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Abstract—The proliferation of sophisticated applications and
services comes with diverse performance requirements. The 5G
cellular network is advocated to support this diversity through
an end-to-end network slicing. Even though the slicing is not
a novel concept, its implementation in the RAN still remains
challenging. In this article, we aim to enforce the real time 5G
slicing from radio resources perspective in a multi-cell system.
For that, two exact optimization models are proposed. Due to
their high convergence time, three heuristics are developed and
evaluated with the optimal models. Results are promising, as two
heuristics are highly enforcing the real time RAN slicing.

Index Terms—Radio Access Network (RAN), RAN Slicing, 5G,
Optimization, Resource allocation.

I. INTRODUCTION

The tremendous growth of services and/or applications
demand is increasing over the years with diverse QoS (Quality
of Service) requirements. 3GPP and other organizations aim
to support this variety of services requirements through 5G
system with a service-based architecture.

Network slicing is considered as one of the pillars to
enable such architecture where each Mobile Network Op-
erator (MNO) shares its physical infrastructure with several
tenants as slices, such as automotive and health-care industries.
Thus, each slice has a business service with certain QoS
requirements. The fulfillment of the envisioned network slicing
approach involves high flexibility and programmability of
5G network. To that end, virtualization and softwarization
based solutions have been nominated, mainly NFV (Network
Function Virtualization) and SDN (Software Defined Network)
based solutions. The former allows flexibility of NFs via
virtualization, and the latter separates the control from the user
data functions with a centralized controller. Several prototypes
based on NFV and SDN have been proposed to address the
Core (CN) [16] and Radio Access Networks (RAN) [7] slicing.
The SDN implementation at the RAN part is referred by SD-
RAN (Software Defined RAN).

Nevertheless, the enforcement of RAN slicing still attracts
the academy and industries researchers attention, as maintain-
ing slices isolation with efficient use of radio resources is a
challenging task. In fact, The scarcity of radio resources ensues
the infeasibility of resources over-provisioning already used
in the CN. Hence, the wireless resource allocation needs to
meet the service requirements for each slice regardless the
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channel conditions or network congestion, while efficiently
using the scarce available resources. Moreover, isolation must
be sustained over the different network levels. Particularly, the
outage performance of one slice, i.e. congestion, attack or QoS
degradation, should not impact negatively the other available
slices in the network.

Further, it is based on the slice performance requirements,
the traffic demand and the channel/network conditions, the
amount of the slice required resources should be decided. This
is known by resource slicing policy. The implementation of
such policy (i.e. resources allocation) has to respect the RAN
slicing requirements formulated and summarized as follows:
• Orthogonality (resource isolation): it must be guaranteed

between slices. Each radio resource, in terms of time and
frequency, must be allocated to only one slice to avoid
interference, thus, ensuring the slice isolation at the radio
resource level.

• Satisfaction: each slice has to be allocated the amount of
assigned resources based on the slicing policy, i.e. for a
given slice assigned 25 radio resources, it should receive
approximately the amount of 25 radio resources, without
excess. This way the slice demand is satisfied and each
slice uses fully its resources.

• Scalability: the MNO should be able to scale up/down
the slice allocated resources with respect to the network
conditions and slice demand variation. Moreover, as the
slices are created dynamically and on-demand, the radio
resource model should allow the MNO to serve new slices
requests. This can be achieved through the reuse of the
unallocated resources during the allocation window.

• Cooperation enabling: the 5G advanced radio techniques
such as IBSPC (inter-base station power control) and
CoMP (coordinated multi-point) involve a tight coop-
eration between the base stations (i.e. gNBs in case
of 5G) to achieve their objective [13]. As the RAN
slicing imposes the slices resources orthogonality, the
activation of the appropriate technology is based on the
slice performance requirements and SLA. The slices radio
resources allocation should therefore ease the deployment
of these advanced technologies for each tenant.

The achievement of these requirements is considered as a
RAN slicing enforcement problem. In this article we focus on
its resolution in the context of 5G system at radio resources
level as it still remains under-explored. For that, resources allo-



cation strategies are proposed as to achieve the aforementioned
RAN slicing enforcement requirements.

Further, the remaining of this paper is organized as follows.
The RAN slicing enforcement problem is covered in section
II with the major 5G elements used in this article. The related
work is reviewed in section III. Section IV exhibits the system
design and the proposed models. The developed models are
uncovered to converge slowly as evaluated in section V. They
then limit the RAN slicing enforcement for real time scenarios.
Therefore, we propose in Section VI three heuristics that
enforce the real time slicing. Then, a comparison of the three
algorithms performance with respect to the optimal values
given by mathematical models is conducted in section VII.
Finally, section VIII concludes this paper with open issues
and future work.

II. RAN SLICING ENFORCEMENT PROBLEM

This section covers the important 5G terminologies required
for the exhibition of the RAN slicing problem. Mainly, the 5G
radio resources structure is presented. Then, the RAN slicing
enforcement problem is explained and the required allocations
strategies to achieve the above-mentioned requirements are
highlighted.

A. 5G background

In 5G system, the physical layer is more flexible with
respect to the previous generations. Recall that radio resources
in 4G are uniformly distributed over a time-frequency grid, i.e.
the later is decomposed to resource blocks (RB) of 1 ms over
12 sub-carriers spaced by 15 kHz.

In order to fulfill the variety of services requirements,
increase the network reliability and adapt to frequency range,
5G introduces different radio frames numerologies for sub-
6 GHz and above-6 GHz bands. In this article, we focus on
the sub-6 GHz bands. The same developed approaches can
be easily applied for bands above-6 GHz. Table I exhibits
the different numerologies for sub-6 GHz bands. Each given
numerology µ1 defines the time-frequency resource size in
one Transmission Time interval (TTI), TTI=1ms. That is,
a numerology µ refers to the sub-carrier spacing (SCS) in
frequency domain and the slot duration in time domain. For
instance, as depicted in fig. 1, for µ = 1 the radio resource
size is fixed to 0.5 ms over 12 sub-carriers spaced by 30
KHz. In general, the SCS scales by 2µ ∗ 15kHz and the
slot duration decreases with higher numerology (µ). Such
flexibility is essentially introduced as to achieve the diverse
services requirements. For example, it is preferable to transmit
latency sensitive services in shorter time interval with larger
sub-carrier spacing, e.g. µ = 3.

In order to support the coexistence of the multiple nu-
merologies on same carrier, the resources are structured in the
so-called tiles [5]. The tile is the smallest subset of frequency
and time resources allocated to a particular slice/service with
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µ SCS (kHz) Slot duration
(ms)

0 15 1
1 30 0.5
2 60 0.25

TABLE I: 5G Radio frames numerologies for sub-6 GHz bands

same numerology µ. Hence, for sub-6 GHz three tiles struc-
tures are tailored as shown in fig. 1. For instance, the tile
structure for µ = 0 is 1 ms over 12 subcarriers spaced by 15
KHz. Further, multiplexing over time and frequency is required
for the transmission of the different numerologies, e.g. over
time 3GPP imposes symbol alignment between tiles to insure
orthogonality.

Fig. 1: Sub-6 GHz numerologies

B. Problem Formulation

The enforcement of 5G RAN slicing approach rises many
requirements, as indicated in section I, mainly scalability,
orthogonality, slices satisfaction and easing the inter-base
stations cooperation. In the following, resources refer to the
radio resources.

To tackle the scalability requirement, the RAN should be
more flexible about the radio resources allocation. With that
vision, the RAN slicing enforcement algorithms should allo-
cate resources in a way leaving the largest unallocated portion
of resources, instead of sparse unallocated resources. This
objective is illustrated in fig. 2. Two time-frequency resource
grids are schematized as to explain the difference between an
optimal (b) and sub-optimal (a) resource allocation for slices
requests in 5G context. Each slice demands a different amount
of resources with specific numerology, i.e. a number of tiles.
Even though both allocations (a) and (b) satisfy the four slices
requests during the allocation window T , it is clear that the
allocation strategy in (a) is sub-optimal compared to (b). In
fact, the old fashioned resource allocation strategies might lead
to inefficient resource utilization. As 5G proposes a variety of
tiles structures, such allocations induce a quite small sparse
unallocated resources over the resource grid, as represented
in fig. 2 (a). Those small leaved resources are considered as



wasted as they don’t fit any tile structure. Only, the small
continuous unallocated portion of resources is then reused by
the MNO. In contrast, the allocation strategy in (b) results in
a large unallocated portion of resources. Hence, it allows the
MNO to further reuse the unallocated resources in an efficient
manner, as different tiles structures could fit in this portion.
Thus, it enables the scalability requirement and increases the
resource utilization efficiency.

(a) Sub-optimal allocation
(small continuous
unallocated area)

(b) Optimal allocation
(large continuous
unallocated area)

Fig. 2: Optimal and sub-optimal resource allocation

On the other hand, 5G strategies rely on a tight cooperation
and coordination among different BSs in the network. There-
fore, the RAN slicing enforcement algorithms should also
guarantee the allocation of the same radio resources over time
and frequency to the same slices among the adjacent BSs, i.e.
BSs close enough to interfere. Such allocation eases not only
the deployment of 5G advanced techniques such as MIMO and
beamforming, but also the transmission schemes for inter-slice
interference mitigation. Thus, it improves the overall network
performance. Through experimentation, D’Oro et al [4] proved
the ability of such allocation to double the network throughput
compared to a random allocation. Fig. 3 illustrates the above
point. It schematizes two radio resource allocations on two
adjacent BSs (BS1 and BS2), close enough to interfere. On
scheme (a), the resources are allocated to each slice on a given
BS independently of the adjacent BSs allocation. Hence, Even-
though the same slices exist on the two BSs, they are allocated
different time-frequency resources portion. For instance, while
slice 3 is allocated the left lower resources portion on BS1,
the same portion on BS2 is allocated to slice 2. Therefore,
an inter-slice interference is observed between slice 2 and
slice 3. Contrarily, on fig. 3 (b), each slice owner manages the
same time-frequency portion of resources on both BSs. Hence,
inter-slice interference is absent. Also, the slice owners have
more flexibility to mitigate intra-slice interference and enable
the advanced 5G techniques. Further, clearly the allocation
strategy in (b) is optimal for the RAN slicing enforcement
in 5G compared to the traditional allocation approach in (a),
where each BS allocates its resources independently from the
adjacent BSs. That is, the RAN slicing enforcement requires
a coordinated resources allocation over adjacent BSs.

We argue that the combination of both allocation strategies
allows the realization of the aforementioned requirements for
the RAN slicing enforcement. For that, we investigate the

Fig. 3: Resource allocation for inter-slice interference mitiga-
tion

optimization of such strategies in the upcoming parts.

III. RELATED WORK

In the context of RAN slicing, resource management and
orchestration have received significant interest from the re-
search community. Many frameworks [3], [6], [7] have been
proposed to deal with the high level wireless resource or-
chestration and management. While the proposed approaches
are effective in resource control and orchestration, they might
lack effectiveness for fine grained control scenarios, where
performing and enabling advanced 5G transmission techniques
are required. Also, a major challenge with these frameworks
is the efficient resource allocation while preserving the radio
resources isolation.

Recently, researches have converged to enforce the RAN
slicing from a resource allocation aspect. To overcome the
static resources segmentation limitations, shared allocation
strategies are proposed [20], [15], [1]. For instance, B.Han
et al. [1] propose the use of Genetic algorithm to opti-
mize resource management between heterogeneous slices with
maximized long-term network utility. Although the proposed
methods gain in terms of multiplexing, they lack of pro-
grammability and resources isolation aspects, that allow each
tenant to manage its resources independently. By introducing
resources virtualization, Chang et al. [2] formulate the problem
as a knapsack problem. An algorithm is proposed to maximize
the number of accepted slices with an efficient 5G resource
partitioning. Nevertheless, all of the above-mentioned contri-
butions consider a network with only one BS, which limits
the deployment of their approaches in a multi-BS network,
where each tenant requires a different amount of resources on
each BS, based on the channel condition and the number of
connected users. Moreover, the inter-cell interference is not
addressed, i.e. cooperation enabling requirement.

Few work has been done in multi-BS system. Netshare [14]
and AppRAN [10] frameworks are based on a centralized



controller that decides the amount of resources to be allocated
for each tenant on each BS. Then, the slice resources allocation
is executed on each BS. Thus, the systems ensure isolation at
best from packet-level. Also, they didn’t take the RAN slicing
cooperation enabling requirement in their approaches.

On the other hand, the contribution in [17] sheds light on
four approaches for the radio resources management from
multi-cell multi tenant perspectives. Although, the fine grained
resource management is covered to mitigate inter-slice inter-
ference, they didn’t propose any algorithm to enforce their
approach. D’oro et al. [4] proposed an algorithm to enforce
the RAN slicing policies with interference mitigation. This
is enabled through guarantying that the same (or similar in
time/frequency) resource blocks (RB) are assigned to the same
slices when BSs are close enough to interfere among them-
selves. Although, their approach is efficient from interference
mitigation perspective in 4G networks, it might be ineffective
in resource utilization in the 5G system with the presence of
different numerologies.

Our work differs in that we tackle the RAN slicing en-
forcement in a multi-cell multi-slice perspective adapted to
5G system. We propose a new formulation of the RAN slicing
enforcement problem that handles the slicing requirements in
terms of orthogonality, scalability, satisfaction and cooperation
enabling.

IV. SYSTEM DESIGN AND MODEL

Considering the RAN slicing requirements to achieve the 5G
objectives, we proceed to the system design of this work. It
highlights the 5G RAN vision where the RAN is controlled in
a centralized manner. This is crucial, as a cooperation between
BSs is required for a global resources allocation. Moreover,
the presence of the flexible resources structures involves a fine
grained resource management. Therefore, the resource grid
decomposition is exhibited. Further, we investigate the pos-
sibility of deploying the already discussed optimal allocation
strategies. System models are then depicted.

A. System design

Let consider a set of BSs covering a geographical zone.
The 5G base station (BS) is named gNB. The gNBs cluster is
controlled by a centralized SD-RAN controller, as illustrated in
fig. 4, noted R. This is essentially due to the high cooperation
level required between the gNBs. The SD-RAN controls the
RAN traffic, e.g. it receives the slices demand on each gNB
(5G Base station) and all the RAN signaling information. We
assume that SD-RAN copes with the scheduling and radio
resources allocation over the specific zone. With the advanced
implementation of intelligence in the radio part, the estimation
of the slice demand traffic is possible [18]. On the other hand,
several researches have been interested in the slicing profile
generation, i.e. the slice demand and resources assignment [7],
[9]. Therefore, the slicing profile is considered as an input
argument for our system.

Furthermore, we propose to take advantage of the RAN
intelligence in the 5G and the upcoming cellular networks to

build a proactive allocation system for slices resources. For
instance, with the pre-knowledge of the slices demand over the
gNBs set, the SD-RAN proposes a resource allocation for the
upcoming 10 ms, which corresponds to the frame duration in
current cellular networks. This has the advantage to minimize
the signaling exchange between the SD-RAN controller and
the gNBs over the cluster.

On the other side, with the different tiles structures proposed
by the 5G, an efficient resource management involves a fine
grained access to the resources. Therefore, we put forward a
new scheme for the resources grid decomposition as explained
in the following.

Fig. 4: System design

Fig. 5: Resource grid de-
composition

1) Radio resources grid decomposition:
With the diverse services flows and the increasing demand
of cellular traffic, the 3GPP emphasizes the importance of
treating the 5G radio resources differently from the earlier
standards. For that, it introduces different numerologies on
each frequency band. Each numerology is efficient for a
specific service flow, particularly, the µ = 2 is much required
for services with low latency. In the same perspective, we push
this flexibility a step forward, and propose to handle the radio
resources at small time and frequency granularities.

To that end, each gNB is entitled by its resource grid.
With the variety of numerologies, we consider a resource
grid decomposed into the smallest granularity in time and
frequency. For instance, for the sub-6 Ghz bands, where µ
can take values in {0, 1, 2}, the smallest resource block (sRB)
is of size 180 kHz*0.25 ms. Fig. 5 illustrates a decomposition
for a small resource grid of 1 ms over 1.4Mhz. Three tiles
structures are considered. Namely, the tile structure for a given
slice with µ = 1 is a square of 2*2 sRBs.

The proposed resource grid decomposition allows a fine
grained manipulation of the available resources, as they are
shaped based on the slices numerologies requirements. More-
over, this decomposition results in an efficient control and
management of the scarce radio resources. Also, it eases the
way for the tight cooperation required by the 5G advanced
techniques.

2) Objective formulation: Given the SD-RAN controller of
a given zone, each gNB is characterized by its decomposed
radio resource grid. For a specific allocation window, each
slice is assigned an amount of tiles on each gNB over the



RAN and the SD-RAN proposes an allocation for the slices
tiles taking into account both of the following objectives:

The first objective aims to maximize the placement of the
tiles in the resource grid with respect to the BSs set, i.e.
the maximization of the number of allocated tiles in the
same or similar position (time/frequency), for each slice, over
the gNBs set. This is because of the tight cooperation and
coordination involved over the RAN for the 5G advanced
techniques deployment as explained in fig.3.

Moreover, while allocating the slices tiles, an efficient radio
resources utilization in each gNB is required. The latter could
be achieved by an allocation that minimizes the sparse wasted
unallocated resources. Or from another vision, maximizes the
largest continuous unallocated resources space of each re-
source grid. Such allocation allows the MNO to scale up/down
slices demand and also accept new slices requests (i.e. scalabil-
ity) through reusing the largest unallocated resources portion.
Thus, the objective is implicitly multi-objective.

This multi-objective allocation strategy, combining space
and position optimization, assures an enforcement of the
RAN slicing. In order to reach the optimal solution of this
multi-objective problem, we propose to attain the optimal
solution for each objective separately. Then, three heuristics
are depicted for simultaneous resolution.

B. System Model

Let denote B = {b1, ..., bnb
} the cluster/set of nb gNBs

covering a geographical area. Notice that the gNB might offer
a macro as well as small cell coverage. They are controlled
by a centralized SD-RAN (Software Defined RAN) controller
R, as illustrated in fig. 4. The multiple gNBs are adjacent
to cover efficiently the geographical area. Such adjacency is
highly vulnerable to interference.

Let us consider that R receives ns slices requests to be
served simultaneously during the allocation window T , S =
{s0, s1, ..., sns

}. Based on the slices requirements on each BS
(gNB), R generates the slicing profile Γ = (γµsi,k)si∈S,k∈B ,
with γµsi,k is the amount of tiles to be allocated to slice
si in BS bk with numerology µ during T . Each slice si is
supposed to have the same numerology over R, but requests
a different amount of resources on each gNB. The slicing
profile Γ is considered as an input argument in our system
model. Therefore, once it is generated, it is primary to test
its feasibility before the allocation process. In other words, a
verification step of the possibility to allocate all the assigned
slices resources in the appropriate gNB resource grid. In the
following, we propose an exact method with an underlying
constraint programming (CP) approach to test the slicing
profile feasibility and tiles placement objective. This is because
the CP eases the resolution of discrete problems through high
level constraint propagation and controlled search behaviors
[19]. A constraint problem is stated as a set of variables,
where each variable has a finite domain of values, and a set
of relations on subsets of these variables.

1) Slicing Profile Feasibility Model (SPFM): Let gk =
(rk,x,y)0≤x≤Nr,1≤y≤T be the matrix representing the resource

grid of gNB bk, k ∈ {0, .., nb}, with T and Nr represent the
number of temporal slots (0.25 ms) and frequency channels
of 180 kHz respectively, i.e. rk,x,y symbolizes the sRB in
gNB bk in position (x,y).2 The resource grid size is therefore
A = Nr.T .

A slicing profile Γ is considered as feasible, if all the tiles
assigned to a group of slices on a given gNB bk can be allo-
cated over gk without any overlapping, for all k ∈ {0, .., nb}.

Let ζsi = {τj for j ∈ {0, .., γµsi,k}∀bk ∈ B} be the set
of tiles requested by slice si over B. Each tile has a form of a
rectangle based on the slice numerology (see fig. 5). From that,
we represent each tile τj of slice Si in gNB bk by two interval
variables Xbk,si,j and Ybk,si,j . They refer to the tile allocation
over frequency and time axis respectively. The length of the
intervals is fixed as to reproduce the rectangle form of the
tile. Particularly, if the tile τj corresponds to a slice resource
with µ = 2, the length of Xbk,si,j and Ybk,si,j are fixed to
4 sRBs and 1 sRB respectively. Therefore, a non overlapping
between two tiles τj and τh on a given gk refers to their non
overlapping over X and Y axis, i.e. Xbk,si,j ∩ Xbk,si,h = 0
and Ybk,si,j ∩ Ybk,si,h = 0.

Let αjx,bk , αt
j
i

y,bk
be the variables referring to the starting

point of the two intervals Xbk,si,j and Ybk,si,j respectively.
And βjx,bk , βjy,bk point out their ends. The SPFM can be
therefore formulated using CP approach as follows:

αjx,bk ≤ Nr ∀bk ∈ B ∀j ∈ ζsi ∀si ∈ S (1)

αjy,bk ≤ T ∀bk ∈ B ∀j ∈ ζsi ∀si ∈ S (2)

(αjx,bk ≥ β
r
x,bk
∨ αrx,bk ≥ β

j
x,bk

)∧
(αjy,bk ≥ β

r
y,bk
∨ αry,bk ≥ β

j
y,bk

) ∀r, j ∈ ζsi ∀bk ∈ B
(3)

The constraints 1 and 2 limit the allocation bounds of each
tile over both X and Y axis respectively. Then, the second
constraint 3 ensures the allocation of the required slices tiles
on each gNB without any overlapping between two tiles. This
way the model is feasible when all the slices demand in a
given gNB are allocated to the appropriate resource grid.

For feasibility model (SPFM) implementation, the IBM
CPOptimizer constraint programming solver IBM ILOG
(CPO)3 is used. It provides a high level scheduling constraints.
The allocation of tiles taking into consideration the constraint
3 can be directed by the searchPhase function. It guides the
search for positions over X-axis and Y-axis for each tile with
respect to non-overlapping constraint. Let V Xk denotes all the
interval variables over X-axis representing the tiles assigned
for the allocation on bk, and V Yk the ones over Y-axis. The
use of searchPhase is therefore writen as:

SetSearchPhases(searchPhase(V Xk),

searchPhase(V Yk)) ∀bk ∈ B
(4)

2In this work, the sub-6 GHz band is treated, but it can be extended easily
to the above-6 GHz band, where the sRBs will be of size (1440 kHz*62.5µs).

3CPLEX Optimization studio 12.9 www.cplex.com



Once the SPFM is verified and the slicing profile is feasible,
a RAN slicing enforcement policy Ψ is required to fulfill the
requirements depicted in section I. It should lead to an optimal
radio resources allocation over the bnb

gNBs.
As stated earlier, the problem is treated as a Multi-Objective

Optimisation Problem (MOOP). One objective carries the
maximization of slice’ tiles placement in the same frequency-
time position in the resource grid of the adjacent BSs. Then,
the other objective deals with the maximisation of the largest
unallocated continuous portion of radio resources on each
gNB. In the following, the radio resources placement objective
is modeled with an exact optimization method. And, the
approach followed to carry the largest continuous unallocated
space during the resources allocation is explained.

2) Enforcement of Slice Resources Placement (ESRP):
The policy Ψ has the objective to maximize the tiles placement
of a given slice in the same position over the set of gNBs, B.
For that we introduce the notion of tied tile.

Definition 1 (Tied tile): A given tile τj is tied to a slice si
over a set of gNBs B if and only if the tile τj is placed in the
same position over all the gNBs in the cluster B, i.e. τj has
the same frequency and time position on each gk, ∀bk ∈ B

Each tile τj of slice Si in gNB Bk is represented by two
interval variables Xbk,si,j and Ybk,si,j as explained in IV-B1.

With αjx,bk , αt
j
i

y,bk
are the variables indicating the starting point

of the two intervals Xbk,si,j and Ybk,si,j respectively, and
βjx,bk , βjy,bk their ends. With that, a tile is tied if and only
if αjp,bk = αjp,bk′ and βjp,bk = βjp,bk ∀bk ∈ B, p ∈ {x, y}.

In other words, a tile of a given slice is tied if all its sRBs
are allocated in the same position over the set of involved
gNBs, i.e. gNBs where tile τj is present, as the slice demand
varies over the gNBs. Consequently, we introduce the concept
of tied sRB:

Definition 2 (Tied sRB): A given sRB rk,x,y is tied to a slice
si over B if and only if the sRB is allocated to the same slice
over each gNB in B, i.e. (xk, yk) = (xk′ , yk′) ∀b ∈ B.

Even though the allocation is performed per tile, it is clear
that the maximization of the amount of tied tiles for all the
slices turns out to the maximization of the total amount of tied
sRBs. Accordingly, we model mathematically the system as to
maximize the total amount of tied sRBs. We have conceived
two ways to model this objective. Both model versions are
depicted in the following. It is in fact interesting to compare
their scores as to find the best optimal model. Notably, the
convergence time that is considered as a pivotal performance
metric for each model implementation.
• ESRP model version 1 (ESRP-v1)

For a given tile τj of si, let denote θj the amount of its
tied sRBs over B. As each tile τj is symbolized by two
interval variables on each gk, Xbk,si,j and Ybk,si,j , θj
corresponds to the overlap length between both intervals

over all the involved gNBs. It can be formulated as
follows:

θj = Πp∈{x,y}(Ψ
j
p −Υj

p)

Where Ψj
p = min

∀bk∈Bj

βjp,bk and Υj
p = max

∀b∈Bj

αjp,bk ,

p ∈ {x, y}, identify the start and end position of the
overlap between the rectangles over the involved gNBs
over both frequency and time axis. It is worth noting
that the overlap score between two intervals I1 and
I2 is given by the CPO function OverlapLength, i.e.
OverlapLength(I1, I2). By way of illustration, let us
consider the allocation over two gNBs of tile τj with
µ = 2 as shown in fig. 6. Let suppose that both tiles
have the same y-axis position. The amount of tied sRBs is
exactly the surface of the overlap between the τj in gNB
b0 and τj in gNB b1. The starting point of this surface
over each axis can be computed by max(αjp,b0 , α

j
p,b1

)

and the end position by min(βjp,b0 , β
j
p,b1

). On the X-axis,
they are equal to αjx,b0 and βjx,b1 respectively. Thus, it
represents two sRBs, i.e. θj = 2. That is, two sRBs are
tied between the two gNBs.
Therefore, the total tied sRBs for a given slice si over B
is given by:

Θsi =
∑
j∈ζsi

θj

Further, the total tied sRBs over B can be expressed as
the summation of the total tied sRB of each slice over
B: χ =

∑
si∈S Θsi

The objective is then formulated as to choose the slicing
enforcement policy that maximizes χ. It is developed with
a constraint programming (CP) approach as the SPFM
(section IV-B1) resolution. In the CP implementation,
the constraints are explicitly stated to shape the aimed
solution, i.e. in this case the maximization of χ.

max
ψ∈Ψ

(χ) (ESRP-v1)

subject to

αjx,bk ≤ Nr ∀bk ∈ B ∀j ∈ ζsi ∀si ∈ S (5a)

αjy,bk ≤ T ∀bk ∈ B ∀j ∈ ζsi ∀si ∈ S (5b)∑
j∈ζ

θj ≤ γµsi,k ∀k ∈ B ∀si ∈ S (5c)

αjx,bk ≥ β
r
x,bk
∨ αrx,bk ≥ β

j
x,bk
∧

αjy,bk ≥ β
r
y,bk
∨ αry,bk ≥ β

j
y,bk
∀r, j ∈ ζsi∀bk ∈ B

(5d)

Ψj
p ≥ Υj

p ∀p ∈ {x, y} ∀τj ∈ ζsi ∀si ∈ S (5e)

The constraints (5a) and (5b) ensure that all the allocated
tiles are inside the resource grid, i.e. the allocation doesn’t
outpace the gNB grid limits on both frequency (5a) and
time (5b) axis. The second constraint (5c) guarantees that
each slice receives at maximum its required amount of
tiles over each gNB. Then, the constraint (5d) addresses



the non overlapping between tiles on the same gNB,
i.e. each sRB is allocated at maximum to one slice.
Hence, the slices orthogonality is achieved (i.e. resource
isolation). Then, the last constraint (5e) assures the non
negativity of each tied sRB surface.

Fig. 6: Illustration of tied sRBs of a tile between two gNBs

• ESRP model version 2 (ESRP-v2)
In this ESRP version, in order to get the tied sRBs of
a given tile τj over a gNBs set, we propose to add its
overlap over both axis X and Y taking into account the
numerology type. In other words, let denote ξj the total
tied sRBs of a tile τj over a set of gNBs. It is expressed
by:

ξj = [
∑

p∈{x,y}

(Ψj
p −Υj

p)]− δ

With Ψj
p = min

∀bk∈Bj

βjp,bk and Υj
p = max

∀b∈Bj

αjp,bk , p ∈
{x, y}. δ is a binary variable, δ ∈ {0, 1}, it equals 1 when
the tile numerology is µ = 0 or µ = 2, and 0 otherwise. In
fact, ξj refers to the tied sRBs surface computed without
multiplication.
Further, for a given slice, the total tied sRBs (TTR) over
B can be expressed by: Ξsi =

∑
j∈ζsi

ξj
With ζsi is the set of tiles requested by si over B. Thus,
the total amount of tied sRBs over all B is formulated
by:

Φ =
∑
si∈S

Ξsi

The slicing enforcement policy that maximizes Φ is
formulated as follows with CP resolution approach:

max
ψ∈Ψ

(Φ) (ESRP-v2)

subject to

αjx,bk ≤ Nr ∀bk ∈ B ∀j ∈ ζsi ∀si ∈ S (6a)

αjy,bk ≤ T ∀bk ∈ B ∀j ∈ ζsi ∀si ∈ S (6b)∑
j∈ζ

ξj ≤ γµsi,k ∀k ∈ B ∀si ∈ S (6c)

αjx,bk ≥ β
r
x,bk
∨ αrx,bk ≥ β

j
x,bk
∧

αjy,bk ≥ β
r
y,bk
∨ αry,bk ≥ β

j
y,bk
∀r, j ∈ ζsi∀bk ∈ B

(6d)

Ψj
p ≥ Υj

p ∀p ∈ {x, y} ∀τj ∈ ζsi ∀si ∈ S (6e)

Ψj
x −Υj

x ≥ 0⇔ Ψj
y −Υj

y ≥ 0∀τj ∈ ζsi ,∀si ∈ S (6f)

The constraints (6a) and (6b) ensure the allocation inside
the gNB grid limits. The constraint 6c assures that each slice
receives at maximum its required amount of tiles over each
gNB. Furthermore, the orthogonality between slices is ensured
by the constraint (6d), i.e. each sRB is allocated to only one
slice. Then, the non negativity of each overlap either over X
or Y axis is verified by the constraint (6e). Further, the last
constraint assures that the model looks for the overlapping
over X axis as well as over Y axis. This way, the tied sRB
surface is realized.

3) Largest Continuous Unallocated Space (LCUS): The
second objective targets the maximization of the continuous
unallocated space on each gNB resource grid gk, k ∈ B. For
that, the problem is tackled as a two-dimensional rectangle
bin packing (2DBP) optimization problem. In such problem,
given a sequence of rectangular objects with specific height
and width, the objective is to place the maximum of these
objects inside a minimum bins of fixed size. With constraint
of no-overlapping between the rectangles. The NP-Hardness
of this problem is proven by a reduction from the 2-partition
problem [8].

Let project the 2D bin packing to the context of the resource
allocation with LCUS objective. In our case, the rectangular
objects to pack in the bins are the slices tiles with their specific
numerologies µ. Each tile τj has a form of a rectangle based
on the slice numerology. Particularly, the tiles of a given slice
with numerology µ = 2 have a rectangular form of width and
height equal to 4 and 1 respectively. Each gNB decomposed
resource grid gk is represented by a bin. It is supposed that
the bins have the same size over all the gNBs set B, i.e. ∀k ∈
B size(gk) = A. Only one bin is available for the packing
for each gNB. Its size is exactly the size of the resource grid in
terms of time and frequency resources, i.e. allocation time over
the carrier bandwidth. This can be considered as Knapsack use
case problem of 2DBP.

The Knapsack problem is argued to be NP-hard. The
achievement of the LCUS objective is then also NP-hard.
Over decades, the research is focused on the development
of efficient heuristic algorithms that approximate the optimal
solution for 2DBP. Hence, several algorithms are proposed in
the literature. They include the Skyline algorithm proposed
in [12]. It starts by placing the first rectangle object in the
bottom left (BL). Then, each new rectangle object is left-
aligned on top of the skyline level that results in the top side
of the object lying at the bottom-most position of the bin.
The topmost edges of already packed objects is tracked as
illustrated by the red line in fig. 7. The example shows the
packing of 6 tiles with µ = 1 and 5 tiles with µ = 0 using
the skyline algorithm. The algorithm then maintains the list
of these horizons or ”skyline” edges. The later grows linearly
in the number of the packed rectangle objects. And for each
rectangle packing top of a hole, it is possible and easy to
compute the free rectangle that would be lost after packing.
Thus, it is stored and evaluated for an aforementioned use.
Such approach is referred as a waste map (WM) improvement
for the skyline (BL) heuristic.



Fig. 7: Illustration of Skyline algorithm packing 3 slices tiles

The authors tested a benchmark of 2DRP heuristics and
variants of the skyline algorithms. They proved that skyline-
BL-WM outperforms all the best tested online packers, in
terms of packing efficiency as well as the run-time perfor-
mance, when packing to one bin at a time. As the algorithm
packs the objects in a way to minimize the wasted space
between the packed objects, it results in letting the largest
unallocated space. Therefore, the skyline-BL-WM heuristic is
chosen to approximate the LCUS solution. Mainly for two
reasons:
• The algorithm is highly performing in both time con-

vergence and packing efficiency on one bin. This cor-
responds to the use case of this work, i.e. each gk is
represented by one bin and the allocation is allowed only
in this bin.

• The algorithm approach seeks to pack the objects (tiles)
as to have the lowest skyline (contour). This is ad-
vantageous, as we are seeking to let the maximum of
unallocated space over time axis. Hence the bottom could
be chosen as the frequency axis. The skyline is then
aligned over time as shown on fig. 7.

The Skyline heuristic approximates the LCUS solution.
Thus, there is a need to evaluate its performance. For that,
an optimal score is necessary. In this work, the naive method
that encounters the LCUS topmost upper bound is used, as
depicted in the following. It is therefore considered as the
optimal LCUS solution.

+LCUS topmost upper bound (LTUB): On a given
resource grid gk, k ∈ B, the topmost LCUS upper bound can
be achieved when all the tiles of all the slices are allocated
without overlapping and with no space left in between, i.e.
non existence of wasted space between allocated tiles. The
size of each resource grid can be computed, as stated before,
by A = Nr ∗T , with Nr is the number of frequency channels
and T the allocation window. A refers also to the total number
of available sRBs on each gk. Given the slices demand γµsi,k
in terms of tiles, the total required tiles on each bk can be
computed by: ρk =

∑
si∈S γ

µ
si,k

. Therefore, the total allocated
sRBs on each gk equals 4 ∗ ρk, as each tile contains 4 sRBs.
From that, the highest upper bound of LCUS, noted LCUSk,

can be quantified by LTUBk = A−4∗ρk. The topmost upper
bound over all B is then: LTUB =

∑
k∈B LTUBk.

V. MODELS EVALUATION

In the previous section, the two objectives are modeled
separately. Two mathematical models are proposed for the
ESRP objective. Their evaluation is necessary, as well as
the comparison of their performance. The second objective
is treated as a 2DBP optimization problem. With the NP-
hardness of such resolution, the skyline heuristic is used for
this resolution. In order to evaluate its performance in term
of LCUS, the LTUB is taken as the optimal solution. In
this section, the evaluation of both objectives solutions is
conducted. The metrics of this evaluation are: the total tied
sRBS (TTR) for ESRP versions, the LCUS for skyline and
the convergence time for all algorithms (i.e. ESRP-v1, ESRP-
v2, Skyline).

A. Performance metrics computation

In the following, the used performance metrics in this
evaluation are highlighted with the followed methodology.

1) Total tied sRBs (TTR): The objective behind the im-
plementation of both ESRP models is to maximize the total
tied sRBs during an allocation of a slices set over a gNBs set.
Therefore, the basic evaluation metric is the achieved total tied
sRBs, noted TTR. The two ESRP models are developed with
CPO. Both models are configured with a time limit fixed to
600 s. The later limits the time for models to reach the optimal
TTR score. In fact, if the model doesn’t reach the optimal
TTR score during the 600 s, the compilation is stopped and
the upper bound score is saved as optimal score. Otherwise,
the objective score is retained.

2) Convergence Time (CT): The CT is a critical metric for
real time slicing. For CPO models, the CT is computed with
time function and for skyline, python time module is used.

3) Largest Continuous Unallocated Space (LCUS): In or-
der to count the largest continuous unallocated space (LCUS)
after each allocation, we propose the use of the Connected
Component Labeling (CCL) with the Depth First Search (DFS)
method [11]. The latter is based on graph traversal approaches
in graph theory and can be used as well for binary images
(matrix). A connected component in a matrix is the subset of
matrix elements with same value, where each element is reach-
able by the other elements. Thus, in our work case, we derive
a binary matrix from the resource grids after the allocation
completion. Each allocated sRB to a given slice corresponds
to an element matrix with value equals 1 and the unallocated
sRBs (elements) worth 0. That is, each binary matrix Mk refers
to one gk after allocation, k ∈ B. The objective is then adapted
to find the maximum subset of zeros among each matrix, i.e.
continuous unallocated sRBs. Let denote it LCUSk, k ∈ B.
It can be achieved by the CCL approach. Particularly, given
an input binary matrix as illustrated in fig. 8, the CCL based
DFS resolution lead to the labeled matrix (right matrix). Each
group of connected elements is labeled by the same number.
Particularly, the group of zeros at the bottom right is labeled by



6 and forms a connected component. Therefore, the derivation
of the biggest connected zeros group is straightforward and
accurate. In this example, it is the group of 9 zeros at the
top left of the matrix, labeled by 2. This group represents
exactly the largest continuous unallocated space in a resource
grid. Further, we compute the total LCUS over the set B as:
LCUS =

∑
k∈B LCUSk.

Fig. 8: Application of CCL-DFS on a resource grid (binary
matrix).

B. ESRP evaluation: Slice Resources Placement Problem

The resource grid size is fixed, i.e. Nr = 27, T = 40.
For each test, the number of slices requests and the number
of adjacent BSs are fixed. The slicing profile Γ is randomly
generated for each simulation run as to have at maximum
80% of the grid usage. 100 independent simulation runs are
realized for each given test. For each simulation run the model
feasibility (SPFM) is tested. Then in case of its feasibility, the
same instances are used for both optimal models and skyline.
The results are then averaged over all the simulations runs for
each test.

1) Total Tied sRBs (TTR): Fig. 9 illustrates the opti-
mal/upper bound TTR score with both models as a function
of B size when serving 3 slices. Same TTR score is achieved
by both models over the different B sizes (two models curves
are superposed). The score is increasing with B size growth.
It ranges from 278 sRBs to 720 sRBs. Thus, larger B sets
produce higher TTR scores. In addition, fig. 10 plots the TTR
score by both ESRP-v1 and ESRP-v2 as a function of the S
size for a system with 3 gNBs. A slight variation of TTR score
is observed with S variation. This reflects the insensitivity of
both models to the slices set growth with respect to TTR.

It is worth noting that out of the total simulation runs of
4198, the successful optimal TTR is achieved only 15,55%
and 14,7% with ESRP-v1 and ESRP-v2 respectively. Most of
the optimal scores are reached for the small systems composed
of 2 gNBs. Therefore, both models are unable to achieve the
optimal TTR score for bigger systems within 600 s.

2) Convergence Time (CT): To investigate the impact of
B and S size on CT, fig. 11 and fig. 12 plot the CT in seconds

as function of the B size with different slices sets and S size
with different B sets respectively.

Fig. 9: ESRP models TTR
(sRBs) as a function of B.

Fig. 10: ESRP models TTR
(sRBs) as a function of S.

For all case studies, the ESRP (ESRP-v1 and ESRP-v2)
models have quite similar CT, i.e. their curves are superposed.
For small systems the models converge approximately in the
order of hundreds of seconds, e.g. 210 s for a system with 3
gNBs serving 3 slices. Then, the CT increases gradually with
the B or S set size growth. For larger systems, the models
CT reach quickly 600 s that corresponds to the prefixed time
limit. Moreover, it is observed that ESRP-v1 converges rapidly
compared to ESRP-v2 in 2122 simulations, whereas the ESRP-
v2 outperforms ESRP-v1 in 2076 simulations with respect to
CT.

Fig. 11: ESRP models CT
(s) as a function of B serv-
ing 3 and 9 slices.

Fig. 12: ESRP models CT
(s) as a function of S with
3 gNBs and 9 gNBs.

C. LCUS evaluation: Unallocated Space Problem

The second objective concerns the LCUS. For that, we have
proposed the use of the Skyline heuristic. In this part, the
achieved LCUS with skyline is compared with the upper bound
LCUS, LTUB with respect to S and B sizes.

Fig. 13: LCUS (sRBs) for
both Skyline and LTUB as
a function of B set size.

Fig. 14: LCUS (sRBs) for
both Skyline and LTUB as
a function of S set size.

1) Largest Unallocated Space (LCUS): Fig. 13 shows the
variation of LCUS by skyline and LTUB as a function of B
size in a system serving 3 slices. Over the different B sizes,
the skyline heuristic reaches the topmost upper bound LCUS
(LTUB). The two curves representing the LTUB and skyline



score are similar. This reflects the capability of skyline to
allocate efficiently the slices tiles without any space waste
in between. The LCUS is increasing with B size. This is
expected, as the LCUS is the sum of LCUSk, k ∈ B, over
B. Moreover, the LCUS varies slightly with S size variation
as shown on fig. 14. With different S sets, the skyline always
attain the LTUB. From that, it is clear that LCUS skyline is
insensitive to the number of served slices.

2) Convergence Time (CT): The skyline CT as a function
of B size and S size is shown on fig. 15. The skyline converges
in the order of hundreds of milliseconds. The CT increases for
higher B sets (fig. 15 (a)). Nonetheless, it doesn’t outpace 0.45
s. A small CT difference is remarked when serving 3 and 9
slices. It is zoomed out on fig. 15 (b). For lower gNBs set,
the CT doesn’t exceed 0.1 ms for different slices set sizes.
Then, for larger B size, the CT is between 0.16 s and 0.45 s
for the various S set size. Therefore, the skyline is interesting
with respect to CT, as it can be implemented for SD-RAN real
time allocations.

Fig. 15: CT for Skyline as a function of B set size (a) and S
set size (b).

D. Discussion

Overall, both ESRP models converge slowly in the order of
hundreds of seconds. This is with the fixed time limit before
the simulations run, i.e. 600 s. Hence, the ESRP versions
might converge at higher time scales. For the trial simulations,
the scale is at a granularity of hours for larger set. Also, the
percentage of reaching the objective (i.e. optimal TTR) within
this time limit is feeble. Thus, higher time limits is required to
achieve this objective. It restricts their implementation for real
time slicing. There is therefore a need for heuristics to achieve
the cooperation enabling requirement rapidly. Nevertheless,
the ESRP models could be advantageous for the SD-RAN
large time scale decisions, especially for the case of slices
with small traffic variation.

On the other hand, the NP-hardness of the LCUS objective
drove us to use the heuristic solution, especially the skyline
heuristic. The latter has demonstrated good performance in
terms of largest continuous unallocated space as well as
convergence time. The LCUS attained by skyline is exactly
the same as the LTUB for different B set and S sizes. In
addition, it converges in less than 0.45 s for various B and S
sets. This makes the skyline suitable for real time deployments
of RAN slicing without enabling cooperation requirement.

Further, the RAN slicing comes with the four require-
ments together, i.e. orthogonality, satisfaction, scalability and

enabling cooperation. The ESRP models target the three
RAN slicing requirements (i.e. satisfaction, orthogonality and
cooperation enabling) at the expense of scalability, whereas
the skyline assures the RAN slicing without enabling coop-
eration requirement. With the aim of real time RAN slicing
enforcement, an heuristic based solution seems to be the
best choice, as the ESRP models converge slowly in the
order of hundreds of seconds without taking into account
the scalability requirement. Accordingly, we propose three
heuristics to support the RAN slicing requirements.

VI. PROPOSED HEURISTICS

The aim of this work targets the real time RAN slicing
enforcement. For that, an allocation strategy combining the
maximisation of the total tied sRBs over a given set of
gNBs as well as the largest continuous unallocated space is
argued to reach such aim. The space maximization objective
is uncovered to be NP-hard. And, the developed ESRP models
converge slowly. Thus, it limits the real time slicing enforce-
ment. Therefore, we propose to tackle this multi-objective
problem with heuristic based approach.

Given the muti-objective criterion, a compromise between
both objectives is unavoidable. The slice owner might have
the possibility to allocate its tied resources to the users at
the cells boards highly affected by interference. Thus, it can
enable the cooperation techniques on only these resources.
Certainly, a slice with higher TTR is much more beneficial, as
the slice owner would have more flexibility on its resources.
On the other hand, the LCUS enables the scalability. Thus,
the MNO can serve more slices. Moreover, an improvement
of the current served slices QoS can be achieved by scaling
up their resources. In addition, it allows a high level of
spectral efficiency. Accordingly, The LCUS is prioritized in
the heuristic development.

The aforementioned used skyline heuristic reaches the op-
timal LCUS in a small time scale, i.e. maximum 0.45 s. This
is attractive from the real time implementation perspective.
For such reason, the proposed heuristics use the skyline
as an underlying allocation technique. Three heuristics are
developed. With the skyline approach, the LCUS is guaranteed
while the TTR is targeted at best to find the optimal slicing
enforcement policy. In this section, the developed heuristics
are depicted.

A. Heuristic 1: Highest Slice First HSF

Each slice is assigned a different amount of resources
on each BS. Thus, the slices requiring higher amount of
resources over B are expected to generate high number of
tied sRBs. Considering such fact, the total required resources
over B is computed for each slice based on the slicing profile
Γ = (γµsi,k)si∈S,k∈B , ( γµsi,k is the amount of tiles to be
allocated to slice si in BS bk with numerology µ during T )
as follows: λsi =

∑
k∈B γ

µ
si,k

.
The algorithm first tries to set the bigger slices at the same

position in the interfering BS. Therefore, the slices are sorted
in a decreasing order based on λsi . Hence, the slice with higher



amount of tiles is first served and the lower last. We denote
such method as the Highest Slice First, HSF. It is
represented in Algorithm 1 and performs as follows:

i ) compute the total required resources of all the slices over
B, Λ = (λsi)si∈S .

ii ) sort the slices in decreasing order based on λsi and
generate the set So with ordered slices.

iii ) insert the first object of the first slice in So in the bottom
left of the bins.

iv ) allocate the current slice object in the bottom-most
position leaving the largest unallocated space over time in
each bin and minimizing the wasted space between objects
of same bin.

v ) keep inserting the objects of the current slice on all the
bins with respect to iv until the required objects of the
current slice are allocated on all the bins.

vi ) repeat iv and v as to allocate the slices in sequential order
as in So, until all the objects of each slice on each BS are
allocated.

Algorithm 1 Heuristic1- HSF
1: Input: B, S, Γ
2: Output: HSF sRBs allocation GHSF = (gHSFk )k∈B
3: set gHSFk = (αsi,µk,f,t)f,t = 0 k ∈ B si ∈ S
4: Compute Λ = (λsi)si∈S
5: So ← sort S in decreasing order based on Λ
6: for each BS bk ∈ B do
7: for slice si ∈ So do
8: while γsi,k 6= 0 do
9: allocate si tile subsequent sRBs with LCUS

account.
10: update gHSFk

11: remove the allocated object from γsi,k

12: end

The first instructions of the total required resources com-
putation and slices sorting run in O(nb ∗ ns + nslog(ns)).
Let denote ρ the total required tiles of all slices over all the
gNBs, i.e. ρ =

∑
si∈S λsi . The heuristic core code run in

O(nb ∗ ρ2). This is because the packing time on each gNB is
ρ2. Consequently, the HSF converges with a time complexity
of O(nb ∗ ρ2).

B. Heuristic 2: Iterative Minimum Allocation IMA

HSF allocates in sequential order all the tiles of a given slice
over all the involved gNBs, starting with the slice requesting
the highest total number of tiles over B.

Given that the slices request different amount of tiles over a
set of gNBs, it is clear that the maximum tied sRBs between
a subset of gNBs equals the minimum required resources over
the same subset. From that, with the aim to maximize the
total tied sRBs over B, we propose an iterative allocation
of the non null minimum required tiles of each slice over
the involved BSs. We refer to such approach as an Iterative
Minimum Allocation (IMA) approach.

Let denote msi the non null minimum required objects
for slice si over B. It is computed as follows: msi =
min k∈B

γ
si
k 6==0

γsik .

The IMA procedure works as follows:
i ) compute the total required resources of all the slices over

B, Λ = (λsi)si∈S .
ii ) sort the slices in decreasing order based on λsi and

generate the set So with ordered slices.
iii ) Compute the minimum required objects for all slices,

si ∈ So over all B, M = (msi)si∈So .
iv ) allocate msi sequentially with leaving the LCUS over

each bin.
v ) update γsi,k by subtracting msi .

vi ) repeat iii, iv and v for all si ∈ So. If γsi,k = 0. Remove
si from bk.

vii ) If Γ = 0, stop. Otherwise, repeat vi until all the slices
are assigned the required tiles over B.

Algorithm 2 Heuristic2-IMA
1: Input: B, S, Γ
2: Output: IMA sRBs allocation GIMA = (gIMA

k )k∈B
3: set gIMA

k = (αsi,µk,f,t)f,t = 0 k ∈ B si ∈ S
4: Compute Λ = (λsi)si∈S
5: So ← sort S in decreasing order based on Λ
6: while Γ 6= 0 do
7: Compute M = (msi)si∈So

8: for each BS bk ∈ B do
9: for each slice si ∈ So do

10: add msi to the allocation with LCUS
11: Update gIMA

k by allocating msi tiles subse-
quent sRBs

12: remove the allocated objects from γsi,k

13: Update Γ by removing the allocated msi objects
from γsi,k

14: if γsi,k = 0 then
15: remove si request in bk
16: end

C. Heuristic 3: Highest Minimum First HMF

With IMA, the slices are sorted in decreasing mode based
on the total required resources over the involving BSs. HMF
instead sorts the slices in decreasing order based on the
minimum required resources over the gNBs set. Therefore,
the minimum is computed at each iteration and the algorithm
proceeds as follows:

i ) Compute the minimum required tiles for all slices, si ∈
So over all B, M = (msi)si∈S .

ii ) sort the slices in decreasing order based on msisi∈S and
generate the set So with ordered slices.

iii ) allocate msi sequentially with leaving the LCUS over
each bin.

iv ) update γsi,k by subtracting msi .
v ) repeat the steps from i until iv for all si ∈ So. If γsi,k =

0. Remove si from bk.



vi ) If Γ = 0, stop. Otherwise, repeat v until all the slices
are assigned the required tiles over B.

Algorithm 3 Heuristic3- HMF
1: Input: B, S, Γ
2: Output: HMF sRBs allocation GIMA = (gIMA

k )k∈B
3: set gIMA

k = (αsi,µk,f,t)f,t = 0 k ∈ B si ∈ S
4: while Γ 6= 0 do
5: Compute M = (msi)si∈So

6: So ← sort S in decreasing order based on M
7: for each BS bk ∈ B do
8: for each slice si ∈ So do
9: add msi to the allocation with LCUS

10: Update gIMA
k by allocating msi tiles subse-

quent sRBs
11: remove the allocated objects from γsi,k

12: Update Γ by removing the allocated msi objects
from γsi,k

13: if γsi,k = 0 then
14: remove si request in bk
15: end

HMF and IMA are implemented with time complexity of
O(nb ∗ ρ2).

D. TTR computation

Once the allocation is performed, an evaluation of the total
amount of tied sRBs, the largest continuous unallocated space
in a grid and convergence time is prominent. The LCUS
and CT are computed as explained in section V-A. With
ESRP models, the TTR was exactly the objective score. With
the heuristics, the computation of TTR is required once the
allocation finishes. For that, we propose an algorithm to count
the total tied sRBs over the gNBs.

An sRB is considered as tied if it is allocated to same slice
over the involved gNBs. In fact, each slice requests a different
amount of resources on each gNB, the maximum tied sRBs
between a given subset of gNBs is then equal to the minimum
required resources over the same subset. An example includes,
a slice s1 that requires 2 tiles (8 sRBs) on gNB b1 and 1 tile
(4 sRBs) on gNB b2. If the allocation is optimal, we will have
at maximum 1 tied tile for s1 over b1 and b2, i.e. 4 tied sRBs.

From that, given the resource grid with complete allocation,
Gc = gck, we propose to count the total tied sRBs as
summarized in algorithm 4 and explained in the following for
each slicesi ∈ S.

i ) compute the total required sRBs for each slice,
Max(si) =

∑
k∈B γ

µ
si,k

.
ii ) select the gNBs where the slice requests the resources,

noted Bsi
iii ) compute the minimum required resources over Bsi , i.e.

Min(si) = mink∈Bsi
γµsi,k.

iv ) compute the tied sRBs from Min(si) without redun-
dancy.

v ) update Max(si) and repeat from step 2.

vi ) repeat from 2 until the total required sRBs is reached or
there is no minimum sRBs between any gNBs to be tied.

Algorithm 4 Total tied sRBs (TTR)
1: Input: Gc, S,B,Γ.
2:
3: Output: Total tied sRBs over B.
4: for each slice si ∈ S do
5: Compute Max(si) =

∑
k∈B γ

µ
si,k

6: Compute the Min(si) = mink∈B γ
µ
si,k

7: while Max(si) ≥ 0 and Min(si) 6= 0 do
8: Bsi ← {bk, k ∈ B where γµsi,k 6= 0}
9: Min(si) = mink∈Bsi

γµsi,k
10: count θj from Min(si) and check the non redun-

dancy.
11: update Max(si)←Max(si)− 4 ∗Min(si)

12: Θsi =
∑
j∈ζsi

θj

13: χ =
∑
si∈S Θsi

This algorithm is validated based on ESRP models. For all
the instances of ESRP simulations, the achieved optimal TTR
by ESRP is compared to the one computed by algorithm 4.

VII. HEURISTICS EVALUATION

In this section, the performance evaluation of the three
heuristics is fulfilled. Mainly, a comparison based on CT,
TTR and LCUS is conducted. For that, the heuristics achieved
TTR is compared with the optimal TTR given by ESRP
models. In section V, it is shown that quite similar results
are given by both ESRP versions and that ESRP-v1 out-
performs smoothly ESRP-v2. Only ESRP-v1 scores are then
considered in this part. Regarding the LCUS, although the
skyline has reached the optimal LCUS for the different B and
S sizes, the comparison between the three heuristics LCUS
is performed with respect to the topmost upper bound score
(LTUB). Furthermore, for all evaluations, the impact of the
gNBs number and the served slices is also investigated. The
simulation environment and process is exactly as described in
part V-B. Similar instances are used for both ESRP models
and heuristics for each simulation run. The results are then
averaged over all the simulations runs for each test.

A. TTR Analysis

Fig. 16 illustrates the TTR optimality gap achieved by the 3
algorithms as a function of B size. The optimality gap (OG) is
obtained from the difference between the optimal score given
by ESRP-v1 and the achieved score by a given algorithm
divided by the optimal score. It refers to the gap between the
reached score and the optimal one. IMA and HMF have quite
similar results over the various B set sizes, i.e. their curves
are superposing. They reach the optimality for lower B set
sizes when serving different S sizes (see fig. 16), i.e. OG=0%.
The HSF is at 30% from optimality in similar cases. Then,
the three heuristics scores decrease proportionally to B size
augmentation. Particularly, the optimality gap with 3 gNBs is



0.9% and 48% with 9 gNBs when serving 3 slices using HMF
or IMA. Both algorithms outperform HSF for B sizes lower
than 9 gNBs. The HSF optimality gap ranges from 33% to
49% with 2 gNBs and 13 gNBs respectively, when 3 slices
are served (see fig. 16).

As for the impact of S size on TTR, fig. 17 shows the OG
as function of S for two system sizes: 3 and 5 gNBs. The OG
increases when moving from a system serving 3 slices to the
one with 7 slices. Then, the OG is quite stable around 22%
with 3 gNBs and 47% with 5 gNBs with both IMA and HMF.
It can be concluded that HMF and IMA become insensitive
to larger S set size starting from 7 slices. It is mainly the B
set size that has an impact on the TTR score. The HSF has
higher OG compared to HMF and IMA. Its OG score ranges
between 47% and 74% with a system of 5 gNBs. Thus, IMA
and HMF always outperform HSF in the case of 3 gNBs as
well as 5 gNBs.

Fig. 16: TTR (sRBs) Opti-
mality gap as a function of
B size serving 3 slices.

Fig. 17: TTR (sRBs) Opti-
mality gap as a function of
S for different B size.

B. Convergence Time (CT) Analysis

The convergence time is a vital performance metric, as the
objective is the real time slicing enforcement.

Fig. 18 shows the convergence time of the three heuristics in
seconds as function of B serving 3 slices. The three heuristics
converge quickly at a time scale of hundreds of milliseconds.
IMA and HMF have similar CT and slight difference is
remarked with HSF. The CT increases proportionally with B
size growth. It expands gradually in the order of milliseconds.
For small B set size, the CT is less than 10 ms. It increases
with higher B size sets, e.g. 0.53 s with 9 gNBs.

Fig. 18: CT (s) evaluation
over varying B set size.

Fig. 19: CT (s) evaluation
over varying S size.

Regarding the S size impact on CT, fig. 19 plots the three
heuristics CT as a function of S size with a system of 3 gNBs.
For a system with 3 and 5 gNBs, the HMF and IMA converge
in similar time granularities. HSF marked lower CT than both
IMA and HMF. The CT variation is independent of the S size.
It varies in small interval size. Notably, for a system with 3

gNBs, the IMA CT ranges between 0.04 s and 0.11 s. Similar
observations are concluded with respect to the impact of S on
the B set size and vice versa.

C. Largest Continuous unallocated Space (LCUS) Analysis

Fig. 20 highlights the impact of S size on the LCUS score
in the system. The LCUS is computed over B as described in
V-A3. The three heuristics achieve the optimal LCUS score
given by LTUB. This is expected, as the skyline is used for
the allocation. With S variation, the LCUS also varies in a
small interval. This variation is independent of the S set size
evolution.

As for B size impact, fig. 21 plots the LCUS over each B
set size. All heuristics achieve the optimal LCUS score over
the different B set sizes, i.e. their curves are superposing. It
is observed that larger B sets allows higher gain in terms of
LCUS by all approaches. The LCUS score is then proportional
to the B set size and insensitive to S size variation.

Fig. 20: LCUS (sRBs) as a
function of S size with 3
gNBs.

Fig. 21: LCUS (sRBs) as a
function of B size serving 3
slices.

D. Discussion

With the multi-objective criterion of the allocation strategy,
i.e. maximization of TTR and LCUS, each objective is mod-
eled separately. ESRP models the TTR maximization while
skyline approximates the LCUS. In the previous parts, an
evaluation of all algorithms is realized. Regarding the conver-
gence time (CT), both ESRP versions converge at timescale
of hundreds of seconds. Even though the ESRP-v1 marks a
lowest CT compared to ESRP-v2, but the CT for both models
reaches the time limit (600s) for almost all the tests. On
the other hand, skyline has achieved a lower CT to achieve
the optimal LCUS. The CT is at granularity of hundreds of
seconds.

With the objective to enforce the real time RAN slicing,
the ESRP models have shown their limits in terms of con-
vergence time. Thus, it implies their non adaptability for real
time allocation. Nevertheless, they might help the SD-RAN
controller for large-scale decisions. Contrarily, the skyline
demonstrates its capability to converge quickly with an optimal
score over different BSs and slices set sizes. From that, we
proposed to use a solution based heuristics to resolve the
MOOP. The LCUS is prioritized while the TTR is achieved at
best. Three heuristics are developed, i.e. IMA, HMF and HSF.
A comparison between all the algorithms to enforce the RAN
slicing is fulfilled. The key metrics are the CT, TTR and the
LCUS.



Contrarily to the ESRP models, the three heuristics converge
at time scale of milliseconds. For lower B and S sizes, the CT
is in the order of 10 ms. The CT increases smoothly with
larger B set size. But, it doesn’t outpace 0.7 s, 0.65 s, and
0.47s when tested with HMF, IMA and HSF respectively in a
large B set of 13 gNBs serving 15 slices simultaneously. From
that, these heuristics demonstrate their capability for real time
deployment within the 5G SD-RAN.

Further, the HMF, HSF and IMA heuristics are compared
to the optimal/upper bound solution given by ESRP-v1 for the
TTR score. For the LCUS, the heuristics are compared with
the upper bound LCUS (LTUB). For a small set of gNBs and
slices, e.g. 2 or 3 gNBs with 3 slices, the IMA and HMF
achieve quite similar results in terms of TTR as the optimal
score given by ESRP-v1. The HSF has lowest scores in this
case, but only a very small gap from optimality, i.e. 30 %. The
optimal LCUS is reached by all of HMF, HSF and IMA for
similar case study. With the CT scored for such case (small
B size up to 5 gNBs) is in the order of 10 ms. The IMA
and HMF are highly enforcing the RAN slicing for real time
system deployment by reaching the optimality for TTR and
LCUS in very small time scale. This could be the case of
macro cells deployment, as well as a small group of other
cells type covering a specific geographical zone.

The 5G network slicing vision includes the dynamic cre-
ation of slices over time. Thus, higher S size might be carried
by the SD-RAN over time. Regarding the TTR, the IMA and
HMF have shown insensitivity to the S size larger than 7
slices.In other words, higher S size doesn’t have a big impact
on both the tested algorithms. This is advantageous for the
5GRAN enforcement.

Another system parameter is the number of gNBs. With
the optimal models, i.e. ESRP, it is observed that TTR op-
timal/upper bound increases with higher B sizes. The HSF
follows the same change. The IMA and HMF performance
degrade with larger B sets. Nonetheless, the worst case study
with 13 gNBs serving 15 slices, at least 32% of the optimal
TTR is reached by both heuristics. This score might be higher
as the ESRP doesn’t converge within the time limit for this
instances, and then the comparison is conducted with the
upper bound TTR. Nevertheless, this score still advantageous
as the heuristics prioritize the LCUS at the expense of TTR.
In fact,the highest B size produce the highest LCUS when
applying both heuristics. It corresponds exactly to the optimal
LCUS marked by LTUB. Thus, they lead to an allocation
without resources waste. In fact, the LCUS increases with the
B size growth. This prioritization is intended because of the
crucial task of efficient resource allocation required by the
MNO.

In summary, although the ESRP models give the optimal
allocation with higher total tied sRBs, their high convergence
time and non assurance of resources efficient usage make their
real time deployment questionable. The IMA, HMF and HSF
heuristics achieve a good results in terms of TTR, CT and
largest space for lower B sets. This proves the possibility of
their real time deployment for such cases. The growth of B size

allows a larger continuous unallocated space at the expense
of TTR with all the developed heuristics. Even though this
priority prospect, the TTR is assured at best by HSF, IMA
and HMF. The HMF and IMA are out performing the HSF.
Thus, the slice owner could use the tied resources to enable the
advanced transmission schemes for the critical transmissions.
Moreover, all heuristics highly enforce the RAN slicing with
respect to the resource orthogonality, satisfaction,scalability
and enabling cooperation requirements. In fact, the orthog-
onality, satisfaction and scalability are guaranteed, while the
enabling requirement is assured at best.

VIII. CONCLUSION

The RAN slicing comes with challenging requirements such
as resources isolation, slices satisfaction, scalability and the
cooperation enabling. In this work, we aimed to enforce it
from resource perspective in the 5G context. For that, we
have formulated the problem as a multi-objective optimization
to allocate efficiently the slices resources with respect to
the diverse RAN slicing requirements. The first objective
addresses the scalability of the RAN slicing through the
maximization of the largest continuous unallocated space on
each gNB resource grid. Then, the second objective handles
the cooperation enabling requirements by means of resource
allocation in similar position over frequency and time for a
given slice over the set of gNBs. The second objective involves
a tight management of resources. Therefore, a resource grid
decomposition is proposed as to have a fine grained resources
monitoring. Both slices orthogonality and satisfaction are
guaranteed by means of constraint.

With the multi-objective criterion, the optimal solution for
each objective is targeted. Two mathematical models are
developed for the first objective, whereas the second objective
is tackled as a 2D bin packing optimization problem. An
heuristic is then used to approximate rapidly the optimal score
as the problem is known to be NP-hard. Also, the upper bound
LCUS solution is computed. The optimal models converge
slowly, which limits their deployment for real time use cases.
Nevertheless, they could be advantageous for the SD-RAN
large scale decisions.

Therefore, three heuristics are implemented with the aim
to enforce the allocation strategy for the RAN slicing. The
scalability is prioritized with these heuristics at the expense of
the enabling cooperation requirement. All the algorithms are
evaluated in terms of convergence time, total tied resources
and largest continuous unallocated space.

Contrarily to the optimal models, the developed heuristics,
i.e. IMA, HMF and HSF achieve good results in different case
studies. Especially, for lower set of gNBs, the IMA and HMF
reach the optimal scores for both tied resources and LCUS
with a very low convergence time in the order of 10 ms. In
such case the four RAN slicing requirements are guaranteed.
Moreover, all the tested algorithms show insensitivity to the
number of served slices during the allocation window. Such
results encourage the real time deployment test for the three
approaches.
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