the same stress level, the eroded
sample exhibits a larger axial strain and a slightly lower tangent stiffness. Even if the residual strength is
decreased, the stress-strain behaviour of the soil sample does not change: it was initially that of a loose
sample, and it remains like this after suffusion. As a matter of fact, regarding Figure (3f), the volumetric
behaviour does not change significatively and the difference between the volumetric strains of the suffused
and intact samples is mainly due to the volumetric strain developed during the suffusion.
Comparing the obtained results with the experiments retrieved from the literature one can conclude that the
model is capable to reproduce two types of suffusive behaviours: (i) the transition from a dense behavior to a
loose one, characterized by the disappearance of the peak strength and by a highly contractive post-suffusion
behaviour; (ii) the reduction of the residual strength of an initially loose sample, without a radical change in
the behaviour type regarding the volumetric strains and tangent stiffness. For natural soils which may be of
a different grading from the gap-graded soils modeled in this work, these effects can occur simultaneously.
One can notice that the straight parts of the loading surfaces (for low stress levels) correspond in fact to
the tension cut-off existing in the Sinfonietta-Classica model[32]

7.2 Oedometric test

In this section we simulate the behaviour of a suffusive soil under oedometric conditions. The set of material
parameters is based on the one used to model loose sand under drained conditions (see Table 1, line 2).
The only difference being that we do not longer take into account the decrease of the friction angle due to
suffusion: ϕmin = ϕmax = 38.5◦. Starting from an initial state of stress defined by ξ = 0 and p′0 = 0.2pc0, we
apply on the intact soil a mechanical loading as a vertical strain increment ε̇a with locked lateral strain, say
in axisymmetric conditions:

εL = ε2 = ε3 = 0 (65)

Then, we start to erode the specimen from different values of ξ, considering φer as an incremental loading
from 0 to φer

max, with a constant vertical stress σa. Once the suffusion is achieved, we reload the material with
vertical strain increments, always keeping fixed the oedometric conditions. The aim of these simulations
is double: (i) to determine if the suffusion affects the current stress-strain state of the soil (ii) to evaluate
the effects of suffusion over the post-suffusion response. The results of the simulations are plotted into
Figure (4), in which Figure (4b) is the zoom of the box plotted in Figure (4a). Let us analyse the obtained
stress paths during suffusion. The stress evolution follows different paths: (i) for low levels of stress at
the beginning of suffusion, the isotropic pressure p′ decreases and the deviatoric stress q increases (i.e. ξ

increases) (ii) for high levels of stress at the beginning of suffusion, the inverse phenomenon occurs, p′

increases and q decreases (i.e. ξ decreases). We can explain this phenomenon by within the framework
of soil degradation using a similar argument as that developed to explain calcarenite degradation due to
chemical attacks[35]. Consider the expression of the dilatancy given by equation (57) and restrict attention
to the kinematics of the oedometric test. As already mentioned, during an oedometric test, the lateral
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Fig. 3: Dense and loose suffusive soils compared to intact sample - drained axisymmetric triaxial conditons
19



0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100
Initial loading surface

Intact sample

Initiation of suffusion

Suffusive response

Post-suffusion response

Post-suffusion loading surface

(a) Effective stress paths in the Cambridge plane

0 5 10 15 20 25
0

5

10

15

20

25

Initial loading surface

Intact sample

Initiation of suffusion

Suffusive response

Post-suffusion response

Post-suffusion loading surface

(b) Effective stress paths (zoom on low stress levels)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Intact sample

Initiation of suffusion

Suffusion loading

Post suffusion response

(c) Evolution of the stress ratio along the loading paths (d) Evolution of dilatancy during suffusion

3.8 4 4.2 4.4 4.6 4.8 5 5.2
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Intact sample

Initiation of suffusion

Suffusion loading

Post suffusion response

(e) Evolutions of the void index along the loading paths

0 0.01 0.02 0.03 0.04 0.05 0.06
10

20

30

40

50

60

70

80

90

100

110

(f) Evolutions of preconsolidation pressure during suffusive
loadings

Fig. 4: Suffusive soil compared to intact sample - oedometric conditions
20



ξlim ξ=Z
ξ

3/2

d

Fig. 5: Dilatancy against stress ratio for axisymmetric conditions

strains are inhibited, then:
ε̇L = 0 ⇔ ε̇pL = −ε̇eL (66)

For a sufficiently large suffusion induced porosity variation, the soil tends to reach an equilibrium at which
the stress state does not evolve anymore during suffusion. This implies the zero of the elastic strain rate.
Then the axial plastic strain rate is equal to the total axial strain rate, and from the previous relationship
we get:

ε̇pL = 0 and ε̇pa = ε̇a (67)

So the volumetric and deviatoric plastic strain rates are given by:

ε̇pv = ε̇a and ε̇pd =
2

3
|ε̇pa − ε̇pL| =

2

3
|ε̇a| (68)

As a consequence, the dilatancy d (see equation (56)) tends to 3/2 during suffusion, see Figure (4d). Due to
the axisymmetric conditions of the oedometric test, we get from equation (57) the asymptotic value of ξlim

towards which ξ asymptotically tends during suffusion. Since in axisymmetric conditions d is a continuous
and monotonically decreasing function of ξ, the evolution of ξ during suffusion depends on the stress ratio at
suffusion initiation ξi with respect to ξlim. If ξi is above ξlim, then the stress ratio decreases asymptotically
to ξlim, conversely, if ξi is below ξlim, the stress ratio increases asymptotically to ξlim as shown on Figure (5):

if: ξi < ξlim then: φ̇er > 0 ⇒ ξ̇ > 0 (69a)

if: ξi > ξlim then: φ̇er > 0 ⇒ ξ̇ 6 0 (69b)

These inequalities explain the evolution of q and p′ during suffusion: if inequality (69a) holds true, then q

increases and p′ decrease; if inequality (69b) holds true, q decreases and p′ increases. An illustration of this
evolution law is reported in Figure (4c). In practice, since oedometric conditions are representative of many
in-situ conditions, it appears that the stress in a soil-mass should evolves during suffusion.
In Figure (4e), the response of the soil is plotted in the e − log10 (p

′) plan; a kind of consolidation curve is
retrieved. The first evident effect of the increase of φer is the drastic increase in the void ratio e for sample
eroded at low stress level. The second phenomenon is the decrease of the preconsolidation-pressure just
due to suffusion, see Figure (4f). If the initial stress state is within the elastic domain, the preconsolidation
pressure strongly decreases. If the initial stress state is already plastic, the preconsolidation pressure evolves
slightly as plastic strains counterbalance the reduction of pc due to the increase of φer. Regarding Figure
(4f), the value of φer corresponding to the change of the slope of pc versus φer corresponds to the value of
φer for which the loading surface is reached by the stress state. For samples eroded at low stress ratio, we
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observe a slight increase of pc once the loading surface has reached the current mechanical state. In fact, in
order to follow the characteristic stress path imposed by the kinematic contraints (equations (68),(69a)), the
material needs hardening and pc increases consequently.

8 Conclusions

In the light of the classical poromechanics, the constitutive modelling of soils subjected to suffusion has
been revisited, and a new coupling between suffusion kinetics, fluid diffusion and mechanical behaviour has
been proposed. As a result, the rate of suffusion induced porosity depends on the hydraulic gradient, and
the mechanical state of the skeleton. An elastoplastic model accounting for the mechanical consequences
of suffusion has been established by introducing the porosity induced by suffusion into an existing elasto-
plastic model (the Nova Sinfonietta-Classica model). The extended model allows to reproduce the stress
strain behaviour of dense and loose gap-graded soils, under monotonic drained triaxial test, coupled with
suffusion. The loss of density as well as its mechanical consequences are recovered. By parametrizing the
characteristic state line slope with the porosity change due to suffusion, the decrease of the residual strengh
of loose suffusive soils is modelled. Moreover, the response of suffusive soil under oedometric conditions has
been predicted. During suffusion, the stress state of the soils evolves, converging toward a value that enforce
the dilatancy to 3/2. The numerical simulations have been performed at the scale of a material point, which
is expected to be a Representative Elementary Volume. Consequently, the presented numerical results do not
take into account the heterogeneity induced by suffusion in real samples and reported in the literature. To
reduce this lack of representativity and model the suffusion consequences at the scale of an earth structure,
further works will concentrate on the implementation of the whole model into a finite element code. Further
developments will be also devoted to (i) the validation of the coupled model thanks to multiscale analysis
and to (ii) the calibration of the constitutive parameters.
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